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Diversity spectrum analysis identifies mutation-
specific effects of cancer driver genes
Xiaobao Dong 1*, Dandan Huang2, Xianfu Yi3, Shijie Zhang4, Zhao Wang4, Bin Yan5,6, Pak Chung Sham 6,

Kexin Chen7 & Mulin Jun Li1,4*

Mutation-specific effects of cancer driver genes influence drug responses and the success of

clinical trials. We reasoned that these effects could unbalance the distribution of each

mutation across different cancer types, as a result, the cancer preference can be used to

distinguish the effects of the causal mutation. Here, we developed a network-based frame-

work to systematically measure cancer diversity for each driver mutation. We found that half

of the driver genes harbor cancer type-specific and pancancer mutations simultaneously,

suggesting that the pervasive functional heterogeneity of the mutations from even the same

driver gene. We further demonstrated that the specificity of the mutations could influence

patient drug responses. Moreover, we observed that diversity was generally increased in

advanced tumors. Finally, we scanned potentially novel cancer driver genes based on the

diversity spectrum. Diversity spectrum analysis provides a new approach to define driver

mutations and optimize off-label clinical trials.
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Cancer-promoted genetic events and related genes (or so-
called driver mutations and driver genes) have been not
only successfully identified in most types of cancer but

also linked to novel therapeutic opportunities, such as EGFR
mutations to lung cancer, BRAFmutations to melanoma, and KIT
mutations to gastrointestinal stromal tumors1,2. Off-label-
targeted therapies, such as NCI-MATCH, aim at treating
tumors across anatomical sites based on cancer genomic altera-
tions3. However, cancer type-specific and mutation-specific
oncogenic signaling has been observed in a number of recent
clinical and preclinical studies4,5. The quantitative characteriza-
tion of cancer type preference of driver mutations and their
biological and clinical significance remains inadequate.

Mutation-specific effects of driver mutations have been
demonstrated in multiple well-characterized cancer driver
genes6–13, which implies that the functional heterogeneities of
driver mutations in the same cancer gene could be very common.
For example, NRAS mutations at codons 12, 13, and 61 were
characterized as driver mutations in many cancers. However, only
the NRAS Q61 mutation can efficiently promote melanoma9.
Recently, BRAF driver mutations were categorized into at least
three classes with different kinase activity, RAS dependency, and
dimer dependency6. More importantly, these mutation-specific
effects seem tightly connected with the clinical features of
patients. A multicenter clinical study10 on the efficacy of the HER
kinase inhibitor neratinib showed that the responses of patients
were determined by both cancer types and mutations, which is
consistent with the conclusion of a previous clinical study14 in
which the BRAF inhibitor vemurafenib was tested on patients
from different cancer types but harboring BRAF V600 mutation.
Thus, compared with sophisticated studies at the driver gene
level, the development of a unified approach to define the role of
each driver mutation will be important to deepen our under-
standing of cancer genomics and guide clinical trial designs15,16.

Much work has been done to characterize cancer drivers at a
subgene resolution, including at the protein linear sequence,
protein domain, protein 3D structure, and protein–protein
interface levels17. While these methods can provide mutation-
level classifications of driver mutations, all of them classify
mutations based only on the molecular information of the gene/
protein itself and neglect their cancer context, thus may lead to
misleading of the effects of mutations. Specifically, the roles of
driver genes may vary with different cancer types18. Genome-
wide screen experiments19 and a pancancer analysis of the evo-
lutionary selection on driver mutations20 showed that this phe-
nomenon exists widely. To precisely understand the functions of
driver mutations, both the subgene resolution and cancer-context
information need to be integrated.

The mutation-specific effects, if they are functional, may
unbalance the distribution of each driver mutation in different
cancer types, such as NRAS Q61R, which is almost exclusively
observed in melanoma. Given the cancer distributions of multiple
driver mutations from one driver gene, we could distinguish their
potential functional differences by comparing their cancer
preferences.

In this study, we developed a network-based framework to
quantify and compare the cancer preference of driver mutations.
By projecting mutations onto a cancer diversity spectrum, we can
classify them into three categories, including cancer-specific
(SPM), relatively specific (RSM), and pancancer mutations
(PCM). The distribution of these mutations in protein domains,
genes, and cellular pathways as well as their comutation patterns
were systematically characterized. To demonstrate the potential
value of the cancer diversity spectrum for clinical and biological
problems, we leveraged this information to predict patient drug
responses and identify new cancer driver genes. We finally

developed a web portal to visualize the cancer diversity for driver
mutations at http://mulinlab.org/firework.

Results
Network-based measurement of driver mutation specificity.
We first characterized a compendium of driver mutations across 33
TCGA cancer types (see legend of Fig. 1) using more than three
million somatic mutations from 10,429 patients. To maximally keep
with the conventions of clinical genomic literature and minimize
the influence of biased curation in the existing cancer genomics
databases, we applied a rule-based approach to identify driver
mutations (Supplementary Data 1) in well-characterized cancer
driver genes (according to the records of the Cancer Gene Cen-
sus18), which has been widely used in many clinical cancer
studies21,22. For instance, a missense mutation in an oncogene (OG)
would be taken as a driver mutation if it is highly recurrent in
cancer patients (recurrence rule). In contrast, a frameshift insertion
or damaging missense mutation would be selected as a driver only if
this mutation is in a tumor suppressor gene (TSG) (damaging rule).

