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Abstract
Aim: Kleefstra syndrome (KS) is a rare neurodevelopmental disorder caused by haploinsufficiency of the 
euchromatic histone lysine methyltransferase 1 gene, EHMT1 , due to either a submicroscopic 9q34.3 deletion 
or a pathogenic EHMT1  variant. KS is characterized by intellectual disability, autistic-like features, heart defects, 
hypotonia and distinctive facial features. Here, we aimed to (1) identify a unique DNA methylation signature in 
patients with KS, and (2) demonstrate the efficacy of DNA methylation in predicting the pathogenicity of copy 
number and sequence variants. 

Methods: We assayed genome-wide DNA methylation at > 850,000 CpG sites in the blood of KS patients (n  = 
10) carrying pathogenic variants in EHMT1  or 9q34.3 deletions, as compared to neurotypical controls (n  = 42). 
Differentially methylated sites were validated using additional KS patients (n  = 10) and controls (n  = 29) to assess 
specificity and sensitivity of these patterns. 

Results: The DNA methylation signature of KS demonstrated high sensitivity and specificity; controls and 
KS patients with a confirmed molecular diagnosis were classified correctly. In additional individuals with 
EHMT1  alterations, including frameshift or missense variants and partial gene duplications, DNA methylation 
classifications were consistent with clinical presentation. Furthermore, genes containing differentially methylated 
CpG sites were enriched for functions related to KS features, including heart formation and synaptic activity. 

Conclusion: The KS DNA methylation signature did not differ in patients with deletions and variants, supporting 
haploinsufficiency of EHMT1  as the likely causative mechanism. Beyond this finding, it provides new insights 
into epigenetic dysregulation associated with KS and can be used to classify individuals with uncertain genomic 
findings or ambiguous clinical presentations.

Keywords: EHMT1 , Kleefstra syndrome, DNA methylation, signature, epigenetics, copy number variation, 
neurodevelopmental disorder

INTRODUCTION
Epigenetic regulators, including chromatin remodelers and enzymes that write, read or erase epigenetic 
marks, are essential to healthy human development[1,2]. Chromatin states and epigenetic patterns play a key 
role in regulating transcriptional profiles specific to cellular identity and developmental timing[3,4]. This is 
especially important during neurodevelopment for which developmental processes necessitate a complex 
orchestration of gene expression and environmental signals[5,6]. Recent research into the role of epigenetic 
regulators in human disease has demonstrated that genes encoding this machinery, termed “epigenes”, are 
linked to Mendelian neurodevelopmental disorders (NDDs)[2,7]. To date, approximately 70 epigenes have 
been implicated in 82 distinct conditions, many of which are characterized by intellectual disability (ID) 
and growth dysregulation[8,9]. 

At the molecular level, our group and others have found that these NDDs are characterized by aberrant 
DNA methylation (DNAm) patterns[10,11]. DNAm refers to the addition of a methyl group to cytosine, 
typically in the context of a cytosine-guanine dinucleotide or CpG. CpG dense regions, known as 
CpG islands, are found at 70% of gene promoters; in this context, DNAm is usually a repressive mark, 
corresponding to the silencing of gene activity[12]. DNAm found in enhancers, gene bodies and intergenic 
regions have a more complex relationship with gene activity and may associate with the repression or 
activation of genes. Importantly, there is cross-talk between epigenetic marks, such as DNAm and histone 
3 lysine 9 (H3K9) trimethylation, exhibiting spatial and temporal co-localization[13,14]. As such, mutations 
in epigenes encoding enzymes involved in regulation of histone modifications and chromatin packaging 

Page 2                                 Goodman et al. J Transl Genet Genom 2020;4:[Online First]  I  http://dx.doi.org/10.20517/jtgg.2020.23



often result in downstream DNA methylation alterations in patients carrying these mutations[10,11,15-17]. 
These altered DNAm patterns reflect genome-wide transcriptional changes at the downstream target genes 
that constitute the molecular underpinnings of the pathophysiology of the associated NDD. As such, 
we hypothesize that through a similar cross-talk mechanism between DNAm and H3K9 methylation, 
pathogenic variants in EHMT1 can affect DNAm patterns

