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ABSTRACT 
 
We present herein rPTMDetermine, an adaptive and fully automated methodology for validation of the 
identification of rarely occurring post-translational modifications (PTMs), using a semi-supervised 
approach with a linear discriminant analysis (LDA) algorithm. With this strategy, verification is enhanced 
through similarity scoring of tandem mass spectrometry (MS/MS) comparisons between modified peptides 
and their unmodified analogues. We applied rPTMDetermine to (1) perform fully automated validation 
steps for modified peptides identified from an in silico database and (2) retrieve potential yet-to-be-
identified modified peptides from raw data (that had been missed through conventional database searches). 
In part (1), 99 of 125 3-nitrotyrosyl–containing (nitrated) peptides obtained from a ProteinPilot search were 
validated and localized. Twenty nitrated peptides were falsely assigned because of incorrect monoisotopic 
peak assignments, leading to erroneous identification of deamidation and nitration. Five additional nitrated 
peptides were, however, validated after performing non-monoisotopic peak correction. In part (2), an 
additional 236 unique nitrated peptides were retrieved and localized, containing 113 previously unreported 
nitration sites; 25 endogenous nitrated peptides with novel sites were selected and verified by comparison 
with synthetic analogues. In summary, we identified and confidently validated 296 unique nitrated 
peptides—collectively representing the largest number of endogenously identified 3-nitrotyrosyl–
containing peptides from the cerebral cortex proteome of a Macaca fascicularis model of stroke. 
Furthermore, we harnessed the rPTMDetermine strategy to complement conventional database searching 
and enhance the confidence of assigning rarely occurring PTMs, while recovering many missed peptides. 
In a final demonstration, we successfully extended the application of rPTMDetermine to peptides featuring 
tryptophan oxidation. 
  



INTRODUCTION 
 

Post-translational modification (PTM) is the alteration of a protein following mRNA translation; 
most PTMs arise from covalent additions to amino acid side chains. Some PTMs modulate cellular function, 
others result from environmental stress or disease. Because a protein can have multiple possible sites with 
differing functional significance for a given type of PTM, comprehensive sequence coverage and site 
mapping are desirable in proteome analyses. Advancements in mass spectrometry (MS) are rendering 
comprehensive and high-throughput proteomics analyses a reality. Combining proteolytic sample digestion, 
liquid chromatography (LC) separation, and high-throughput data-dependent tandem mass spectrometry 
(MS/MS) acquisition enables rapid peptide—and, thus, protein—identification using protein sequence 
database search engines (e.g., Mascot1, SEQUEST2, ProteinPilot3), which can be employed for PTM 
analysis. 

Confident identification of rarely occurring PTMs [of specific residue(s) in protein(s) in the 
proteome] is challenging because of the diverse range and low abundance of modifications. The former 
requires costly computationally intensive in silico database identification; the latter results in poor analytical 
detection, due to the low stoichiometric concentration. Comprehensive coverage and mapping of all 
possible PTM sites is essential to thoroughly characterize the biological function of any given protein 
modification. PTM-bearing peptides are reported to be responsible for 20–50% of false-positive 
identifications,4 likely resulting in missed and misleading biological discoveries. 

Confident PTM identifications are often claimed if they pass false discovery rate (FDR) control; 
this approach may, however, inaccurately estimate the rate of false-positives in rarely occurring PTM 
identifications.5–7 The target-and-decoy strategy, which gauges the extent of false-positives by searching 
the target database and a decoy database of non-existent proteins (usually derived from the reversed target 
sequences), is routinely applied in database searching.8 Accordingly, matches to decoy peptides signify 
incorrect identifications. The FDR estimates the confidence in the search results in terms of the ratio of the 
number of decoy-to-target peptide spectrum matches (PSMs) with scores above a threshold. False 
identifications can escape FDR control because of, for example, the low mass-accuracy of the 
instrumentation or restrictive search parameters.9 Applying global FDR to confidently estimate PTM 
identifications assumes that the FDR for this subset is identical to that for the complete set of peptides. The 
PSM scores depend, however, on the PTMs and the compositions; thus, the assumption of uniformity may 
not be valid. Subgroup FDR control has been proposed to estimate the error rate in PTM identifications,5,10 
but this approach has its detractors because the smaller sample sizes broaden confidence intervals in the 
FDR.8,11 An extra challenge arises from PTM localization in peptides with multiple potential sites; many 
search engines do not offer a means for PTM localization, so specialized software tools are required to 
serve this purpose.12 