We constructed a bipartite network (Fig. 1a) to summarize the
relationships among patients and 33 cancer types from TCGA
project, in which each patient or driver mutation was represented as
a node and a patient and a driver mutation were connected if this
mutation was detected in the patient. To improve the reliability of
subsequent analyses for cancer diversity of mutations, mutations
that occur less than three times on the whole TCGA dataset were
removed from the network. The final patient–mutation network
(Supplementary Fig. 1, Supplementary Files) contains 1570
mutations, 6286 patients (Fig. 1b), and 12,924 edges between them.
These mutations belong to 314 cancer driver genes (Fig. 1c), and the
highest contribution (16%) is from TP53, which is the most
frequently mutated gene in cancers23. However, there are no
individual genes or cancer types that dominate the network.

By compressing all patients from the same cancer type into one
node (Fig. 2a), we investigated and visualized the similarity of
mutations among all cancer types with force-directed layout
algorithm24. This algorithm is an intuitive method to spatially
organize network data within, usually, a two-dimensional plane.
Nodes in the network will repel each other as they were like
charged bubbles. On the other hand, each edge will act like a
spring to pull a pair of connected nodes together. As the result,
cancer types associated with similar driver mutation sets will be
clustered and pushed away from other cancer types with different
mutation profiles in the final network (Fig. 2a), which allows us to
observe the similarity among these cancer types in a globally and
flexible manner. The results showed that 79% (26/33) of cancer
types shared at least two driver mutations with other cancer types,
and 54% (18/33) of cancer types contained at least two private
mutations. Cancer types belonging to the same tissues or organs
were clustered together, such as two squamous cell carcinomas
LUSC and HNSC or two brain cancers GBM and LGG,
suggesting that the driver mutation profile can partly reflect the
origin of cancers. Few driver mutations were shared with others
for relatively rare cancer types, including ACC, CHOL, KICH,
PCPG, SARC, THYM, and UVM, which might be attributed to
both the small size of the patient cohorts and the distinct
molecular characteristics of these cancers, such as the KICH
compared with other kidney cancers25. Thus, shared and distinct
driver mutations composed the patient–mutation networks,
which motivated us to precisely quantify the tumor preference
of each mutation.

Specificity-based classification of driver mutations. We fol-
lowed a network diversity approach26 to compute the preference
of each mutation (Supplementary Data 2). The network diversity
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is an entropy-based index initially proposed to measure the
relationship diversity of an individual in social networks. In our
measurement, the network diversity values start from 0 to 1, and
a higher value indicates that the mutation is observed in patients
of multiple cancer types with a more similar possibility. If a
mutation occurs in multiple cancer types and a cancer type
dominates the cancer type composition, the network diversity
value will be low. On the contrary, if the mutation occurrences
among multiple cancer types are similar, the network diversity
value will be high. For example, although both KRAS G12V and
KRAS G12R occur in >5 different cancer types, their probabilistic
distributions of cancer types are different. There are total 37
patients associated KRAS G12R in our data and above 75% of
them are PADD patients. In contrast, for the 176 patients asso-
ciated with KRAS G12V, there are three cancer types occupy

much of the composition (23% of PADD, 22% of LUAD, and
19% of COAD). Thus, the network diversity value of it (G12V,
network diversity= 0.40) is relatively high than KRAS G12R
(network diversity= 0.28), representing a different cancer speci-
ficity. Note that the network diversity was normalized so that a
mutation with high frequency could be compared with a rare
mutation directly, which is a merit required for the long-tailed
distributed cancer mutation frequency. A continuum of network
diversity values formed a cancer diversity spectrum comprising all
driver mutations, allowing us to systematically classify and
characterize the biological and clinical implications of these
mutations.

We found that there are three dominant peaks in the cancer
diversity spectrum, which are distributed near network diversity
values of 0, 0.5, and 1.0. This trimodal distribution suggests that