Kleefstra syndrome or KS (MIM 610253) is caused by haploinsufficiency of the euchromatic histone lysine 
methyltransferase 1 gene, EHMT1[18,19]. EHMT1 encodes a histone methyltransferase that catalyzes mono- 
and dimethylation of H3K9. As an important transcriptional repressor, EHMT1 is expressed in most 
human tissues and is overexpressed in a variety of human cancers[20]. KS is caused by either a heterozygous 
9q subtelomeric deletion, which overlaps with part or all of EHMT1 (50%) or a heterozygous pathogenic 
variant in EHMT1, including frameshift, missense and nonsense mutations (50%)[21,22]. Features of KS 
include moderate to severe ID, childhood hypotonia, seizures, heart defects and characteristic facial 
features including brachy(-micro)cephaly, synophrys, cupid bowed upper lip and prominent jaw[18,23-25]. As 
well, urogenital and renal complications, psychiatric disorders, and features of autism spectrum disorder 
(ASD) are often present. Males and females are affected equally[22]. There is some evidence of genotype-
phentoype correlation in that individuals with EHMT1 pathogenic variants and those with a small 9q34.3 
deletion (< 1 Mb) have similar clinical findings, whereas individuals with larger deletions (> 1 Mb) can 
have more severe ID and more medical problems[19,21,26].

Here, we report the differential DNAm patterns associated with KS. We use these patterns to derive 
a predictive model to classify individuals with EHMT1 sequence variants of uncertain significance or 
ambiguous clinical presentations. We found that patients with KS caused by either 9q34.3 microdeletions 
or pathogenic EHMT1 variants exhibit a specific DNAm signature that is unique from both typically 
developing controls and individuals with similar epigene-related disorders. As well, these differentially 
methylated CpG sites map to genes enriched for heart and brain development.

METHODS
Research participants
Informed consent was obtained from all research participants according to the protocol approved by the 
Research Ethics Board of the Hospital for Sick Children (REB# 1000038847). Individuals were recruited 
through the Division of Clinical and Metabolic Genetics at the Hospital for Sick Children, Toronto, 
Ontario; Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Calgary, Alberta; 
Baylor College of Medicine, Houston, Texas; Prevention Genetics, Marshfield, Wisconsin; University 
Hospitals, Cleveland, Ohio; Seoul National University Children’s Hospital, Seoul, Korea; and Department of 
Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario. 

KS patients were divided into groups based on age, diagnosis and molecular findings [Table 1] and 
availability of clinical phenotype data; importantly, the frequency of deletions and variants in this sample 
is reflective of the reported frequency in the greater population of KS cases. The first group encompassed 
individuals over the age of one year with a confirmed clinical diagnosis of KS and a pathogenic EHMT1 
sequence variant or 9q34 deletion reported by a molecular diagnostic laboratory. These individuals were 
separated into discovery and validation groups (n = 10 and n = 5, respectively), such that molecular 
underpinnings, sex, and age were represented within each group. For all patients in the discovery cohort, 
clinical and molecular diagnoses were defined by certified clinical and molecular geneticists, respectively. 
Individuals younger than 1 year represented an additional validation group (n = 5), and individuals 
with EHMT1 variants but little or no phenotypic information available at the time of data analysis (n = 
5) represented an “unknown” test group. Two additional individuals who both carried duplications of 
chromosome 9q34 were also included in analyses. The presence of specific KS features, such as hypotonia, 
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microcephaly, or heart defects, was limited to a subset of KS patients, and as such, were not included as 
variables in the statistical analysis. Also, since only one individual with KS carried a deletion greater than 
1 Mb, patient KS17_I, deletion size was not considered in the analysis. 

Banked DNA samples from age- and sex-matched neurotypical participants (n = 42) were included as a 
control group. These individuals were recruited from the Hospital for Sick Children and were deemed 
typically developing by physician or parental questionnaires. DNA methylation data for individuals with 
Nicolaides-Baraitser syndrome, an neurodevelopmental disorder (NDD) caused by pathogenic variants 
in SMARCA2, were downloaded from the Gene Expression Omnibus database, accession number: 
GSE125367[11]. These individuals were included as an additional “control” group to assess the specificity of 
the DNAm patterns to KS, as opposed to Nicolaides-Baraitser syndrome, an NDD with similar features, 
which is also caused by epigenetic dysregulation.

