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ABSTRACT 

This paper proposes a bi-level mathematical programming framework for pavement maintenance to 

minimize fuel consumption in equilibrated networks. The proposed model extends research in the 

area by formulating the interaction between network equilibrium and various maintenance activities. 

The volume of traffic, age of the pavement, initial conditions, and interference due to maintenance 

are considered in developing this long-term deterioration model. The fuel consumption induced by 

roughness and traffic disruption is further investigated in the optimization process. A modified active 

set algorithm with nested sub-programming is developed to generate the detailed solutions. The 

performance of the proposed model was tested by comparing it with two other mainstream strategies: 

worst first and threshold control. The results show that eco-based method outperformed prevalent 

models by reducing extra fuel consumption by 20%. They thus show that eco-based optimal 

scheduling has the potential to aid in long-term maintenance decisions and reduce the energy cost. 

Keywords: maintenance scheduling, fuel consumption, equilibrated network, optimal deployment 
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1. INTRODUCTION 

Fuel consumption by automobiles is a major obstacle to sustainable development. Many 

fledgling fuel-efficient measures; such as the Atkinson cycle, EcoBoost-equipped engines, and dual 

variable valve timing; have been implemented by automobile manufacturers. Pavement roughness 

influences vehicle fuel use and emissions as well as dynamic pavement loading. Loading affects 

pavement durability, and maintenance investment determines the resulting pavement condition 

(Gosse & Clarens, 2013). A review by Hiersche (Hiersche, 1985) showed that increasing the 

roughness of a road intensifies its corresponding fuel consumption. Delanne (Delanne, 1994) claimed 

that unevenness in the pavement can affect fuel consumption by up to 6%. Chesher and Harrison 

(Chesher & Harrison, 1987) found that an increase of 1 m/km in the international roughness index 

(IRI) raises fuel cost by approximately 6% for a unit car in India and 5.5% for an equivalent vehicle 

in Brazil.  

Given the impact of traffic flow, periodic maintenance is often required to mitigate discomfort, 

safety hazards, and accompanying delays (Cheu, Wang, & Fwa, 2004). Many pavement maintenance 

scheduling strategies have been investigated in the last few years, with emphasis on the worst-first 

(WF), threshold control (TC), and optimization (OPT) methods:  

a) WF scheduling rehabilitates a pavement based on its existing condition. In each maintenance 

period, roads in the worst conditions are preferred to first repair, and maintenance covers as 

many routes as possible until depleting the budget (J. C. Chu & Huang, 2018). WF is intuitive 

and very easy to implement, and thus is predominantly used by road agencies. Abaza et al. 

(Abaza et al., 2004) developed an optimum maintenance and rehabilitation model for the WF 
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strategy based on the discrete-time Markovian deterioration process. Zimmerman and Peshkin 

(Zimmerman & Peshkin, 2003) assessed the WF and pavement preservation strategies for a 

network in North Carolina, US, and found that the benefits of the preservation strategy take time 

to become evident, but their eventual impact on average network conditions is much more 

significant than the WF. Even so, there is a perception that the public will not support a move 

away from the WF strategy (Chan et al., 2011). However, WF yields limited benefits in the long 

run because it is often used on a reactive basis and does not consider the lifespan of the asset. 

b) The TC method conducts maintenance activities if a pavement in some link deteriorates to a 

specific threshold. Pavement maintenance is scheduled based on standards that define the 

minimum allowable levels of service capability (Tsunokawa & Schofer, 1994). The threshold 

can be set based on various indices, such as the international roughness index (IRI) (J. C. Chu & 

Chen, 2012), pavement condition index (PCI) (Sharaf et al., 1987), and critical rut depth (Fwa T. 

F. et al., 2012). Wang et. al (T. Wang et al., 2014) developed optimal roughness values for 

triggering treatments to minimize GHG considering both treatment and use phase emission. In 

practice, this method fits the workflow of transportation agencies well and, thus, has been widely 

adopted (J. C. Chu & Huang, 2018). One problem induced by TC is that for some periods of 

maintenance, the budget is redundant as all pavements remain in good condition. On the contrary, 

in other periods, the budget may be insufficient as too many roads have reached the given 

threshold and require rehabilitation at the same time. Moreover, the criteria for the threshold are 

often determined empirically, and may not be universally applicable to all scenarios. 
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c) The OPT strategy generates maintenance plans to optimize the objective function (minimal 

travel time, maximal revenue, etc.) within budgetary constraints by using optimization methods. 