Fig. 1 Measurement of the cancer distribution of driver mutations with network diversity (network diversity). a Driver mutations identified from
patients of 33 cancer types are used to construct a patient–mutation bipartite network. The 33 cancer types include adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma, and endocervical adenocarcinoma (CESC),
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma
(SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma
(THYM), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), and uveal melanoma (UVM). Based on this network, the network
diversity (ND) value of each mutation is calculated and mapped onto the cancer diversity spectrum. According to the spectrum, driver mutations are
classified into specific, relatively specific and pancancer mutations. b The overall composition of cancer types in the patient–mutation network related to
1570 analyzed driver mutations in the study. c The genes that harbor the 1570 mutations and their relative contributions.
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Fig. 2 Classification of drive mutations and corresponding functional analysis. a The compressed patient–mutation network in which patients from same
cancer types are summarized on a red node. Mutations have same connection pattern with cancer types are compressed into one blue node. The number
in a blue node represents the number of mutations included in this node. Note that only node includes at least two mutations are shown. b The distribution
of network diversity values on cancer diversity spectrum and classification of driver mutations. The mutations above the bar plot are the cases from
corresponding categories. Different color nodes connected with a mutation represent patients from different cancer types. c The overlap of genes harboring
the three types of driver mutations. The GO biological process enrichment results of the SPM (d), RSM (e), and PCM (f) enriched gene network are shown.
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driver mutations could be split into three distinct populations
(Fig. 2b). Consequently, we classified the mutations into three
categories using two theoretically estimated network diversity
cutoffs 0.3 and 0.64 (see Methods for details), and generated three
types mutations, 230 specific mutations (network diversity <0.3,
SPMs), 622 RSMs (0.3 ≤ network diversity < 0.64), and 718 PCMs
(network diversity ≥ 0.64). Of note, APC, EGFR, PTEN, SPOP,
and LRP1B are the most frequent driver genes in the SPM
category (Supplementary Fig. 2A). This category also includes
many known biomarkers for cancer diagnosis or targeted
treatment, such as APC Q1291* (for COAD), EGFR L858R (for
LUAD), BRAF V600E (for THCA and SKCM), DNMT3A R882H
and NPM1 W288Cfs*12 (for LAML). RSMs are exemplified by
SF3B1 K700E, which was mostly observed in BRCA patients (9/
15), but sporadic cases were observed in other cancer types
(LAML, PRAD, SARC, SKCM and THYM) with low frequency.
For this RSM category, TP53, PIK3CA, APC, and PTEN
mutations were most common (Supplementary Fig. 2B). In
contrast to the other two mutation classes, TP53 mutations
significantly dominated the PCM spectrum (Fisher’s exact test, p
value <0.001), which is consistent with a previous integrative
study23 in 12 major cancer types that demonstrated that TP53
was the only gene mutated near half of the tumors (Supplemen-
tary Fig. 2C). Driver genes that harbor multiple types of
mutations are common. A total of 18% of genes harbor three
types of mutations and 50% of genes harbor at least two types of
mutations (Fig. 2c). Except for TP53 (Fisher’s exact test, p value
<0.01, q < 0.01, Benjamini & Hochberg correction), there was no
other driver gene significantly enriched in any specific category
after multiple hypothesis correction (Supplementary Data 3).
Thus, the functional heterogeneity of the mutations could be a
common phenomenon from even the same cancer driver gene.
More details about the associated cancer types of each mutation
can be found in our web portal or Supplementary Data.

To explore biological pathways involved in different categories,
we constructed gene subnetworks by mapping the enriched genes
of each category onto protein functional networks using the
STRING database27 and performed a Gene Ontology (GO)
enrichment analysis to nominate related pathways or biological
processes (Fig. 2d–f, Supplementary Fig. 3, Supplementary
Data 4–6). The functional analysis showed that DNA repair
and cell cycle processes were generally observed in all three
categories. However, some processes were specific, including
signaling transduction processes, such as the ERK cascade and
peptidyl-tyrosine modification, which are mainly enriched in the
SPM gene network. Immune response genes are only enriched in
the RSM gene network, and chromatin remodeling is the most
prominent process for the PCM gene network. These results
suggest that certain biological pathways could influence tumor-
igenesis in specific tissues, while some pathways, such as
epigenetic processes, might have a wide impact on tumorigenesis
across many cancer types.

Cancer diversity spectrum and patients’ drug responses. Pre-
sumably, even if one driver gene contains multiple driver muta-
tions with varied specificities, then these mutations should appear
in separate protein domains corresponding to their specificity
categories. To test this hypothesis, we annotated driver mutations
in the functional protein domains of the driver gene by using the
Uniprot database28. Although some domains were enriched with
driver mutations, we unexpectedly found that the majority of
them harbored more than two types of mutations in the same
region (Fig. 3a). A typical example is the protein kinase domain of
BRAF protein. In this domain, S467L, G469V, V600M, V600G,
and V600E are SPMs, but K601E, G466E, G466V, G469R,

G469A, N581S, and D594N are RSMs or PCMs. One possible
explanation is that the annotations of the protein domain are
either incomplete or inaccurate. However, to reject the previous
hypothesis, we have to explain why mutations located at the same
position could belong to different categories, as exemplified by the
BRAF mutations G469V (SPM), G469R (RSM), and G469A
(PCM) and the KRAS mutations G12C (SPM), G12R (SPM),
G12D (RSM), and G12V (RSM). Previous biochemical studies
on BRAF and SPOP mutations showed that driver mutations
could induce very different biochemical behaviors of a protein
and exhibit opposite pharmaceutical effects, although these
mutations were very closed in linear sequence6,11. Our analysis
also revealed that cancer diversity classification could distinguish
drug response-related mutation effects in the same protein
domain. For example, BRAF mutations that were sensitive to
vemurafenib were classified as SPMs (V600M and V600E), and
insensitive mutations were classified as RSMs or PCMs (G469A,
G469R, G466V, G466E, N581S, D594N, and K601E)6. Similar to
vemurafenib, SPOP mutations showed BET inhibitor sensitivities
that were also consistent with our network diversity-based clas-
sifications but in a reverse relationship. Ishikawa cells over-
expressing the SPMs of SPOP, including Y87C, W131G, and
F133L, were resistant to treatment with the BET inhibitor JQ1,
while RSMs (R121Q and D140N) were sensitive11.

To comprehensively investigate the association between the cancer
diversity of mutations and antineoplastic therapy, we integrated the
cancer diversity spectrum with drug response data predicted by an
imputed drug-wide association study (IDWAS)29. IDWAS learned
statistical models from cell line-based drug response data and gene
expression profiles to predict 138 cancer drug responses for 5548
TCGA patients, which allows us to analyze the relationships of the
cancer diversity of mutations and drug responses in an unbiased
manner. Moreover, IDWAS only uses gene expression data, and its
results are independent of gene mutation information.