DNAm data generation and preprocessing 
Genomic DNA was extracted from peripheral blood samples and bisulfite converted using the protocols 
described in Chater-Diehl et al.[11]. Converted DNA was then assayed for DNAm levels on the Illumina 
Infinium MethylationEPIC array (EPIC array; > 850,000 CpG sites) at The Center for Applied Genomics 

Cohort ID Diagnosis Age
(years) Sex Molecular Deletion coordinates (hg38)/

protein change (NM_024757) Previous publications

Discovery KS1_T KS 1 F 9q34 deletion chr9:137728310-137989926
KS2_T KS 1 F EHMT1 variant 

(missense)
p.(P809R)

KS3_T KS 3 F 9q34 deletion chr9:137811023-137967082 Yatsenko et al .[21] (P37) 
KS4_T KS 3 F EHMT1 variant 

(frameshift)
p.(V1026Qfs*150)

KS5_T KS 4 M 9q34 deletion NA (~0.4Mb) Willemsen et al .[26] (P11)
KS6_T KS 4 F 9q34 deletion chr9:137620211-137944399 Yatsenko et al .[21] (P44)
KS7_T KS 6 M 9q34 deletion NA (0.32 Mb)  
KS8_T KS 7 M 9q34 deletion chr9:137620211-137988669 Yatsenko et al .[21] (P43)
KS9_T KS 8 M 9q34 deletion chr9:137294642-137987222
KS10_T KS 25 F EHMT1 variant 

(nonsense)
p.(R246*)

Validation (≥ 
1 year)

KS11_V KS 1 M 9q34 deletion chr9:137599274-137709523
KS12_V KS 1 M 9q34 deletion chr9:137801987-137862641
KS13_V KS 5 M EHMT1 variant 

(nonsense)
p.(R260*) Kleefstra et al .[19] (P19)

KS14_V KS 7 F 9q34 deletion and 
4p duplication

chr9:137586180-138197466 Willemsen et al .[26] (P12)

KS15_V KS 25 F 9q34 deletion NA (subtelomeric) Willemsen et al .[26] (P10)
Validation (< 
1 year)

KS16_I KS 0.75 M 9q34 deletion chr9:137513779-138231664
KS17_I KS 0.01 F 9q34 deletion chr9:136914736-138114821
KS18_I KS 0.1 F 9q34 deletion chr9:137484248-137989926
KS19_I KS 0.02 F 9q34 deletion chr9:137286411-138125937
KS20_I KS 0.8 F 9q34 deletion NA (~3.2Mb) Yatsenko et al .[21] (P14)

Unknown U1 ASD NA M EHMT1 variant 
(frameshift)

p.(E181Gfs*5)

U2 likely KS 21 F EHMT1 variant
(frameshift)

p.(A643Pfs*9)

U3 ASD NA M EHMT1 variant
(missense)

p.(V402L)

U4 ASD NA M EHMT1 variant
(missense)

p.(F613Y)

U5 ASD NA F EHMT1 variant
(missense)

p.(L724P)

Partial EHMT1
duplication

Dup1 unknown 1 M 9q34 duplication chr9:137819943-137988669
Dup2 unknown 17 M 9q34 duplication chr9:137819954-137871875

Table 1. Clinical diagnoses and molecular findings of subjects with EHMT1  variants and deletions
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(TCAG), Hospital for Sick Children Research Institute, Toronto, Ontario, Canada in accordance with 
the manufacturer’s protocols. Samples were randomly stratified across chips and run in two batches but 
balanced for case/control proportions and sex. 
 
Raw data were then processed in R statistical software, using the package minfi[27]. Quality control measures 
included removing probes that failed detection P-value, meaning the signal was not significantly above 
background noise, as well as probes mapping to X and Y chromosomes, cross-reactive probes and SNP 
probes[28,29]. All criteria and methods for pre-processing are fully described in Chater-Diehl et al.[11]. 
Following these steps, data underwent background signal subtraction and control normalization also using 
minfi[29]. The normalized data consisted of 774,583 methylation sites or CpGs for each sample. DNAm, 
measured in b values, ranges 0-1 representing percent methylation.

DNAm signature derivation
Prior to statistical analysis, underlying proportions of monocytes, neutrophils, CD4T, CD8T, natural killer 
cells and B cells were estimated from the DNAm data using the Houseman algorithm[30]. At each CpG 
site, a two-group comparison of KS discovery cases vs. controls was performed using limma regression, 
accounting for sex, age, batch and estimated blood cell proportion covariates[31]. CpG sites found to be 
differentially methylated between cases and controls were reported if they met both a statistical significance 
[false discovery rate (FDR)-corrected P-value < 0.01] and a minimum effect size (absolute Δβ >10%). Δβ 
represents the difference in average DNAm (β) between groups. Principal component analysis (PCA) and 
hierarchical clustering were generated using Qlucore Omics Explorer (QOE, www.qlucore.com). 