A number of studies have investigated this strategy for several objectives using multiple 

algorithms. For example, Ng et al. (Ng et al., 2009) proposed a mixed-integer bi-level program 

to create an optimal long-term maintenance scheduling that simultaneously accounts for traffic 

dynamics.  Ouyang and Madanat (Ouyang & Madanat, 2006) studied a mathematical 

programming model for a finite horizon involving multiple activities and facilities. Memarzadeh 

and Pozzi (Memarzadeh & Pozzi, 2016) proposed an approach to integrating adaptive 

maintenance planning based on the Markov decision process. Most OPT-based methods consider 

the deterioration process of the pavement, the maintenance period, budget, and various 

categories of maintenance activities together to generate detailed plans, which leads to a 

considerable improvement in the long term compared with other strategies. 

The maintenance schedule not only determines the timing of maintenance, but also selects the 

kind of activity that should be performed on each link. Various categories of maintenance activities 

have been defined and are being used at present, such as preventive and corrective maintenance 

(P&C), capital preventive maintenance (CAPM), and major rehabilitation and replacement (R&R) 

(Lea & Harvey, 2002) (X. Zhang & Gao, 2012). According to the 2015 State of the Pavement Report 

of California, P&C (e.g., crack seal and slurry seal) can extend a pavement’s service life by four to 

seven years at $115,000 per lane mile. CAPM (e.g., pavement grinding, isolated slab replacements, 

and asphalt concrete overlay) can provide a service life of five to ten years with $326,000 per lane 

mile. R&R replaces the structure of the pavement rather than only its surface, which is supposed to 



 

6 
 

provide 20 years or more of service life with $894,000 per lane mile (Kim et al., 2015). Santero et.al 

(Santero et al., 2011) evaluated the current literature across four key methodological attributes, such 

as functional unit comparability, system boundary comparability, data quality and uncertainty and 

environmental metrics. Chu (C.-Y. Chu & Durango-Cohen, 2008) used the dynamic performance 

modeling method to analyze the effect of maintenance activities on the performance of dynamic 

infrastructure facilities, and incorporated the effectiveness of maintenance in their estimation. Rashid 

and Tsunokawa (Rashid & Tsunokawa, 2012) proposed an optimization approach based on the trend 

curve optimal control model to obtain optimal strategies consisting of many diverse maintenance 

activities. Gao et al. (L. Gao et al., 2012) investigated multiple treatment methods at a network level 

using bi-leveling optimization. 

The optimal scheduling of rehabilitation activities has been extensively researched, and 

objectives of maintenance scheduling vary among different methodologies, most of them are aimed 

to minimize the total travel time or capital cost. Gu et al. (Gu et al., 2012) proposed the joint 

optimization of pavement maintenance to reduce overall lifecycle cost using a continuous pavement 

state model. Gao et al. (2012) discussed bi-objective pavement maintenance and the 

rehabilitation-scheduling problem that aims to simultaneously optimize the objectives of improving 

the condition of the pavement and appropriately using the budget. Given the uncertainty of 

deterioration in the condition of the pavement, Chootinan et al. (Chootinan et al., 2006) used a 

stochastic simulation-based genetic algorithm to handle the combinatorial nature of network-level 

pavement maintenance programming. Gao and Zhang (H. Gao & Zhang, 2013) developed a 

multi-objective Markov-based model to minimize user cost constrained by annual budget and 
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performance requirements. In recent years, several studies have targeted to minimize the greenhouse 

gas (GHG) emissions or fuel consumption from pavement rehabilitation polices. Reger et al. 

considered an agency whose main goal is to reduce its carbon footprint while operating under a 

constrained financial budget and proposed the optimal timing along with the optimal actions for 

every road segment in the network (Reger et al., 2015). Lee et al. proposed an efficient solution to 

solve the maintenance scheduling problem under a GHG emissions constraint (J. Lee et al., 2016). 

Lee and Madanat (J. Lee & Madanat, 2017) further developed an optimization problem to minimize 

GHG emissions by determining joint management strategies for a range of heterogeneous 

interventions, including maintenance, rehabilitation and reconstruction. Wang et al. described a 

pavement life cycle assessment model to evaluate energy use and GHG emissions from pavement 

rehabilitation strategies (T. Wang, 2012). Wang et al. further developed a life cycle approach to 

assess changes in total GHG emissions from strategic management of pavement roughness (T. Wang 

et al., 2014). However, most researchers have either conducted lifecycle analysis or studied network 

impact on maintenance scheduling, and have shed little light on the interactions between them. 