We evaluated whether there were different drug responses
among patients harboring SPMs, RSMs, and PCMs in the same
drug target (see Methods for details). Note that because the drug
response data from IDWAS are predicted from a gene expression-
based statistical model, the drug response values from IDWAS
have no clearly defined biological meaning and are not directly
comparable with traditional drug sensitivity values such as IC50

(drug concentration that reduces cell viability by 50%); however,
lower value means greater drug sensitivity. In approximately one-
third of the tested drug–gene pairs (30/89), the drug response
seemed influenced by the cancer diversity of mutations (ANOVA,
p < 0.2, Supplementary Data 7), such as temsirolimus-BRAF
(ANOVA, p= 0.005), afatinib-EGFR (ANOVA, p= 2.92 × 10−8),
gemcitabine-KRAS (ANOVA, p= 0.0009), and AZD6482-PTEN
(ANOVA, p= 0.118) (Fig. 3b). We also observed that drug
sensitivity decreased as the cancer diversity of mutation increased
in multiple cases. For example, patients with SPMs of KRAS
were sensitive to gemcitabine, but the resistance was shown in
patients with RSMs and PCMs. The same trend was observed
in EGFR-mutated patients to erlotinib, BRAF-mutated patients
to PLX4720, and PTEN-mutated patients to AZD6482. One
exception is paclitaxel-KRAS, in which the drug sensitivity
increased with mutation cancer diversity. When compared with
the mutation-negative group (i.e., patients who did not harbor
driver mutations on the corresponding drug target), the largest
number of significantly differential drug responses (two-sided t-
test, p < 0.05) were from SPMs, which were nearly twice or more
than the observed number from RSMs or PCMs (Fig. 3c). We also
overlapped driver mutations with actionable mutations collected
from OncoKB30 and found that a majority of the actionable
mutations belonged to SPMs (Fig. 3d, Supplementary Data 8).
Overall, our results suggest that cancer diversity of mutations,
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Fig. 3 Distribution of three types of driver mutations in functional protein domains and the association of cancer diversity and drug sensitivity. a The
distribution of driver mutations in the functional domains of three representative genes. The functional protein domains are annotated according to Uniport
records. Three types of driver mutations were distinguished by the color and height of the dots in the lollipop plots. SPMs (blue and short), RSMs (green and
middle height), and PCMs (red and high). b The drug sensitivity of patients harboring SPMs, RSMs, and PCMs, respectively. The red stars mark statistically
significant groups when compared with corresponding negative groups (*p < 0.05, **p < 0.01, two-sided t-test). Drug sensitivity is predicted by IDWAS.
c The number of drug-mutation combinations that are significantly associated with drug response. Drug sensitivity data are from IDWAS. d The composition
of OncoKB evidence level in three types of mutations. From levels 1 to 4, the strength of evidence for clinical recommendation gradually decreased.
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especially for SPMs, are more correlated with patient drug
responses, and such effects cannot be readily inferred from the
functional domains of mutations.

Cancer diversity spectrum and cancer evolution. To understand
the impact of cancer evolution on the cancer diversity spectrum,
we first examined the correlation between cancer diversity spec-
trum and variant allele frequency (VAF) of driver mutations.
VAF represents the burden of mutations in a patient and is used
as an agent to quantify the relative size of tumor clones harboring
certain driver mutations. A high VAF value in primary tumors
usually implies that the corresponding mutation was from an
early/founder clone. To exclude the confounders that might dis-
tort VAF, we selected tumors with cancer cell purity >70% and
mutation data from copy number neutral regions. We computed
the Pearson correlation coefficient (PCC) between mutations’
VAFs and network diversity values for genes with ten or more
mutations (Fig. 4a, Supplementary Fig. 4). Among significant
correlations, cancer diversity of mutations negatively correlates
with VAFs in BRAF, KIT, PREX2, NRAS, and SF3B1 but posi-
tively correlates with VAFs in FBXW7, KMT2D, NF1, and SPOP.
After examining the mode of action of these driver genes, we
found that OGs involved more negative correlation relationships,
and TSGs included more positive correlation relationships
(Fig. 4b). The average PCC values for OGs and TSGs are –0.08
and 0.01, respectively, but the difference between them is not
significant (Wilcoxon sum-rank test, p value= 0.079). Con-
sidering that high VAF generally indicates an early tumor clone,
our results imply that a part of OG-related SPMs and tumor
suppressor-related PCMs tend to occur in the early stage of
tumorigenesis.

To explore the pattern of different mutation types in the long-
term cancer evolution, we compared the network diversity values
of driver mutations between primary and advanced tumors. We
used MSK-IMPACT data31 that include genetic aberrations of
approximately 400 cancer-related genes from more than 10,000
patients with advanced tumors, representing the mutation
landscape of the late stage of tumorigenesis. The mutational
frequencies of genes in TCGA and MSK-IMPACT cohorts are
highly consistent31. We calculated and compared the network
diversity values of 625 common driver mutations between the
TCGA and MSK-IMPACT groups (Fig. 4c, Supplementary
Data 9). The results showed that 57% (359/625) of the cancer
diversity classifications of driver mutations were conserved.
Nevertheless, 140 RSMs in TCGA increase their cancer diversity
and covert to PCMs in MSK-IMPACT (Fig. 4d). Overall, the
cancer diversity of mutations in advanced tumors was signifi-
cantly higher than those in primary tumors (Fig. 4e). Interest-
ingly, we found three mutations, EGFR L861Q, MAP2K4 S184L,
and TP53 E285V, that were PCMs in TCGA but became SPMs in
MSK-IMPACT tumors, suggesting that cancer-specific selection
may drive them during the continuous progression of related
tumors. A previous study related EGFR L861Q to the resistance of
EGFR-TKI therapy in lung cancer7, which suggests that this
improved cancer specificity in advanced tumors might be
attributed to the result of selection during targeted cancer
therapies. Taken together, the cancer diversity results of driver
mutations not only can influence clonal evolution but also can be
reshaped in cancer progression.