SVM model classification
Statistically significant CpG sites, i.e., the DNAm signature, were used as input into a machine-learning 
algorithm, support vector machine (SVM), to generate a predictive classification model. To remove noise 
and to filter out information that did not improve the efficacy of the model, we first removed redundant 
sites. Any methylation site that was highly correlated (r > 0.9) with any other site was removed, leaving 
429 CpG sites. We then built an SVM model using the R package caret (for details of model training and 
validation, see Butcher et al.[10])[32]. The classification model generated by SVM was then applied to all 
remaining samples. The output of this model was a probability score indicating likelihood of having KS or a 
genomic alteration that causes KS.

GO analysis 
Gene ontology (GO) enrichment analysis was performed on the KS signature sites using GREAT (Genomic 
Regions Enrichment of Annotations Tool)[33]. We used a custom “background” that included all 774,583 
CpG sites that passed quality control. “Basal+extension” was used to identify associated genes, using 
the following modified parameters: constitutive 5.0 kb upstream and 1.0 kb downstream, up to 10.0 kb 
maximum extension. We also refined the output by requiring that significant terms contain two or more 
gene hits. 

RESULTS
Identifying a DNA methylation signature for Kleefstra syndrome 
To define a DNAm signature associated with KS, DNA from KS patients and neurotypical controls was 
extracted from blood and assayed using the EPIC array, generating high-quality measurements at 774,583 
CpG sites. Ten unrelated individuals with a confirmed clinical diagnosis of KS, samples KS1_T - KS10_T, 
and pathogenic variants in EHMT1 or microdeletions of 9q34.3, which included partial or full deletions 
of EHMT1 (n = 3 and n = 7, respectively; n = 6 females; age 1-25 years) were compared to 42 neurotypical 
controls (n = 21 females; age 1-28 years). Since we combined data from patients with pathogenic variants in 
EHMT1 and those with 9q34.3 microdeletions together, our analyses identified DNAm changes common to 
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both molecular causes (analysis of this cohort stratified by molecular alteration did not identify differential 
methylation; see below). Figure 1 shows the genomic position of all deletions and variants, converted to 
hg38 genome build. For patients KS5_T and KS7_T, deletion coordinates were not available. KS5_T carried 
a 0.4-Mb deletion and KS7_T carried a 0.32-Mb deletion, both of which overlapped EHTM1.

Differentially methylated CpG sites were identified using a linear regression which included sex, age, blood 
cell proportions and array batch as covariates. There was no significant difference in estimated blood 
cell proportions between groups (all FDR-corrected P-values > 0.05). A total of 598 CpG sites differed 
significantly between individuals with KS and controls at an FDR-corrected P-value < 0.01 and a minimum 
mean difference between groups (Δb) of 10% [Supplementary Table 1]. Also, no CpG site was significantly 
associated with age (FDR P-value > 0.05). The 598 CpG sites constituted a “DNAm signature” of KS. Both 
hierarchical clustering and principal component analysis of DNAm values at the signature sites clearly 
distinguished the KS case group from neurotypical controls [Figure 2]. Of note, 484 signature sites (81%) 
were hypomethylated in KS patients as compared to controls. Furthermore, CpG sites mapping to CpG 
islands, commonly found at gene promoters, were significantly underrepresented as compared to all CpG 
sites that passed quality control [Supplementary Figure 1].

Ontology of KS signature genes 
A number of genes containing multiple differentially methylated CpGs sites or “signature sites” functioned 
in pathways related to the KS phenotype. These included: ELAVL4 (4 promoter CpGs; mean Δb = -11.4%), 
involved in neuron-specific RNA processing; glutamate receptor GRIA1 (2 promoter CpGs; mean Δb 
= -11.4%); CHRND1 (2 promoter CpGs; mean Δb = -11.4%), a muscle acetylcholine receptor subunit, 
involved in neuromuscular transmission; and PDE4D. Pathogenic variants in the latter are associated with 

Figure 1. Mapping of gene variants and microdeletions to chromosome 9q34.3. Schematic of all variants relative to EHMT1  (hg38). 
Variants are colored by analysis group: discovery (n  = 8; 2 not depicted), validation older than 1 year (n  = 4; 1 not depicted), validation 
samples younger than 1 year (n  = 4; 1 not depicted), unknown test samples with no phenotype information and partial EHMT1  
duplication (n  = 5 and n  = 2, respectively). Genomic coordinates were not available for KS15_T, KS15_T, KS15_V, and KS20_I
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acrodysostosis 2, a skeletal disorder characterized by facial anomalies and ID[34]. PDE4D contained two 
hypomethylation CpGs approximately 110 bp apart and located within 1.5 kb upstream of the transcription 
start site, cg18804667 (Δb = -16.1%) and cg00322656 (Δb = -10.7%). As such, we performed gene ontology 
(GO) analysis on the 598 signature sites using GREAT[33]. GREAT identified 130 genes proximal to the 
signature sites, which met the criteria of less than 15 kb upstream or 11 kb downstream of the gene’s 

