
GigaScience, 6, 2017, 1–4

doi: 10.1093/gigascience/gix045
Advance Access Publication Date: 15 June 2017
Technical Note

TECHNICAL NOTE

16GT: a fast and sensitive variant caller using
a 16-genotype probabilistic model
Ruibang Luo1,2,∗, Michael C. Schatz1,2 and Steven L. Salzberg1,2,3

1Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA, 2Center for
Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of
Medicine, Baltimore, MD 21218, USA and 3Departments of Biomedical Engineering and Biostatistics, Johns
Hopkins University, Baltimore, MD 21218, USA
∗Correspondence address: Center for Computational Biology, School of Medicine, Johns Hopkins University, 1900 E. Monument St. Rm 101B, Baltimore,
MD 21205. Tel: 667-234-9641; E-mail: rluo5@jhu.edu

Abstract

16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype
probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling
algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT
demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and
accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at
https://github.com/aquaskyline/16GT.

Keywords: variant calling; Bayesian model; SNP calling; indel calling

Background

Single nucleotide polymorphisms (SNPs) and insertions and
deletions (indels) that occur at a specific genome position are
interdependent; i.e., evidence that elevates the probability of
1 variant type should decrease the probability of other pos-
sible variant types, and the probability of all possible alleles
should sum to 1. However, widely used tools such as GATK’s Uni-
fiedGenotyper [1] and SAMtools [2] use separate models for SNP
and indel detection. The model for SNP calling in these 2 tools
is nearly identical: both assume all variants are biallelic (i.e., ex-
actly 2 haplotypes are present) and use a probabilistic model al-
lowing for 10 genotypes: AA, AC, AG, AT, CC, CG, CT, GG, GT, TT.
For indel calling, the GATK UnifiedGenotyper uses a model from

the Dindel’s variant caller [3], while SAMtools’ model is from
BAQ [4].

Findings

In order to detect SNPs and indels with a unified approach, we
developed a new 16-genotype probabilistic model and its im-
plementation, named 16GT. Building on an idea first introduced
in Luo et al. [5], 16GT uses an empirically improved model and
is the first publicly available implementation. Using X and Y to
denote the indels with the highest (X) and second highest (Y)
support, we add 6 new genotypes (AX, CX, GX, TX, XX, and XY)
to the traditional 10-genotype probabilistic model. The 6 new
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genotypes include: (i) 1 homozygous indel (XX); (ii) 1 reference
allele plus 1 heterozygous indel (AX, CX, GX, TX); (iii) 1 heterozy-
gous SNP plus 1 heterozygous indel (AX, CX, GX, TX, reusing the
genotypes in ii); and (iv) 2 heterozygous indels (XY). We exclude
the 5 possible combinationsAY, CY, GY, TY, andYYbecause Xhas
higher support than Y. By unifying SNP and indel calling in a sin-
gle variant calling algorithm, 16GT not only runs 4 times faster,
but also demonstrates improved sensitivity in calling SNPs and
comparable sensitivity in calling indels to the GATK Haplotype-
Caller.

Posterior probabilities of these 16 genotypes are calculated
using a Bayesian model P(L|F)∝P(F|L)P(L), where L is an assumed
genotype. F refers to the observation of the 6 alleles (A, C, G, T,
X, Y) at a given genome position. P(L) is the prior probability of
the genotype, P(F|L) is the likelihood of the observed genotype,
and P(L|F) is the posterior probability of the genotype. The result-
ing genotype Lmax is assigned to the genotype with the highest
posterior probability. The distance between the highest poste-
rior probability and the second highest posterior probability is
used as a quality metric in 16GT, along with some other metrics
introduced by GATK (GATK,RRID:SCR 001876) [1].