Pavement roughness has a distinct effect on drivers’ choice of route, especially for pavements in 

poor condition. This is the major reason for why we include the condition of the pavement when 

formulating a travel cost function. Kerali (Kerali, 2003) has indicated that road roughness is the most 

significant component of pavement condition used to estimate the user cost. Hawas (Hawas, 2004) 

used a neuro-fuzzy model to analyze factors affecting drivers’ perceptions of route utility, such as 

travel time, pavement condition, and queuing time. Moreno (Moreno-Quintero, 2006) proposed a 

general equation that incorporates speed, pavement roughness, and slope into perceived route utility 
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in the process of choosing a route. Ouyang (Ouyang, 2007) used a practical formula with two 

components, roughness cost and the cost of travel time, to calculate total user cost. The status of 

deterioration of the pavement is also affected by traffic flow (L. Sun, 2016). Massive traffic results in 

the rapid deterioration of pavement conditions. In turn, roads in poor condition cause drivers to 

reroute. 

 
Figure 1. Interactions among traffic flow, pavement condition and maintenance decision 

This paper extends literature on pavement maintenance along three directions: (1) An eco-based 

scheme is proposed to explicitly formulate the interactions between maintenance activities and 

network equilibrium from the perspective of the lifecycle of the pavement to minimize fuel 

consumption by the network. Multiple maintenance treatments are quantized and evaluated in the 

optimization process. (2) The volume of traffic, age of pavement, initial conditions, and interference 

due to pavement maintenance are considered in developing a long-term deterioration model that 

provides a dynamic connection with the user’s choice of route. (3) Fuel consumption induced by 

roughness and traffic disruption during construction is investigated by developing a generalized 

travel cost function and equivalent link capacity. 
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The remainder of this paper is organized as follows: Section 2 presents a bi-level model of the 

optimal network fuel consumption and Section 3 introduces a solution and methods of approximation 

for it. Section 4 describes a case study based on the Sioux-Fall network, and Section 5 offers the 

conclusions of this study and implications for future research on pavement maintenance. 

2. MODEL FORMULATION 

The primary objective of this model is to minimize fuel consumption in a network constrained 

by an annual maintenance budget. The lower-level model follows user equilibrium (UE) conditions, 

under which the travel cost function complies with a generalized BPR function. The influence of 

pavement roughness is also considered part of travel cost. 

2.1 Pavement Deterioration Model 

Pavement conditions deteriorate naturally over time. Without maintenance, the process follows 

an exponential distribution. Our first assumption is that the pavement deterioration process follows a 

Markov property, which means that the shape of the deterioration curve depends on only the 

maintenance activities attained in the previous period. The second assumption concerns the 

exclusiveness of multiple activities, indicating that no more than one maintenance treatment is 

implemented on the same link at the same year. We use the riding quality index (RQI) as indicator of 

pavement status, measured from 5 to 0 (initial status to worst condition). We discretize the 

continuous time span into one-year intervals and use a binary variable to describe decisions 

regarding the maintenance activities. Let [0, ]t T∈  denote the discrete time points and T the 
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projected lifetime. The following figure illustrates a model of the deterioration and rehabilitation of a 

highway network. Ri(t+) denotes the RQI of the i L∈  link immediately after year t, and Ri(t -) 

denotes the RQI of the i L∈  link immediately before year t. If a maintenance activity is conducted 

in year t, a gap arises between Ri(t+) and Ri(t-), representing an improvement in performance. 

Otherwise, Ri(t+) and Ri(t -) remain the same. 

 

Figure 2. Deterioration process in the maintenance (left) and the typical deterioration modes (right) 

Pavement roughness increases exponentially over time between adjacent maintenance activities 

(Ouyang & Madanat, 2006). Given the complexity of influential factors and the diversity of road 

structures, the deterioration in pavements follows multiple patterns that can be divided into four main 

types, as shown in Figure 2 (L. J. Sun, 2005):  

(a) Convex curve: slow deterioration followed by fast deterioration until the pavement is destroyed, 

which is the most common shape of a natural deterioration curve; 

(b) Concave curve: fast deterioration followed by slow deterioration until destroyed. This usually 

appears if the surface of the road cannot provide sufficient shear stress while in service; 
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(c) Reverse S curve: slow deterioration followed by fast deterioration, and slow again until destroyed, 

which is actually a combination of curves a and b. 

(d) Linear curve: linear deterioration until destroyed. This usually happens in cases with small 

volumes of traffic. 

Therefore, a unified deterioration model is required to describe the different modes. We propose 

a negative exponent deterioration model with lifetime factor A and shape factor B (L. J. Sun, 2005), 

as follows:  

 { }0 1 exp[ ( / ) ]BR R A t= − −  ,  (1) 

where  

0R  = initial RQI  

A  = lifetime factor (related to traffic volume, structural strength, etc.) 

B  = shape factor (related to traffic volume, structural strength, etc.) 

A
B

 
 
 

 = 1

2

( , , , ...)
( , , , ...)

f volume strengh thickness environment
f volume strengh thickness environment

 
 
 

 

t  = discrete time. 