Figure 2. Clustering of KS patients (n  = 10) and controls (n  = 42) at 598 KS signature sites. Heatmap with samples ordered by Euclidean 
clustering (A); and principal component analysis illustrating differential methylation signals between KS discovery group and controls (B). 
Heatmap colors represent percent methylation (b)
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transcription start site, revealing that the majority of signature sites (408) were intergenic. Enriched 
terms or pathways in cellular components and human phenotype ontology are listed in Table 2. The most 
prominent finding was the identification of pathways and processes involved in neuronal and synaptic 
function across all ontologies. 

The single enriched human phenotype was hypoplastic heart. Congenital heart defects are a core feature of 
KS, including one reported severe presentation of KS with hypoplastic left heart syndrome[35]. Two genes, 
CHRND and DTNA, containing differentially methylated CpG sites were annotated to this GO term. 

Independent validation of Kleefstra syndrome DNA methylation signature
Using the KS DNAm signature, we developed a machine learning classification model capable of 
categorizing individuals as positive or negative for KS on the basis of their DNAm levels at signature sites. 
We trained a SVM model on data from the KS discovery group (n = 10) and neurotypical controls (n = 
42) used to derive the signature. First, we classified a validation cohort of five unrelated individuals with a 
clinical KS diagnosis, KS11_V - KS15_V (EHMT1 nonsense variant n = 1 and 9q34.3 deletions n = 4). The 
SVM model classified all five KS individuals correctly, i.e., as positive for KS, demonstrating high sensitivity 
of the signature [Figure 3]. Furthermore, we classified an additional validation cohort of five unrelated KS 
individuals under the age of 1 year, KS16_I - KS20_I; their ages ranged from 2 days to 9 months. Despite 
training the classification model only on individuals over 1 year old, the model correctly classified all KS 
infants as positive for KS [Figure 3]. 

To test the specificity of the KS DNAm signature, we assessed an additional 29 neurotypical controls 
(n = 14 female, age 1 month to 16 years), all of which classified as negative for KS (i.e., with controls) 
demonstrating 100% specificity of the signature [Figure 3]. Additionally, we assessed whether the KS 
DNAm signature could be used to classify patients (n = 8) with Nicolaides-Baraitser syndrome (NCBRS), a 
neurodevelopmental disorder with some clinical features that overlap KS, including ID, ASD and seizures 
but with distinct facial characteristics. NCBRS is caused by haploinsufficiency of SMARCA2, which 
encodes a protein that is part of another epigenetic regulator (SNF/SWI chromatin remodeling complex). 
Pathogenic variants in SMARCA2 have been shown to be associated with a distinct DNAm signature[11]. 
All eight samples were classified as negative for KS, with controls (n = 5 female, age 4-15 years), providing 
further evidence of the specificity of the KS DNAm signature. 

Finally, we tested two individuals carrying partial duplications of EHMT1, both of which mapped to the last 
two exons of the gene[26,27]. Duplications with similar boundaries in individuals with variable phenotypes, 
including ID and dysmorphic features, have been previously reported as benign[36]. Both patients, Dup1 
and Dup2, were classified as negative for KS. Patient Dup1 had dysmorphic features and also carried an 
unbalanced 31.8-Mb complex rearrangement on chromosome 6p, as well as a microdeletion on 6q27 

Ontology Term name Hyper raw
P-value 

Hyper FDR 
Q-value  

Hyper fold 
enrichment CpG hits Total CpGs Gene hits  Total genes 

annotated
GO cellular 
component

Postsynaptic 
membrane

2.46E-10 2.12E-07 5.82 21 4,685 8 224

Synaptic membrane 6.69E-09 2.89E-06 4.59 22 6,218 9 294
Presynaptic membrane 7.97E-09 2.75E-06 9.66 12 1,612 5 71
Receptor complex 1.45E-06 4.18E-04 3.75 19 6,582 6 322
Postsynapse 4.00E-06 9.87E-04 3.13 22 9,125 9 422
Chloride channel 
complex

8.60E-05 1.86E-02 8.59 6 906 2 47

Human phenotype Hypoplastic heart 5.17E-06 1.72E-02 20.86 5 311 2 11

Table 2. Top ranking GO terms for genes mapping to KS signature sites
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(0.89 Mb). Patient Dup2 exhibited ID, microcephaly and selective mutism. While a 9q34 duplication has 
been described in one individual with KS, spanning exons 2-10 of EHMT1, leading to a downstream, 
premature stop codon and loss of function[37]. DNAm-based classification of these individuals suggests that 
neither 9q34.3 CNV disrupted EHTM1 gene function that resulted in haploinsufficiency of the EHMT1 
protein. 