Comutation patterns between mutations from different classes.
It has been demonstrated that there are complex dependencies
among driver mutations and that they are related to clonal evo-
lution and the clinical prognosis of tumors32. We asked whether
there are unique dependencies in mutations with different cancer

type specificities. To answer this question, we performed comu-
tation analysis for all driver mutation pairs and constructed a
comutation network that represented significantly co-occurrent
or mutually exclusive pairs in all cancer patients (see Methods for
details). This network included 1136 interactions among 425
driver mutations, and only 11 of them were mutually exclusive
interactions (Supplementary Data 10). To inspect the global
dependency between different mutation categories, we created
10,000 random comutation networks by permuting network node
assignments as a control distribution. Compared with random
networks, SPM–SPM interactions were significantly higher in the
observed network (79 vs 41, q= 0.03, Benjamini & Hochberg
correction, Fig. 4f). In contrast, SPM–PCM interactions were
depleted in the observed network (56 vs 120, q= 0.0006, Benja-
mini & Hochberg correction, Fig. 4f). These results suggest that
SPMs tend to be comutated with each other but independent of
PCMs. We hence inferred that SPMs might be involved in cancer-
specific signaling, which was convergently selected in cancer
progression. Nevertheless, the retention of PCMs during cancer
clonal evolution could be independent of particular tissue or
cancer type. Taken together, the cancer type-dependent coevo-
lution of driver mutations may frequently exist in tumorigenesis
and could further shape their specificity.

Searching potential cancer driver genes. Considering the
importance of cancer-specific mutations in cancer evolution and
treatment, we asked whether these mutations could be used to
predict novel cancer driver genes. Because of the relatively small
sample size of one particular cancer type in the TCGA cohort, we
scanned potentially new cancer driver genes by examining the
distribution of SPMs at the pancancer perspective (Supplemen-
tary Fig. 5). First, we expanded our network diversity computa-
tion to all protein-coding genes and obtained 8859 SPMs
(Supplementary Data 11). Then, these SPMs were taken as input
for the MutSigCV algorithm32 to identify significantly mutated
genes compared with background mutation rates. The above
procedures resulted in 185 significant genes with q < 0.001
(Supplementary Data 12). A total of 45 genes had been recorded
as cancer genes in the Cancer Gene Census database, including
BCL9L, SFPQ, PTPRT, UBR5, and PAX3 that were missed in a
recent TCGA pancancer analysis33 that combines the genomic
data for 33 cancer types with 26 existing bioinformatics tools,
which highlights the validity and uniqueness of our method. To
further reduce false positives, we filtered out MutSigCV genes
without any dependent partners in the cancer dependency map34,
which identified 769 gene dependencies on 501 cancer cell lines
by modeling the off-target effects of systematic RNAi experi-
ments. We finally obtained eight bona fide cancer driver genes,
including CEP57, HNRNPL, KLF5, OXA1L, PAFAH1B1, RBM39,
SYT13, and TFDP1 (Table 1). The gene expression data from
patients showed that the expression levels of these predicted
cancer driver genes were significantly correlated with patient
prognosis in at least one cancer type (Table 1), suggesting the
functional importance of these genes in cancers. In addition, we
noticed seven of them have been included in the latest version of
The Network of Cancer Genes35 (KLF5, OXA1L, RBM39, and
TFDP1) or CancerMine36 (HNRNPL, KLF5, PAFAH1B1, SYT13,
TFDP1), two manually curated cancer gene databases, further
confirming our findings.

Among the most representative candidate cancer driver genes
are HNRNPL, KLF5, and TFDP1 (Fig. 5a). The RNA splicing
factor HNRNPL is involved in the repression or activation of
exon inclusion in targeted genes, and its high expression
consistently correlated with unfavorable prognosis in renal cancer
(p < 0.001), liver cancer (p < 0.001), and pancreatic cancer (p <
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Fig. 4 Cancer diversity driver mutations and cancer evolution. a Correlation of VAF and network diversity in nine representative genes. Each point
represents a TCGA patient. b The overall view of PCCs of VAF and network diversity for genes with different modes of action in cancer. c The comparison
of network diversity values in primary tumors (i.e., TCGA group) and advanced tumors (i.e., MSK-IMPACT group). The scatter plot is divided into nine
regions corresponding to nine combinations of cancer diversity. d Sankey diagram illustrates the relative flow of cancer diversity changes from primary
(TCGA) to advanced (MSK-IMPACT) tumors. e Comparing the distribution of network diversity values between TCGA and MSK-IMPACT. A one-sided t-
test was used. f Observed comutations and expected cases in the different combinations of driver mutations.
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0.001). HNRNPL P337Hfs*58 is a highly specific mutation in
COAD and may interrupt the last two RNA recognition motifs of
this protein. Extensive studies on the mutation effects of splicing
factors SF3B1, U2AF1, and SRSF2 have demonstrated their
altered protein functions in the development of cancers37. We
hence postulate that a similar mechanism could be involved in
HNRNPL. Another convincing case is the transcription factor
KLF5, which has been experimentally validated as a cancer driver
gene in a recent publication38. This study reported three modes of
action for KLF5 activation in cancer and noted that one of these
functions was mediated by cancer type-specific mutations
enriched in the zinc-finger motif. This finding is highly consistent
with our prediction that the SPM E419Q within the zinc-finger
motif may contribute to the oncogenic effect of KLF5, further
demonstrating the effectiveness of our method. Finally, we found
that the stop-gain SPM E225* in TFDP1 may explain the possible
connection of this gene with tumorigenesis. TFDP1 can assemble
into a protein complex by interacting with Rb and E2F proteins,
which is necessary for the suppression of the cancer gene E2F
through Rb protein39. When E2F is released, it positively
regulates the progression of the cell cycle. The stop-gain mutation
E225* in TFDP1 would delete the part that mediates interactions
with both Rb and E2F (Fig. 5b) and might lead to the release of
E2F. Thus, mutant TFDP1 could facilitate E2F release and
promote cell cycle progression in the development of cancers.