Manual validation has often been used for PTM identifications; unfortunately, manual validation 
is labor intensive, low throughput, and heavily dependent on the researchers’ expertise. To circumvent the 
limitations of FDR control and the labor-intensive steps in manual validation, some previously developed 
tools have employed semi-supervised machine learning, which separates unknown correct identifications 
from incorrect (decoy) identifications, and evaluates PSMs from database searches.13,14 Most such tools had 
been designed for validation of the whole set of search results; thus, the heterogeneity in peptide 
identifications remained, making the tools unamenable to identifying rarely occurring PTMs. The validation 
problem aside, database search engines leave most mass spectra unassigned (or with low-confidence 
assignments), including high-quality spectra that may derive from peptides bearing an untargeted PTM.15,16 
Clustering algorithms have been applied to group mass spectra, including unassigned spectra, into a cohort 
originating from a single peptide, thereby providing an avenue for identification.17,18 This approach is 
ineffective for rare PTMs because the modified peptide is unlikely to be identified from multiple spectra. 



An alternative method for retrieving PTM identifications uses an unrestricted search without specifying the 
allowed PTMs.19 Although this approach can comprehensively identify peptide PTMs, the confidence of 
the identifications is not fully evaluated, limiting its utility.20 Confidence is enhanced by comparison of the 
mass spectra of modified peptides with their unmodified counterparts; this approach does, however, rely 
on coexistence of these peptides.21,22 

Herein, we present “rPTMDetermine,” an adaptive and automated tool that adopts a semi-
supervised approach with linear discriminant analysis (LDA)—a commonly used and effective machine 
learning algorithm—to differentiate modified peptide identifications from decoy identifications; it also uses 
similarity scoring between product ion spectra of unmodified peptides and those of their modified analogues, 
where PTMs do not significantly perturb fragmentation patterns, as an orthogonal criterion. Finally, PTM 
localization is performed through comparison of the LDA scores of all positional isoforms. By 
incorporating these two orthogonal approaches, we have employed rPTMDetermine successfully to search 
large numbers of unassigned mass spectra for the retrieval of missed PTM identifications. As a 
demonstration, we applied rPTMDetermine for the validation and site-localization of 3-nitrotyrosyl–
containing peptides from database identification; we also used it for the retrieval of potential and yet-to-be-
identified 3-nitrotyrosyl–containing peptides (given that the database search engines leave almost 60% of 
high-quality mass spectra unassigned or with only low-confidence assignments). Identifying ortho protein 
tyrosine nitration (PTN, Scheme S1) is important because this modification is a known biomarker of 
neurodegenerative disorders and age-related diseases.23 Furthermore, because nitration is both 
regioselective and highly selective for specific tyrosyl residues,24 detection of further endogenous nitration 
sites may aid in determining the factors that promote nitration. Previously, such identification has been 
challenging because of the low stoichiometry of PTN modification (estimated occurrence: <0.001%). We 
also demonstrate the extensibility of this strategy toward a second type of PTM: tryptophan oxidation. 
 