EHMT1  variant classification
Having illustrated the efficacy of the KS DNAm signature in appropriately classifying individuals with 
clinical diagnosis of KS, we next assessed five individuals with EHMT1 variants for whom we had limited 
or no phenotypic data available at the time of analysis, samples U1-U5. Following classification, if 
phenotype information was available (beyond an ASD diagnosis), it was accessed. Four of these individuals, 
samples U1, U3, U4 and U5, had a diagnosis of ASD and had undergone whole-genome sequencing; the 
remaining individual, U2, had no phenotypic or clinical information available but carried an EHMT1 
variant identified by targeted EHMT1 testing. The variants identified in these five patients were assessed 
for predicted pathogenicity using Alamut variant annotation software, which applies multiple prediction 

Figure 3. Classification of additional samples with EHMT1  variants or deletions (n  = 12) using KS signature. Output of SVM classification 
model trained on KS signature sites generating the probability of having KS for each sample. Samples classified include 12 individuals in 
unknown test or validation groups, 29 new controls, and 4 individuals with NCBRS. Horizontal line represents threshold for classifying 
samples as cases (above line) or controls (below line)

Goodman et al. J Transl Genet Genom 2020;4:[Online First]  I  http://dx.doi.org/10.20517/jtgg.2020.23                               Page 9



algorithms [Table 3] and found to be novel in gnomAD (v3).
 
Using the KS DNAm signature, the two patients carrying frameshift mutations, U1 and U2, were 
classified as positive for KS. Following classification, additional clinical information for U1 was obtained 
and included mild ID, pulmonary stenosis, genital malformations, dysmorphic facial features and mild 
hypotonia. Such features support a clinical diagnosis of KS. No additional phenotypic information was 
available for U2. However, given that this individual underwent targeted EHMT1 gene testing, it is likely 
that her healthcare providers had a high clinical suspicion of KS.

All three individuals with missense variants, U3-U5, were classified as negative for KS [Table 3]. For 
patient U3, this classification was supported by all pathogenicity prediction algorithms. This individual 
was reported to have ASD, macrocephaly, and obesity; macrocephaly is not typically reported in KS. For 
patients U4 and U5, sequence-based pathogenicity predictions were inconsistent. Clinically, patient U4 
was described as having ASD, obesity and asthma. Patient U5 was diagnosed with PDD-NOS (pervasive 
developmental disorder - not otherwise specified), with no history of motor delay or growth abnormalities 
(50th percentile for height, weight and head circumference at approximately three years). Both phenotypes 
were inconsistent with KS clinical features, thus supporting non-KS classification. 

Comparing DNAm patterns in individuals EHMT1  variants and 9q34.3 microdeletions
Using all individuals that classified positively, we next wanted to assess if DNAm patterns varied by 
molecular finding. We compared individuals with EHTM1 variants (n = 6) and deletions (n = 16) at all 
774,583 CpGs sites and found no CpG sites to be differentially methylated between these two groups of KS 
individuals (all FDR P-values > 0.05). Furthermore, average methylation changes compared to controls, 
measured as Δb, were comparable between individuals with variants and deletions [Figure 4], further 
supporting the underlying cause of the KS-associated DNAm signature as EHMT1 haploinsufficiency. 

DISCUSSION
We identified a genome-wide DNAm signature, associated with haploinsufficiency of the EHMT1 gene 
product in the peripheral blood of individuals with KS. The signature enabled the classification of both 
9q34.3 microdeletions encompassing all or part of EHMT1 and pathogenic EHMT1 variants. Of the 
598 signature sites identified, 81% exhibited a loss of methylation in individuals with KS as compared to 
controls. EHMT1 acts as an H3K9 methyltransferase, typically depositing repressive marks, H3K9me1/2, 
in euchromatin. However, it has also been shown to methylate non-DNA targets including DNA ligase 
1 (LIG1), which once methylated, plays a role in recruiting DNMT1 to hemi-methylated DNA during 
replication[38]. More specifically, the methylated LIG1 protein more readily binds UHRF1; this binding event 
recruits UHRF1 to replication sites, binding to hemi-methylated DNA and promoting maintenance of DNA 