Calculating the probability of an observation F given
the genotype L

To test how well an observation fits the expectation of different
genotypes, we use a 2-tailed Fisher exact test P and use the re-
sulting P-value as the goodness of fit. When calculating the like-
lihood of a homozygous genotype, ideally we expect 100% single
allele support from the observation. For example, consider geno-
type “AA”:

P (F |′AA′
) = Phom (FA) × Pe (FC , FG , FT , FX, FY) ,

where Pe is the probability of an erroneous base call.
For a heterozygous genotype, 50% support is expected for

each allele in the genotype; e.g., consider “CG”:

P (F |′CG ′
) = Phet (FC , FG ) × Pe (FA, FT , FX, FY) ,

where

Phom (FA) = P

(
FA F

(1 − Perr ) F F

)

Phet (FC , FG ) =
√√√√ ∏

i=C,G

P

(
Fi F

(0.5 − Perr ) F F

)

Pe (FA, FT , FX, FY) = P

(
FA + FT + FX + FY F

Perr × F F

)

Fs =
n∑

i=1

f (Qi , Mi , s) s ε {A,C,G, T, X,Y} ,

where s is the allele type, n is the number of reads support-
ing allele s, Qi is the base quality, and Mi is the mapping qual-
ity. f is a function describing how s, Qi, and Mi change the

observation:

f (Qi , Mi , s) = α × β × γ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = 0 i f Mi = 0

α = 1 i f Mi �= 0

β = 0 i f Qi < 10

β = 1 i f 10 ≤ Qi < 13

β = 2 i f 13 ≤ Qi < 17

β = 3 i f 17 ≤ Qi < 20

β = 4 i f Qi ≥ 20

γ = 1 i f s ε {A,C,G, T}
γ = 1.375 i f s ε {X,Y}

.

The possible reasons for an observation that does not match the
reference genome are (i) a true variant; (ii) an error generated
in library construction; (iii) a base calling error; (iv) a mapping
error; and (v) an error in the reference genome. Reasons (iii) and
(iv) are explicitly captured in our model. For reasons (ii) and (v),
we include 2 error probabilities, Ps for SNP error and Pd for indel
error. We define Perr as Ps+Pd, where Ps and Pd are set to 0.01 and
0.005, respectively. These 2 values were set empirically based on
the observation that SNP errors are more common than indel
errors in library construction and in the reference genome.

In addition,most short read aligners use a dynamic program-
ming algorithm to enable gapped alignment, using a scoring
scheme that usually penalizes gap opening and extension more
than mismatch. Consequently, authentic gaps that occur at an
end of a read are more likely to be substituted by a set of false
SNPs or alternatively to get trimmed or clipped. Thus,we applied
a coefficient γ to weight indel observations more than SNPs in
order to increase the sensitivity on indels.

Calculating the probability of the genotype L

Given (i) a known rate of single nucleotide differences between 2
unrelated haplotypes; (ii) a known rate of single indel differences
between 2 unrelated haplotypes; and (iii) a known Transitions to
Transversions ratio (Ti/Tv), the 16GT model’s prior probabilities
are calculated as shown in Table 1.

Given (i) a known rate θ of single nucleotide differences be-
tween 2 unrelated haplotypes; (ii) a known rate ω of single indel
differences between 2 unrelated haplotypes; and (iii) a known
Ti/Tv ε, transition is expected to occur more frequently than
transversion under selective pressure. The default known rates
for human genome are θ = 0.001, ω = 0.0001, ε = 2.1, where ε

is set to the value for human and needs to be changed for other
species.

Results

We benchmarked 16GT with GATK UnifiedGenotyper, GATK
HaplotypeCaller (GATK, RRID:SCR 001876) [1], Freebayes
(FreeBayes, RRID:SCR 010761) [6], Fermikit [7], ISAAC (Isaac,
RRID:SCR 012772) [8], and VarScan2 [9] using a set of very high-
confidence variants developed by the Genome in a Bottle project
for genome NA12878 (Coriell Cat# GM12878, RRID:CVCL 7526;
version 2.19) (Additional File 1: Supplementary Note) [10].
The results are shown in Table 2 and as receiver operating
characteristic curves in Supplementary Fig. S1.

For SNPs, 16GT produced the most true positive calls
and the fewest false negative calls; i.e., it has the highest
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Table 1: P(L), Genotype prior probabilities for a reference allele “A”.