EXPERIMENTAL SECTION 
 
LC-MS/MS Data. The results described herein involve the re-analysis and re-interpretation of MS/MS 
spectra (with experimental details) that we have previously reported25 and are available in the 
ProteomeXchange repository (http://www.proteomexchange.org/, PXD003173).26 The data from four runs 
(I08, I17, I18, I19), which captured nitrated peptides during a four-dimensional LC separation with online 
MS/MS, are employed herein. 
Data Extraction. The MS/MS data in the four runs were searched by means of ProteinPilot 4.5 against the 
Macaca fascicularis proteome database (January 2014; 56,572 entries; http://www.ncbi.nlm.nih.gov/). 
Previously, 40 identified nitrated peptides were confirmed by means of manual validation through 
comparison with the chromatographic and MS/MS properties of custom-synthesized nitrated peptides.25 
These peptides and their mass spectra are used herein as benchmarks to train the new validation procedure. 
Mass Spectral Data Preprocessing. Isotope-encoded reporter ions for the iTRAQ 8plex (i.e., m/z 113.1, 
114.1, 115.1, 116.1, 117.1, 118.1, 119.1, and 121.1) were first removed from the mass spectra to avoid 
incorrect annotations to these fragments, which might have influenced subsequent de-noising and led to 
overfitting. A heuristic approach was then implemented to remove noise; it divided the spectra into 100 
Da–wide segments, each retaining a maximum of eight peaks according to annotations derived from the 
theoretical ions of the assigned peptides (Supporting Note I). 
Target and Decoy Set Construction. Target nitrated peptide identifications were collected by searching 
against the M. fascicularis proteome (target) database using ProteinPilot with a 1% global FDR control. 
Because ProteinPilot did not output decoy nitrated peptide identifications, the decoy peptide set was 
constructed in silico by reversing and theoretically digesting all protein sequences in the target protein 
database. All tyrosine residues in the decoy peptides were nitrated in silico, including all permutations of 



nitration for peptides with multiple tyrosine residues (up to a maximum of three PTN modifications), 
thereby permitting construction of a decoy nitrated peptide database. Decoy nitrated peptide identifications 
were obtained by searching the mass spectra assigned to target nitrated peptides against the nitrated decoy 
database with a peptide tolerance of m/z 0.01. Details are available in Supporting Note II. 
Validation Model Construction. For each target and decoy identification, 16 features (variables, see Table 
S1), which have been demonstrated as effective in evaluating PSMs,13,27,28 were determined to assess the 
quality of each PSM (Table S2). Fisher scores, a measure of the difference in distribution of a variable 
between two or more data sets, were used to determine the features capable of discriminating between the 
target and decoy data sets.29 The 16 features (variables) were calculated for each PTN identification; 13 
features with Fisher scores much greater than zero (Table S2, Figure S1) were capable of discriminating 
between the target and decoy identifications. The full dataset (the combination of target and decoy data sets) 
was partitioned repeatedly into training and testing sets, and trained (using the training data set) and 
evaluated (using the testing data set) by an LDA model using the selected features. Each identification 
(including decoy) was assigned an LDA score, alongside a posterior probability (p) of being correct based 
on the target and decoy score distributions (Supporting Note II).30 Those identifications with p ≥ 0.99, 
theoretically guaranteeing an FDR below 1%,31 were accepted (Figure S2). 
Tyrosine Nitration Localization. To determine the specific site of nitration in peptides with multiple 
tyrosine sites, the peptide isoform candidates were generated by permuting nitration over all possible sites. 
Each candidate was validated against the given tandem mass spectrum, using the rPTMDetermine 
procedure, and assigned a site probability (Supporting Note III). If the site probability for an isoform 
exceeded the specified threshold, at 0.99, then the nitration was considered localized to the tyrosine site 
specified by the isoform. Otherwise, the site of modification was considered ambiguous. 
Spectral Similarity. For each nitrated peptide, the non-nitrated analogue was validated using the LDA 
validation model with 11 of the abovementioned 13 features, because the other two (TotalIntMod and 
MatchScoreMod) are specific to modified peptides. The normalized dot product was used to calculate 
similarity scores, which quantified the overlap between the mass spectra of nitrated peptides and those of 
their validated non-nitrated analogues in terms of peak annotations and intensities. The formulae for score 
calculations are provided in Supporting Note IV. 
Software Availability. rPTMDetermine was written in Python; it is freely available, along with instructions, 
at https://github.com/ikcgroup/rPTMValidation. 
 