Sample Protein change
(NM_024757) Inheritance Coding effect

Predicted pathogenicity

SIFT (score) PolyPhen-2 
(score) Mutation taster Align 

GVGD
DNAm signature 

classification
U1 p.(E181Gfs*5) De novo FS - - - - KS
U2 p.(A643Pfs*9) Unknown - - - - KS
U3 p.(V402L) Unknown Missense Tolerated 

(0.39)
Benign 
(0.013)

Polymorphism C01 Negative for KS

U4 p.(F613Y) Unknown Deleterious 
(0)

Benign 
(0.365)

Disease-causing C0 Negative for KS

U5 p.(L724P) De novo Tolerated 
(0.19)

Probably 
damaging 
(1.000)

Disease- causing C0 Negative for KS

Table 3. Predicted pathogenicity of variants in subjects with limited phenotypic information

1Least likely deleterious. FS: frame shift
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methylation by DNMT1[38]. Furthermore, mouse embryonic stem cells in which Uhrf1 has been knocked 
down, progressively lose DNAm[39,40]. Therefore, we propose that the loss of DNAm observed in individuals 
with KS may be a consequence of dysregulated DNA methylation maintenance by DNMT1 due to EHMT1 
haploinsufficiency. We also demonstrated that individuals with deletions and variants had indistinguishable 
DNAm patterns genome-wide. This has previously been reported in other NDDs associated with epigenetic 
regulators including: pathogenic variants in ARID1B and 6q.25.2 deletions in Coffin-Siris syndrome; 
pathogenic variants in NSD1 or 5q35.3 deletions in Sotos syndrome; and pathogenic SET1B variants and 
12q31.24 deletions in SETD1B-related syndrome[15,16,41].

An important aim of the present study was to generate a broad KS signature that captured the underlying 
pathophysiological effects of EHMT1 haploinsufficiency on the epigenome, in addition to comparing the 
impact of CNVs vs. SNVs. To that end, our reported KS signature sites differed somewhat from a DNAm 
signature of KS recently reported as part of a bioinformatics pipeline of 34 signatures designed to uniquely 
classify NDDs[42]; this signature was developed using 15 patients with KS, including three individuals with 
9q34.3 CNVs, 11 individuals with EHMT1 SNVs, and one individual with a clinical diagnosis of KS but 
no molecular data. Importantly, the reported signature was constrained to 107 CpGs to reduce “noise” 
and redundancy, and to optimize output for potential use in diagnostic testing[42]. Of the 107 CpGs sites 
in this signature, 28 overlapped with the 598 sites in the signature reported here [Supplementary Table 1]. 
This difference can, in part, be attributed to the platforms used to generate and validate the respective 
signatures. The signature presented here was generated and validated using only EPIC array data, as 
compared to Aref-Eshghi et al.[42], who analyzed data from both the EPIC array (assays ~850,000 CpGs) and 

Figure 4. Comparison of mean DNAm changes (Db) in KS patients with variants vs . deletions across 598 KS signature sites. Δb values 
calculated in individuals with variants (n  = 6) and deletions (n  = 16) exhibiting similar magnitudes between groups
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Infinium HumanMethylation450 array (450K array; assays ~450,000 CpGs; 90% of which are represented 
on the EPIC array). Therefore all 107 CpG sites in their signature are present on the 450K array[42]. Of our 
598 signature sites, approximately half (317) are not represented on the 450K array. Beyond this technical 
difference, different statistical methods were employed for signature generation. The Aref-Eshghi et al.[42] 
signature was generated by initially ranking CpG sites on an interaction between P-value and effect size, 
with no required minimum P-value or multiple testing correction, and the top 1000 CpG sites underwent 
further analysis, including receiver operating characteristics curve, to select a final set of 100-150 CpGs[42]. 
Our signature sites were required to meet stringent significance and effect size thresholds (FDR-corrected 
P-value < 0.01, absolute Δβ > 10%), with no restrictions on signature size. The differences in methods 
and outcomes highlight two important and overlapping applications of DNAm data, i.e., understanding 
pathophysiology and use of DNAm data in diagnostics. 