L Zygosity Number of SNPs Number of indels
Number of

transversions Prior probability P(L)

AA Hom. – – 0 1
GG Hom. 1 0 2 θ/2 ∗ ε ∗ ε

CC, TT Hom. 1 0 0 θ/2
AG Het. 1 0 1 θ ∗ ε

AC, AT Het. 1 0 0 θ

CG, GT Het. 2 0 1 θ ∗ θ/2 ∗ ε

CT Het. 2 0 0 θ ∗ θ/2
AX Het. 0 1 0 ω

GX Het. 1 1 1 ω ∗ θ/2 ∗ ε

CX, TX Het. 1 1 0 ω ∗ θ/2
XX Hom. 0 1 0 ω/2
XY Het. 0 2 0 ω ∗ ω/2

Hom.: homozygous; Het.: heterozygous.

Table 2: Benchmark comparisons between 16GT and 5 other variant callers on a dataset from the Genome in a Bottle project consisting of 787M
read pairs (53-fold) from genome NA12878.

SNP Indel

FP FP

Time (minutes dbSNP dbSNP TP in dbSNP dbSNP
Caller w/36 cores) TP Total 138 138% Omni 2.5 FN TP Total 138 138% FN

16GT 121 2 663 179 5346 4220 79% 20/20 918 167 549 1462 944 65% 3180
UG 29 2 655 608 1639 563 34% 15/15 8489 163 839 624 546 88% 6890
HC 539 2 653 684 419 143 34% 4/4 10 413 168 444 1232 726 59% 2285
Freebayes 52 2 655 513 724 353 49% 11/14 8584 162 505 559 0 0% 8224
Fermikit 45 2 567 672 2036 509 25% 9/9 96 425 161 916 1996 1076 54% 8813
ISAAC 63 2 659 438 1115 586 53% 15/15 4659 158 642 1239 710 57% 12 087
VarScan2 136 2 658 358 1680 718 43% 10/10 5739 158 906 574 481 84% 11 823

FP: false positive; FN: false negative; HC: GATK HaplotypeCaller; UG: GATK UnifiedGenotyper.

sensitivity and specificity among all tools. dbSNP version 138
also reported 79%of 16GT’s false positive calls, which is the high-
est among other callers. However, we should point out that the
GIAB variant set is biased toward GATK because it was primar-
ily derived from GATK-based analyses, as reported previously
[11]. As an orthogonal test, we further assessed the false posi-
tive calls against a set of unbiased calls made by the Illumina
Omni 2.5 SNP array (Additional File 1: Supplementary Note).
Among the 5346 false positive calls for 16GT, 20 were covered
by the Omni array, and all 20 (100%) had the correct genotype.
Although limited by the small number of measurable alleles in
the Illumina Omni 2.5 SNP array, only allowing us to reassess 20
“false positive” calls as true positives, the observation that all
20 genotypes out of the 20 covered alleles are correct suggests
that a number of the remaining “false positive” calls are actually
correct.

For indels, 16GT produced slightly fewer true positive calls
and slightly more false negative calls than HaplotypeCaller, but
less than half as many false negative calls as UnifiedGenotyper.
dbSNP version 138 covered 65% of 16GT’s false positive indels.
Further investigation into the 1462 false positive indels shows
that 981 (67%) of them meet all 3 of the following criteria: (i) at
least 3 reads supporting the variant; (ii) at least 1 read support-
ing both the positive and negative strands; and (iii) in over 80% of
the reads that support the variant, there exists no other variant
in its flanking 10 bp. This suggests that some of these “false pos-

itives” might be correct, although further experimental valida-
tion would be required to confirm this suggestion. Supplemen-
tary Fig. S2 shows 3 examples where the putative false positive
from 16GT is likely to be correct.

Conclusions

16GT is the firstly publicly available implementation using a 16-
genotype probabilistic model for variant calling. Compared with
local assembly based variant callers, 16GT provides better sen-
sitivity in SNP calling and comparable sensitivity in indel call-
ing. In the current implementation, 16GT can only be applied
to germline variant detection. In the future, we will enhance
16GT to support multi-sample variant calling and GVCF out-
put and to support somatic variant detection and extend the
model to support variant calling in species with more than 2
haplotypes.