RESULTS AND DISCUSSION 
 

Our study presented herein was motivated by the need for a fully automated methodology for the 
identification of rarely occurring post-translationally modified peptides in terms of (1) their validation from 
protein sequence database searches using MS/MS data and (2) the recovery of potential yet-to-be-identified, 
but unassigned, product ion mass spectra, missed by database search engines. 
 
Validation of Post-Translationally Modified Peptide Identifications 

rPTMDetermine (Figure 1) is a fully automated validation procedure that employs two sequential 
steps: (a) semi-supervised approach through LDA to validate and localize rarely occurring modified peptide 
identifications and (b) verification of these identifications through comparison of the mass spectra assigned 
to modified peptides and their unmodified counterparts. 

Step (a): LDA Validation (Figure 1a). This step involves an adaptive and fully automated 
validation tool developed for downstream analyses of target modified peptides. Briefly, target modified 
PSMs (mPSMs) are extracted from the database search results. An in silico modified decoy peptide database 
is constructed by reversing the target protein sequence database, performing theoretical digestion, then 



permuting the modification over applicable target residues. Sixteen features (the most frequently acquired 
variables from low-energy CID spectra) measuring the match quality are used to characterize each mPSM 
(see Experimental Section). After classification, each PSM is measured and represented by a single LDA 
score (Supporting Note II, Figure S2). For each PSM having multiple residues susceptible to modification, 
all other potential alternative modified target sites are permuted to generate isoforms for each of the 
modified peptides (see Figure 1c, Supporting Note III for detailed implementations). 

Step (b): Orthogonal Assessment of LDA-Validated mPSMs (Figure 1b). Many rare PTM peptides 
have very low stoichiometry; therefore, in large-scale shotgun proteomics analyses, each modified peptide 
identification is typically complemented by a relatively high-abundance unmodified analogue. Each 
validated post-translationally modified peptide can, therefore, be further confirmed using additional 
orthogonal assessment—based on the similarity between the mass spectra of modified peptides and their 
unmodified analogues. Spectral similarity scores are computed through quantitative comparison of the 
spectra for the validated modified and unmodified PSMs (Supporting Note IV). This orthogonal measure 
could be widely applicable for modified peptides that are accompanied by unmodified analogues with 
similar peptide fragmentation patterns. 

In this paper, we demonstrate the applicability of the proposed methodology with particular 
emphasis on 3-nitrotyrosyl–containing peptides (their validation, site-localization, and retrieval); we also 
demonstrate the extensibility of the established approach using oxidized tryptophan-containing peptides. 
 
Verification of Identified 3-Nitrotyrosyl–Containing Peptides from ProteinPilot 

As a demonstration, we re-evaluated the PTN peptides in a M. fascicularis cerebral cortex 3-
nitrotyrosyl–containing proteome dataset—one of the largest collections of 3-nitrotyrosyl–containing 
peptides that has been characterized and validated for a non-human primate ischemic stroke model. Of the 
125 unique nitrated peptides (233 PSMs) identified by ProteinPilot at global FDR 1%, 117 peptides [94%, 
223 (96%) PSMs] were accompanied by non-nitrated analogues with the same charge-state, rendering 
applicable the validation approach using non-modified peptides proposed herein. The similarity score 
threshold was set at 0.42, derived by comparing the mass spectra of synthetic PTN benchmarks with those 
of non-nitrated analogues (Supporting Note II, Figure S3). After validation and localization by 
rPTMDetermine, 110 unique nitrated peptides (211 PSMs) were accepted (Figure 2a). Figure 2b displays 
MS/MS spectra of the nitrated (upper panel) and non-nitrated (lower panel) analogues of the undecapeptide 
EAVCEVALDYK3+, revealing similar fragmentation patterns and the expected 45-Da shift arising from 
the nitration of residue Y (an LDA score of 8.12 and a similarity score of 0.80). It is a common observation 
that the non-nitrated peptides provide substantially better overall precursor and product ion signals, as 
expected from their higher stoichiometric abundances (see the extracted ion chromatograms in the inset to 
Figure 2b). In addition, the retention times of nitrated peptides are longer than those of their non-nitrated 
analogues; for example, in Figure 2b, the retention times are 71.5 and 57.1 min, respectively. Of all the 
pairs examined, the differences in retention times ranged from approximately 1 to 17 min, with those of 
most peptide pairs falling between 7 and 9 min (Figure S4). Figure S5 provides additional examples of 
identification. Figure S6 presents an example of an ambiguous localization. 
 