Discussion
By constructing a patient–mutation bipartite network across 33
TCGA cancer types, we systematically measured the cancer spe-
cificity of driver mutations and investigated the biological and
clinical implications of this network. In contrast to previous
studies40,41 that mainly focused on cancer genes as a functional
unit, we performed our analysis at the resolution of mutated
residues to gain new insights of mutation-specific effects of cancer
driver mutations. Comparing with Temko et al.’s work20 that
focused on why specific driver mutations were observed more

frequently in one cancer types, we associated the cancer specificity
of mutations with potential functional effects and tumor beha-
viors. Our study is highly complemented with previous work on
cancer driver specificity and represents a new angle to classify the
functional consequences of gene mutations by leveraging rapidly
accumulating sequencing data from diverse cancer types.

One of the most important observations from our study is that
the co-occurrence of different types of driver mutations from the
same cancer gene is a pervasive phenomenon. Half of the cancer
genes in our study harbor both cancer type-specific and PCMs.
Because driver mutations are supposed to confer selective
advantages to tumor cells, the different cancer distribution pat-
terns of driver mutations in one gene suggest that their capacities
to promote tumor development are unequal20. Our observation
further underscores the mutation-specific effects of driver
mutations. Currently, the interpretation of many detected driver
mutations in patients is usually transferred from studies on other
cancer types42. We proposed that the applicability of the cross-
cancer interpretation of driver mutations could be evaluated
according to the position of this mutation in the cancer diversity
spectrum. Specifically, the knowledge obtained from other caner
types will be most useful for a PCM. However, for an SPM, this
kind of knowledge will need to be carefully assessed.

We demonstrated the functional heterogeneity of mutations
with different cancer diversity in a drug sensitivity analysis. For
some tested drug–gene pairs, we showed that drug sensitivity is
associated with the cancer diversity classification of driver
mutations. Moreover, we found that a positive drug response
often occurred in patients harboring SPMs. This finding is con-
sistent with a new off-label clinical trial of the pan-HER kinase
inhibitor neratinib10, in which patients with breast cancer-specific
mutations in the kinase domain showed a better neratinib
response. Limited by available drug–gene pair data, we cannot
directly evaluate our classification model on HER kinases.
However, other important actionable genes, such as BRAF, EGFR,
and KRAS, were tested and showed significant results. The
influence of mutation-specific effects on targeted therapies may

Table 1 Eight potential cancer driver genes identified through analyzing cancer-specific mutations.

Gene Full name Molecular function Cancer dependency Expression and prognosis

CEP57 Centrosomal protein 57 Centrosomal protein which may be
required for microtubule attachment to
centrosomes

Esophageal, gastric Glioma (favorable)

HNRNPL Heterogeneous nuclear
ribonucleoprotein L

Splicing factor binding to exonic or
intronic sites and acting as either an
activator or repressor of exon inclusion

Gastric, pancreas, leukemia,
endometrial

Renal cancer (unfavorable),
pancreatic cancer
(unfavorable), liver cancer
(unfavorable)

KLF5 Kruppel Like Factor 5 Transcription factor that binds to GC box
promoter elements

Colon Pancreatic cancer
(unfavorable)

OXA1L Oxidase (Cytochrome C)
Assembly 1-Like

Essential for the activity and assembly of
cytochrome oxidase

Ovarian, lung NSCLC Renal cancer (favorable)

PAFAH1B1 Platelet activating factor
acetylhydrolase 1b regulatory
subunit 1

Required for proper activation of Rho
GTPases and actin polymerization at the
leading edge of locomoting cerebellar
neurons and postmigratory hippocampal
neurons in response to calcium influx
triggered via NMDA receptors

Gastric, ovarian, esophageal,
colon, breast, leukemia,
bladder, lung NSCLC, GBM,
endometrial

Renal cancer (favorable)

RBM39 RNA-binding motif protein 39 Transcriptional coactivator for steroid
nuclear receptors ESR1/ER-alpha and
ESR2/ER-beta, and JUN/AP-1

Esophageal, gastric Renal cancer (unfavorable)

SYT13 Synaptotagmin 13 May be involved in transport vesicle
docking to the plasma membrane

Colon, ovarian Endometrial cancer
(unfavorable)

TFDP1 Transcription factor Dp-1 Can stimulate E2F-dependent
transcription

Lung NSCLC, breast Renal cancer (favorable),
stomach cancer (favorable),
liver cancer (unfavorable)
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be very common and should be considered in the design of off-
label clinical trials. Our classification of driver mutations based on
the cancer diversity spectrum could be an alternative reference to
optimize patient enrollment conditions.