GO analysis of the genes identified by our KS signature sites recognized enriched functions and pathways 
related to KS pathophysiology. Several processes related to neuronal and synaptic function were identified, 
relevant to the high frequency of ID observed in patients with KS. The top term for GO biological processes 
was “homophilic cell adhesion via plasma membrane adhesion molecules”. This term was enriched due to 
signature sites mapping to CHD4, CDH5, and seven γ-protocadherin genes. Protocadherins are neuronal 
cell surface proteins serving several functions including avoidance of dendritic self-synapsing by conferring 
self-identity[43]; these genes are crucial for normal synaptic development. Aberrant epigenetic regulation of 
these genes has also been associated with many NDDs, including Down syndrome and Williams-Beuren 
syndrome[44,45]. Furthermore, epigenetic dysregulation of protocadherins has been previously implicated in 
KS pathophysiology; brain tissue of Ehmt1+/- mice display increased H3K9 methylation at protocadherin 
genes that exhibit dysregulated expression[46]. While both DNA methylation loss and H3K9me2/3 
gain support the role of protocadherin dysregulation in KS, we propose that these outcomes may be 
paradoxically independent, since EHMT1 has been shown to silence transcription by independently 
acting on both H3K9 and DNAm[47]. In keeping with this model, loci with the greatest changes to H3K9 
methylation in Ehmt1+/- mice, showed no consistent DNAm changes[46]. Future studies in human cells are 
necessary to show if changes to H3K9 and DNAm marks in individuals with KS are indeed uncoupled 
and result from different EHMT1 functions, as proposed here. Also, such studies would greatly benefit 
from expression assays in relevant tissue types to directly measure the functional consequences of these 
dysregulated epigenetic patterns.

In addition to the 10 KS patients in the validation groups, including five infants, who were positively 
classified by our DNAm signature, we tested an additional seven individuals of interest. Within the 
validation cases, individuals did not cluster by age [Supplementary Figure 2]; this suggests that the KS 
signature is not strongly affected by age and likely independent of the dynamic DNAm changes that occur 
in the first year of life, which occur in part due to normal developmental shifts in blood cell composition[48]. 
The remaining seven individuals tested all carried genomic variants at 9q34.3: two individuals with partial 
duplications of EHMT1 and five with single nucleotide variants but limited clinical or no information 
available. Both patients with duplications were classified as negative for KS, with controls. Such copy 
number variants are commonly reported as uncertain, as their impact on gene function cannot be 
ascertained via cytogenetic analysis. On the basis of DNAm classifications, we suggest that the clinical 
phenotypes of these individuals are likely not related to their EHMT1-asociated CNVs; however, a 
functional protein assay in these cases would be valuable to confirm our findings. 

Patient U1 was one of five individuals with limited clinical or no information available. This individual had 
a diagnosis of ASD and had undergone whole-genome sequencing, which identified a de novo EHMT1 
frameshift variant. Following positive classification of this individual, we learned that he exhibited many 
features of KS, including mild ID, pulmonary stenosis, dysmorphic facial features and mild hypotonia. This 
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finding speaks to the potential of DNAm signatures for clinical translation, i.e., to be used in concert with 
genome or exome sequencing to enhance interpretability of genome diagnostics.

A considerable strength of previously reported DNAm signatures is their utility in predicting the 
pathogenicity of variants of uncertain significance (VUS)[10,11,15]. Pathogenic missense variants are rare but 
present in KS[49], Thus, we sought to assess the power/utility of the KS signature in classifying missense 
variants. We included one patient in the discovery group used to derive the DNAm signature, who carried 
a pathogenic missense variant, P809R, and therefore expected the KS DNAm signature to have clinical 
utility in this regard. Of note, this variant was predicted to be pathogenic/damaging in Polyphen (1.000), 
Align GVGD (C65), and SIFT (0). We included three individuals with EHMT1 missense variants in the 
“test” group and found that each was classified as negative for KS, with controls. Th e clinical information 
for these individuals, although limited, was consistent with the DNAm signature prediction.

Although Kleefstra syndrome has a clinically recognizable phenotype, affected individuals exhibit a range 
of cognitive and behavioral characteristics. Currently, there is little understanding of the relationship 
between genotype and phenotype. The complex genotype-phenotype relationship in KS will require further 
study using a large KS cohort with well characterized phenotypes. Our work presented here demonstrates 
that EHMT1 variants and 9q34.3 deletions share a DNAm signature, further supporting the underlying 
cause of KS as EHMT1 haploinsufficiency. Further epigenetic research in KS has the potential to elucidate 
the relationship between genotype and phenotype by refining the DNAm signature and identifying DNAm 
alterations associated with specific features of KS or specific molecular variants. Therefore, building upon 
this work to identify genes with altered regulation and expression patterns in KS will provide novel insights 
into the molecular pathophysiology of this disorder.
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