Nitrated Peptides without Unmodified Analogues 

The observation of eight unique nitrated peptide identifications featuring high LDA scores, but 
without their unmodified analogues, was unexpected (Figure 2a, upper-left quadrant with similarity score 
= 0), due to the higher stoichiometric concentration of non-nitrated analogues. Thus, we further 
characterized, and manually inspected, these product ion spectra, revealing that five of them featured false 
deamidation (Figure 2a, red triangles). The mis-assignments were due to mistakes in determining the 
monoisotopic m/z ratios for multiple charged precursor ions (deamidation and oxidation results in a net 



mass increase of only 0.98 Da). The inset to Figure 3 compares the experimental and theoretical isotopic 
distributions of an incorrect deamidation identification; the same MS/MS spectrum was annotated using 
the theoretical fragment ions of the deamidated and original (non-deamidated) versions of the peptide. 
Incorporating a deamidation correction algorithm into rPTMDetermine (as described in Supporting Note 
V) enhanced the fragment ion coverage and, as a result, improved the LDA and similarity scores, thereby 
resulting in successful recovery of those peptides with mis-assigned deamidation. Of the 20 deamidated 
nitrated peptides identified by ProteinPilot, we determined that 15 (of 20) had been erroneously assigned 
as deamidated (Table S3 provides the LDA and similarity scores before and after applying the deamidation 
correction). Inspection of the remaining five unique nitrated peptides that failed validation revealed that 
they either had low-confidence non-nitrated analogues or displayed complex isotopic distribution patterns 
(Supporting Note VI). 

In summary, the application of conservative validation and deamidation correction criteria resulted 
in a final list of 104 unambiguous and unique identifications, including 99 unique nitration sites, that were 
validated by rPTMDetermine (Table S4). This list contains all 40 of the high-confidence identifications 
that were previously validated with synthetic standards.25 
 
Retrieval of Unassigned Product Ion Spectra of Modified Peptides 

rPTMDetermine was further applied to retrieve and characterize additional 3-nitrotyrosyl–
containing peptides from unassigned product ion spectra (a total of 954,619 or 79% of the total number of 
experimental mass spectra acquired) (Supporting Note VII). As demonstrated above, nitrated peptides 
were accompanied by non-nitrated analogues having the same charge-state. To retrieve unassigned spectra 
with tyrosine nitration, sets of high-confidence unmodified tyrosine-containing peptides were nitrated in 
silico by permuting nitration over all tyrosine residues to generate a theoretical peak list. The spectra 
potentially corresponding to 3-nitrotyrosyl–containing peptides were then extracted and filtered based on 
the list of theoretical precursor m/z values of the modified peptides. 

The shortlisted mPSMs were then subjected to rPTMDetermine validation, as described above. 
mPSMs that met the established LDA and similarity score criteria were considered as new nitrated peptide 
identifications. From an initial set of 489 mPSMs, we identified an additional 236 nitrated peptides with 
localized sites (Figures 4a and 4b). Of these mPSMs, 44 (35 unique nitrated peptides) were identified by 
ProteinPilot but failed FDR control. 