A number of factors could promote cancer evolution, including
the persistent mutational process that generates new driver
mutations, the genetic interactions between driver mutations, and
the selective pressure from growing environment and therapy. To
explore the association of cancer evolution and cancer diversity,

we analyzed the correlation of between clonal size and network
diversity score, comutation patterns between driver mutations
belonging to different cancer diversity categories and changes in
network diversity values from primary to advanced tumors. The
most prominent observation is that the cancer diversity of a
driver mutation can change during cancer evolution, which to our
knowledge, has not been characterized in previous related
studies40,41. We found that many driver mutations lose their
cancer type specificity in advanced stages. Although our study did
not reveal the mechanism behind this phenomenon, several
previous studies on the cancer transcriptome provide possible
clues. For example, emerging evidence suggests that cancer
development is an atavistic process. By comparing the expression
profiles from different tumor cell types, it was shown that dif-
ferent tumors convergently evolve towards embryonic stem cell
status43. The de-differentiation pattern of cells during disease
progression has also been observed in MET500 project when
comparing transcriptomes among normal, primary to metastatic
samples44. Another study showed that unicell-origin genes are
preferentially expressed in tumors and that coexpression between
unicell-origin and multicell-origin genes is significantly lost45.
Thus, we speculate that as cancer evolves and the atavistic process
proceeds, the constraints from cell type-specific signaling may be
gradually eliminated from tumors, resulting in the reduction of
the cancer specificity of many driver mutations. However, it will
be necessary to validate this speculation using in vitro or in vivo
experiments in future work. Beyond that, there are many differ-
ences in experimental design and technologies used between
TCGA and MSK-IMPACT, other explanations cannot be
ruled out.

In conclusion, we employed a network framework to system-
atically measure the cancer distribution of driver mutations and
successfully mapped them onto a cancer diversity spectrum. Even
though there are some limitations in this work (see Supplemen-
tary Discussion for details), we have shown that this spectrum is
informative in distinguishing the effects of drive mutations and
hope that it could be a useful tool to improve the interpretation of
detected driver mutations in clinical practice and to optimize off-
label clinical trials in the personal genomic era.

Methods
Cancer mutation data and selection of cancer driver mutations. Publicly
available TCGA Mutation Annotation Format (MAF) files (GRCh38) for 33 cancer
types were downloaded from the Genomic Data Commons (GDC) data portal
(https://portal.gdc.cancer.gov/). Full names of cancer types can be found in Sup-
plementary Data 13. These files contained 3,416,541 somatic mutations, including
missense, silent, nonsense, splice site, frameshift insertions/deletions (indels), and
inframe indels. The functional impact of each mutation was reannotated with M-
CAP46. Because the scores of M-CAP were based on the genome version of
GRCh37, we converted these scores into GRCh38 coordinates using liftOver, which
was downloaded from USCS genome browser (http://genome.ucsc.edu/).

We extracted 616 cancer genes and information for their roles in cancer from
COSMIC cancer gene census (v81). Cancer driver mutations were selected using
the following criteria: First, all driver mutations must be from one of the 616 cancer
genes. Second, we divided the cancer genes into three classes according to their
roles in cancer, including OG, TSGs, and OG/TSG. Third, we selected recurrent
OG mutations that had been recorded in COSMIC three times or more as drivers,
and selected TSG mutations that would damage protein product functions as
drivers. OG/TSG mutations matching one of these two requirements were selected.
We defined truncated mutations and deleterious mutations predicted by M-CAP as
damage mutations.

We predicted 40,358 driver mutations (approximately 1% of all mutations) for
454 cancer genes from 8326 patients (Supplementary Data 1). The average number
of driver mutations harbored by a patient is 3.96, which is consistent with previous
evaluation of the number of cancer drivers23,41.

Construction of the patient–mutation bipartite network and computation of
network diversity scores. We connected a patient and a driver mutation if this
patient harbors the same mutation. This operation was performed in all selected
TCGA mutations and resulted in a patient–mutation bipartite network. We used
the following formula to compute the cancer distribution of a driver mutation,

Fig. 5 The new cancer genes identified by analyzing SPMs. a The
distribution of SPMs in functional protein domains. Each dot in the lollipop
plot represents a patient. The pie plots show the cancer type composition
of the patients. b The crystal structure of the protein complex comprised
E2F1, TFDP1, and the Rb C-terminal domain (RbC). The PDB file was
downloaded from the Protein Data Bank (https://www.rcsb.org/), which
was identified as 2AZE. The structure was visualized with Pymol (https://
pymol.org/2/) to highlight the 225th residue in TFDP1. RbC (light purple),
E2F1 (gray), and TFDP1 (rainbow color, N-terminal to C-terminal is colored
from blue to red).
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named as the network diversity:

network diversityðmÞ ¼ 1
log k

XN

i¼1

�pi log pi; ð1Þ

where k is the degree of the mutation m and pi represents the proportion of patients
who harbor mutation m from cancer type i. N is the number of all cancer types in
which m is observed. The natural logarithm was used here. This formula actually
calculates the entropy of the composition of cancer types, which is normalized by
the number of observed patients. To balance the reliability and coverage of the
measurement, only network diversity values of mutations observed in at least three
TCGA patients were retained.