Additional files

Additional File 1.docx

Abbreviations

indel: insertions and deletions; SNP: single nucleotide polymor-
phism; Ti/Tv: Transitions to Transversions.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/6/7/gix045/3868354 by U

niversity of H
ong Kong user on 05 August 2020



4 Luo et al.

Acknowledgements

We thankUnited Electronics Co. Limited for providing code sam-
ples for the bam2snapshot function.

Funding

This work was supported by the US National Institutes of Health
under grants R01-HL129239 and R01-HG006677.

Availability of source code and requirements

Project name: 16GT
Project homepage: https://github.com/aquaskyline/16GT
Archived version: https://github.com/aquaskyline/16GT/
releases/tag/1.0
Operating system: Platform independent
Programming language: C++ and Perl
Other requirements: See GitHub page
License: GPLv3
Any restrictions to use by non-academics: None

Availability of supporting data and materials

Snapshots of the code and data are available in the GigaScience
repository, GigaDB [12], and are also available via the Code Ocean
reproducibility platform [13].

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

R.L., M.C.S., and S.L.S. conceived the study. R.L. developed and
implemented the 16GT algorithm and benchmarked 16GT with
other variant callers. R.L., M.C.S., and S.L.S. wrote the paper.
All authors have read and approved the final version of the
manuscript.

References

1. McKenna A, Hanna M, Banks E et al. The Genome Anal-
ysis Toolkit: a MapReduce framework for analyzing next-
generationDNA sequencing data. GenomeRes 2010;20:1297–
303.

2. Li H, Handsaker B, Wysoker A et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25:2078–9.

3. Albers CA, Lunter G, MacArthur DG et al. Dindel: accurate
indel calls from short-read data. Genome Res 2011;21:961–
73.

4. Li H. Improving SNP discovery by base alignment quality.
Bioinformatics 2011;27:1157–8.

5. Luo R, Wong YL, Law WC et al. BALSA: integrated secondary
analysis for whole-genome and whole-exome sequencing,
accelerated by GPU. Peer J 2014;2:e421.

6. Garrison E, Marth G. Haplotype-based variant detection from
short-read sequencing. 2012, preprint (arXiv:12073907).

7. Li H. FermiKit: assembly-based variant calling for Illumina
resequencing data. Bioinformatics 2015;31(22):3694–6.

8. Raczy C, Petrovski R, Saunders CT et al. Isaac: ultra-fast
whole-genome secondary analysis on Illumina sequencing
platforms. Bioinformatics 2013;29(16):2041–3.

9. Koboldt DC, Zhang Q, Larson DE et al. VarScan 2: somatic
mutation and copy number alteration discovery in cancer by
exome sequencing. Genome Res 2012;22:568–76.

10. Zook JM, Chapman B, Wang J et al. Integrating human se-
quence data sets provides a resource of benchmark SNP and
indel genotype calls. Nat Biotechnol 2014;32:246–51.

11. Chiang C, Layer RM, Faust GG et al. SpeedSeq: ultra-fast
personal genome analysis and interpretation. Nat Methods
2015;12:966–8.

12. Luo R, Schatz MC, Salzberg SL. Supporting data for
“16GT: a fast and sensitive variant caller using a 16-
genotype probabilistic model” GigaScience Database 2017.
http://dx.doi.org/10.5524/100316.

13. Luo R. 16GT: a fast and sensitive variant caller us-
ing a 16-genotype probabilistic model [Source Code].
Code Ocean 2017. http://dx.doi.org/10.24433/CO.0a812d9b-
0ff3-4eb7-825f-76d3cd049a43.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/6/7/gix045/3868354 by U

niversity of H
ong Kong user on 05 August 2020

https://github.com/aquaskyline/16GT
https://github.com/aquaskyline/16GT/releases/tag/1.0
https://github.com/aquaskyline/16GT/releases/tag/1.0
http://dx.doi.org/10.5524/100316
http://dx.doi.org/10.24433/CO.0a812d9b-0ff3-4eb7-825f-76d3cd049a43
http://dx.doi.org/10.24433/CO.0a812d9b-0ff3-4eb7-825f-76d3cd049a43