Interestingly, a portion of the recovered unique nitrated peptide sequences (44 peptides, 19%) 
overlapped with the nitrated peptides that had been originally identified by ProteinPilot, but were 
missed/eluted at different retention times/sub-fractions; 16 were among the 40 that had been synthetically 
benchmarked (Figure 4c, Table S4). An example of such a retrieved nitration identification is 
VGGYNO2ILGEFGNLIAGDPR3+ (where nitration is indicated by “NO2”), which had been identified 
previously from product ion spectra. The newly assigned mass spectrum was of high quality (Figures 5a 
and 5b). Complementary support for the proposed nitrated peptide includes an extended retention time 
(Figure 5c) and a fragmentation pattern similar to that of the non-nitrated analogue (Figure 6a, lower 
panel). The strongest evidence comes from comparison with the synthetic nitrated peptide (Figure 5d)—
the resemblance is striking. It is evident that high-quality yet-to-be-identified product ion spectra were, 
indeed, frequently unassigned and missed by the database search engine. 

The causes for failure in assignment are not completely clear; some are likely due to inaccurate 
charge and precursor m/z determinations, limited database search parameters (e.g., cleavage rules and 
PTMs), unknown modifications, and low scores (e.g., FDR control).15,18,32,33 ProteinPilot employs a two-
mode search to relax restrictions on proteolytic digestion and PTMs, and a complex statistical scoring 
scheme based on such factors as sequence tags, modifications (represented by feature probability which 
quantify modification occurring in nature), proteolytic digestion, and precursor mass error.3 Our results 



suggest that incorrect charge determination and low feature probabilities3 for rare biological modifications 
might be responsible for most of the missed identifications. Although increasing the tyrosine nitration 
feature probability resulted in recovery of the majority of the retrieved nitrated peptides (>75%), it incurred 
a specificity penalty in the FDR-filtered results from ProteinPilot, leading to a considerable number of 
ambiguous identifications (Supporting Note VIII). Thus, such probability adjustment should be used with 
extreme caution; instead, we recommend that rPTMDetermine be used to recover the missed identifications. 

The ability of the LDA similarity-based methodology to retrieve and validate a large population of 
nitrated peptides (236 unique endogenous 3-nitrotyrosyl–containing peptides) is particularly encouraging. 
It is intriguing that 214 are newly identified unique nitrated peptides; Quan et al. previously identified 125 
endogenous nitrotyrosine-modified peptides using the same dataset from the cerebral cortex proteome of 
an M. fascicularis model of stroke.25 In combination with the validated results from the ProteinPilot search, 
we confidently identified and validated 318 unique nitrated peptides using the rPTMDetermine 
methodology—representing, to the best of our knowledge, the largest number of endogenously identified 
nitrated peptides. A substantial portion of the retrieved nitrated peptides corresponded to 131 novel PTN 
sites (56%) and were mapped to a combined set of 98 nitrated proteins, which were missed through 
conventional database searching (Table S4). We selected 25 novel endogenous 3-nitrotyrosine–containing 
peptides from proteins known to be related to ischemic stroke for synthesis (Table S5) and analysis through 
MS/MS experiments under similar conditions (Supporting Note XI). The structures of these retrieved 
peptides were confirmed by comparing their MS/MS spectra with those of synthetic counterparts (Figure 
S7), further demonstrating the confidence of rPTMDetermine retrieval and the importance of recovering 
missed identifications for comprehensive biological discoveries. 
 