We refer to the information-theoretic analyses of Jenkinson et al.47 on DNA
methylation to partition the cancer diversity spectrum into three intervals. We
defined an odds ratio of r= p/1–p. For one mutation that specifically mutates in a
cancer type, the threshold is defined as r > 10 (i.e., the proportion of patients from a
cancer type is 10 times or more than that of others, deriving p > 0.9091 or p <
0.0909. If we take all other cancer types as one type, then r will correspond to 0 ≤
network diversity < 0.30. In contrast, we defined 0.5 < r < 2 (i.e., the proportion of
patients from a cancer type is no more than 2 times that of others) as nonspecific
(pancancer), resulting in 0.33 < p < 0.66, which corresponds to 0.64 < network
diversity ≤ 1. Taken together, we split the cancer diversity spectrum into three
parts: SPMs (0 ≤ network diversity < 0.3), RSMs (0.3 ≤ network diversity < 0.64),
and PCMs (0.64 ≤ network diversity ≤ 1).

Functional analyses. The genes enriched in each category of the cancer diversity
spectrum were uploaded to STRING (https://string-db.org/) and expanded one
time using a default neighboring algorithm, which added significantly connected
genes into the current subnetwork. The enriched GO Biological Process terms were
downloaded.

Comutation analyses. Fisher’s exact test was used to analyze the significance of
the overlap of patients between two drive mutations. The comutation pairs with q
< 0.1 after Benjamini & Hochberg correction48 were retained. We constructed
10,000 random comutation networks by shuffling the node labels, which could
make every random network have the same degree distribution as the original
network. Through random networks, we obtained an empirical distribution of the
combination of mutations with different cancer diversity and derived a p value for
each of them. These p values were also further corrected with the Benjamini &
Hochberg method48.

Comparing the drug responses of patients harboring different types of cancer
driver mutations. We obtained an IDWAS data matrix from the supplemental
materials in the study by Geeleher et al.29. The data generated by the general levels
of drug sensitivity model were used. Furthermore, we downloaded the gene–drug
interaction data from DGIdb49, which indicates whether a mutated gene can be
targeted by a specific drug. The efficacy of the drug–gene pair was tested as
described below. For a specific driver gene, we split patients who harbor mutations
of the driver gene into three tiers according to the cancer diversity type of muta-
tions (i.e., SPM, RSM, or PCM). Then, we evaluated the drug responses associated
with patient tiers for a given potential drug using ANOVA and compared the drug
responses of each tier with those of mutation-negative patients using a two-sided t-
test. To satisfy the requirement of statistical testing, we limited our analysis to
driver genes with three or more patients in every tier.

Clinical drug recommendation information was downloaded from the OncoKB
database (http://oncokb.org/), and we precisely mapped driver mutations to
OncoKB actionable mutations and drug annotations.

Cancer evolution analyses. We analyzed the correlation between mutation VAF
and network diversity values. To exclude the influence of tumor purity and copy
number variation (CNV) on VAF values, we first downloaded tumor purity data
estimated by InfiniumPurify50, which used DNA methylation to systematically
analyze the purity of samples from 32 TCGA cancer types. Samples with tumor
purity <0.7 were ignored in our study. Level 3 CNV data generated by Affymetrix
SNP 6.0 array were downloaded from the GDC data portal (https://portal.gdc.
cancer.gov/). Regions with an absolute score ≤0.5 were deemed CNV neutral. We
only used VAF values of mutations in CNV neutral regions and highly pure tumor
samples to compute the correlation between VAF and network diversity values.
Pearson’s correlation coefficient and related statistical tests were performed using R
language.

For comparison between primary and advanced tumors, we obtained the
targeted sequencing data of advanced tumors generated by MSK-IMPACT from
the cBioPortal (http://www.cbioportal.org/). We computed network diversity
values for all mutations with recurrent frequency ≥3 in MSK-IMPACT data. The
network diversity distributions of 625 overlapping mutations between TCGA and
MSK-IMPACT were compared.

Identification of new driver genes. We computed network diversity values for all
mutations that occur three times or more in 33 types of cancer reserved in TCGA

and all SPMs were collected. The MutSigCV module in GenePattern51 was used
with default settings to search for genes significantly enriched with SPMs (q <
0.001). We downloaded cancer dependency data from https://depmap.org/rnai/
and intersected 140 unrecorded candidate genes with 769 cancer-dependent genes
to obtain eight new cancer genes. The impact of the expression of these eight genes
expression on patient survival was analyzed by querying the Human Pathology
Atlas (http://www.proteinatlas.org/pathology)52.

Network data manipulation and visualization. Network data were computed
using the NetworkX package (https://networkx.github.io) and further visualized in
Cytoscape53. The firework web portal was built on the Perl-based web framework,
“Catalyst”.

Statistics and reproducibility. Statistical analyses and FDR correction were per-
formed with R language (v3.4.1). The methods used to perform statistical test for
each analysis can be found in above sections.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We only used publicly available data. The accession codes of TCGA data can be found in
Supplementary Data 14. Cancer diversity of driver mutations can be visualized at http://
mulinlab.org/firework. User can query each mutation to check its network diversity and
its distribution in 33 cancer types. The position for mutations from one gene will be
shown as lollipop plot. The drug information for studied mutations can be found in
Supplementary Data 8 and Table 9. And the full patient–mutation network can also be
found in Supplementary Data 15.

Code availability
The computer code for network diversity calculation and other codes used in this work
are available from corresponding authors on request.
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