Validation of Tryptophan Oxidized Peptide Identifications 

We further established the applicability of the aforementioned methodology to study oxidized 
tryptophan-containing peptides as an example of the extensibility of rPTMDetermine. Oxidation is 
important in a range of pathological conditions, including neurodegenerative diseases.34 Confident 
identification of oxidized peptides remains challenging, however, because oxidation may also target other 
residues (commonly phenylalanine, tyrosine, proline, and methionine);16,35 these residues were considered 
as possible alternative oxidation sites during localization and the site probability criterion, nonetheless 
representing significant localization in all permutations. As an example, we explored this modification at 
tryptophan (Scheme S2) to demonstrate the extensibility of our approach. Oxidized tryptophan-containing 
peptide identifications were collected from ProteinPilot search results (at 1% global FDR); of these, 88 of 
102 unique peptides were accompanied by their non-oxidized analogues. These identifications were 
validated, including deamidation correction, and localized using rPTMDetermine (Supporting Note XII; 
Figures S8 and S9). We successfully validated 71 unique oxidized peptides (with LDA and similarity 
thresholds of 3.38 and 0.42, respectively; Figure 6a). Site localization lowered this number to 67 peptides—
a consequence of product ion spectra lacking site-specific fragments to pinpoint the site of oxidation to 
tryptophan (Figure 6c). Applying the retrieval methodology for peptide nitration, we recovered a total of 
126 oxidized tryptophan–containing peptides (Figure 6b). In total, we confidently identified and localized 
164 unique oxidized tryptophan–containing peptides (Figures 6d and 6e; Table S6). This example provides 
powerful, albeit anecdotal, evidence that the rPTMDetermine methodology is applicable to modifications 
other than nitration. Key details for consideration in any application are the anticipated shifts in the values 
of m/z in the MS/MS spectra between the modified and unmodified peptides and the site localization criteria. 
This present study provides a heuristic solution for the examination and site-determination of rare PTMs—
a significant innovation given the biological relevance of many rare PTMs. 
 
CONCLUSIONS 



 
We have developed a fully automated procedure for validation of rarely occurring PTM peptide 

identifications, acquired by searching tandem mass spectra against a protein sequence database. We have 
demonstrated the utility of this multifaceted integrated strategy involving a semi-supervised machine 
learning approach with an LDA algorithm, an orthogonal similarity scoring assessment with comparisons 
of the mass spectra assigned to modified peptides with those assigned to their unmodified counterparts, and 
site-localization for the validation and retrieval of rarely occurring endogenous 3-nitrotyrosyl– and oxidized 
tryptophanyl–containing peptides from the cerebral cortex proteome of a M. fascicularis model of stroke. 
The power of such orthogonal criterion to filter false identifications and retrieve modified peptide 
identifications were hallmarked by the recovery of a number of potential yet-to-be-identified modified 
peptides from experimental raw data, but missed through conventional database searching. By preparing 
synthetic nitrated peptide analogues, we also confirmed 25 of the 131 newly retrieved novel endogenous 3-
nitrotyrosyl–containing peptides with potential biological relevance in the post-stroke chronic phase. This 
study strongly suggests that the fully automated rPTMDetermine methodology enables confident 
identification and recovery of peptides with rarely occurring PTMs in untargeted proteomic analysis, 
enhancing the confidence of future biological discoveries. 
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FIGURE LEGENDS 
 
Figure 1. Workflow for PTM peptide validation and localization. Normal modified PSMs are generated by 
searching experimental mass spectra against the target protein sequence database. Decoy peptides are 
generated in silico from reversed target protein database sequences and decoy modified PSMs are collected 
by searching the mass spectra assigned to normal PTM peptides against the constructed decoy database. (a) 
LDA classifies the normal and decoy sets using discriminative PSM features (Figure S1), producing LDA 
scores. For PSMs with a probability of being correct (from the distribution of LDA scores) of ≥ 0.99, the 
corresponding non-modified peptide analogues are extracted from the database search results and validated 
using LDA. (b) If the non-modified PSM meets the same probability requirement, a similarity score 
compares the spectra of the modified and unmodified peptide pair, where fragment ions including the site 
of modification will demonstrate a shift in m/z (Δ Da) according to the modification mass. If a peptide has 
no alternative modification sites and meets the LDA and benchmark similarity score requirements, then the 
identification is confirmed. If modified peptide has alternative possible modification sites, then all modified 
isoforms are generated by permutation. (c) The LDA score is calculated for each isoform and used to infer 
the probability, psite, of the given site bearing the modification. If an isoform has site probability exceeding 
a threshold probability, pt, the modified peptide identification is confirmed and localized; otherwise, it is 
considered to be ambiguous. 
 
Figure 2. Validation results for PTN. (a) Scatter plot of unique nitrated peptide LDA and similarity scores 
for the M. fascicularis cerebral cortex data set, with each peptide represented by the highest-scoring PSM. 
Blue circles, peptides (Benchmark) previously confirmed by synthesis; red triangles, identifications to 
deamidated peptides. Nitrated peptide identifications without non-nitrated counterparts are assigned 
similarity scores of 0. Thresholds are indicated in the plots by dashed lines. (b) Demonstration of highly 
confident nitrated peptide identification: [IT8]EAVC*EVALDYNO2K3+, where “IT8” indicates iTRAQ 8-
plex, “NO2” indicates nitration, and * indicates carbamidomethylation. CID mass spectrum of the nitrated 
peptide (upper panel) and its non-nitrated counterpart (lower panel). Single letter annotations indicate 
immonium ions. Purple annotations indicate ions containing the modified residue. Inset: Extracted ion 
chromatograms (XICs) for the nitrated peptide and its non-nitrated counterpart from the same subfraction. 
 
Figure 3. Example of an ambiguous deamidation assignment for the peptide [IT8]FLFPFFGSAYNO2Q-

NGFASGNLER3+, where “[IT8],” “-N,” and “NO2” indicate iTRAQ 8-plex, deamidation, and nitration, 
respectively. The circled ions are exclusively assigned for the non-deamidated form of the peptide, notably 
including the only PTN-determining ions (purple). “F” represents the immonium ion of phenylalanine. The 
LDA score and similarity score before correction were 12.39 and 0.00, respectively; they were 22.65 and 
0.83, respectively, following correction. Inset: Observed isotopic distribution in the MS spectrum from 
which this precursor (m/z 888.43) was selected. Overlaid are the theoretical isotopic distributions for the 
deamidated (upper panel) and non-deamidated (lower panel) forms of the assigned peptide, as predicted by 
the MS-Isotope toolkit of ProteinProspector (http://prospector.ucsf.edu/). 
 
Figure 4. Results for retrieval of missed nitrated peptide identifications. (a) Distribution of LDA and 
similarity scores of unique nitrated peptide identifications not identified in ProteinPilot search. (b) Site 
probability of nitrated peptide identifications containing alternative tyrosine sites for nitration. Green 
dashed lines indicate score thresholds. (c) Venn diagram summarizing the distribution of retrieved nitrated 
peptide identifications, including the overlap with the ProteinPilot identifications validated by 
rPTMDetermine. 
 



Figure 5. Retrieved nitrated peptide identification (VGGYNO2ILGEFGNLIAGDPR3+, where “IT8” 
indicates iTRAQ 8-plex and “NO2” indicates nitration). Golden annotations indicate those ions containing 
the modified residue. (a) CID mass spectrum of the nitrated peptide (upper panel) and its non-nitrated 
counterpart (lower panel). Single character annotations indicate immonium ions. The LDA score and 
similarity score for the nitrated peptide were 22.15 and 0.81, respectively. (b) Experimental and theoretical 
(MS-Isotope toolkit, ProteinProspector) isotopic distributions of the nitrated peptide. (c) XICs for the 
nitrated peptide and its non-nitrated counterpart. (d) Mass spectra obtained experimentally (upper panel) 
and for the synthesized nitrated peptide (lower panel). 
 
Figure 6. Results for validation and retrieval of missed oxidized tryptophan–containing peptide 
identifications. (a) Distribution of LDA and similarity scores for the unique tryptophan-oxidized peptides, 
with each represented by its highest scoring PSM. (b) LDA and similarity scores for the retrieval of missed 
tryptophan-oxidized peptide identifications during ProteinPilot search. (c) Site probabilities of modified 
peptides; score thresholds are represented by green dashed lines. (d) Venn diagram summarizing the unique 
tryptophan-oxidized peptides, including the peptides validated by rPTMDetermine (from ProteinPilot 
search results at 1% global FDR) and retrieved from the unassigned product ion spectra. (e) Summary of 
tryptophan oxidation validation and retrieval results; tryptophan-oxidized peptide identifications without 
non-oxidized counterparts have been assigned a similarity score of 0. 
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