The first-order derivative is thus as follows: 

 1
0 exp[ ( / ) ] /B B BR R A t B A t

t
+∂

= − ⋅ − ⋅ ⋅
∂

  .               (2) 

The second-order derivative is as follows: 

( )
2 22 1

0 02 ( 1) exp[ ( / ) ] / / exp[ ( / ) ]B B B B B BR R B B A A t t R B A t A t
t

+ +∂
= + ⋅ ⋅ − − ⋅ ⋅ ⋅ −

∂
  (3) 

1

BB

e
B At
B

−
 ⋅

=  + 
   (4) 
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Eq. (2) shows that Sun’s model monotonically decreases. Eq. (3) and (4) show that if the time is 

in the interval ( , )et +∞ , the function is concave; otherwise, the function within (0, )et  is convex. 

Different values of A and B may lead to distinct deterioration patterns (curves a, b, c, and d in Figure 

1). For simplicity, the environmental factors are fixed, and thus coefficients A and B can be regarded 

as piecewise functions representing traffic flows v, A(v) and B(v), respectively. This model is 

constructed by a long-term dataset collected by field tests. It is tested and proved to be effective in 

many countries and district. The model coefficients A and B are determined by the traffic flows and 

pavement structure itself. The detailed number of A and B under various conditions can be referred to 

the Table 6.3-10 (Sun, 2005) 

2.2 Representing Network Fuel Consumption   

The objective of eco-based optimal maintenance scheduling is to minimize network-wide 

consumption for T years. Two principle inducements for extra fuel cost are considered: pavement 

roughness and traffic disruption when maintenance is conducted.  

Bumpy roads increase the amount of resistance a vehicle experiences as it drives down the road. 

A vehicle’s fuel consumption has a significant positive correlation with pavement roughness. Many 

empirical models have been developed to estimate the cost of fuel under various conditions.  

Most relevant literatures focus on the quantification of environmental impact of pavement 

condition in terms of some typical vehicle types (Medium car, SUV, light truck), speed (Gangaram, 

2014), and typical treatment techniques (Han et al., 2018; H. Wang et al., 2019) using Motor Vehicle 

Emission Simulator (MOVES). The results can be used to evaluate the fuel cost and GHG in some 
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case-specific scenarios. In this paper, we consider the vehicular fuel cost from a perspective of 

network optimization, in which the driving speed on each link is assumed to be the same and the 

volume of all types of vehicles is transformed into the equivalent passenger car volume. The World 

Bank’s HDM-4 may be the most extensively used one, where the relationship between fuel 

consumption and international roughness index (IRI) follows a linear regression (Zaabar & Chatti, 

2010). The IRI is converted into RQI using the formula developed by the Minnesota Department of 

Transport (H. Gao & Zhang, 2013; Janisch, 2006; H. Wang et al., 2020). Thus, the fuel consumption 

induced by roughness can be formulated as follows: 

 
26.122 ( )( ) , ,

1.963
i

i
R tO t a b     i t− = + ⋅ ∀ ∈ ∈ 

 
I T ,  (5) 

where  

( )iO t  = fuel cost per passenger car unit per hour on link i in year t (gallon/h) 

( )iR t  = RQI value of link i in year t  

,a b  = model regression coefficients 

The model parameters a and b are calibrated by field tests. As the traffic flow and pavement 

conditions both dynamically vary over a year, we use the trapezoid formula to approximately 

calculate network-wide cost on the planning horizon, as shown in Fig. 3 and Eq. (6): 

1 1
[ ( ) ( ) ( ) (( 1) ) (( 1) ) (( 1) )] 2

N T

i i i i i i
i t

Obj v t O t t v t O t tτ τ+ + + − − −

= =

= ⋅ ⋅ + + ⋅ + ⋅ +∑∑   (6) 

where  

Obj  = total fuel consumption induced by the roughness of N links over time span T  

( )i tτ  = travel time on link i in year t 
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( )iv t  = traffic volume on link i in year t 

 

Figure 3 The objective function 

Apart from roughness, traffic disruption during construction is a primary factor that increases 

fuel consumption. Link capacities are temporarily reduced due to the closure of lanes, leading to 

increased travel time in Eq. (6) and accordingly higher fuel costs. A highway link is often repaired 

lane by lane in order to not excessively disrupt traffic. Many literatures have investigated the 

work-zone impacts caused by lanes closure (E.-B. Lee et al., 2005). However, most quantitative 

results are based on the actual data statistics and simulation, which are quite hard to directly apply in 

the bi-level programming modelling. To simplify the formulation, we consider the influence of 

construction as a piecewise function, as shown in Eq. (7): 

 
0

0

( 1) ,  [0,min( ,365)]
( )

,         (min( ,365),365]

i
i m p i

ii m

i m p i

L C t m L
LC t

C t m L

− ⋅ ∈ ⋅
= 
 ∈ ⋅

, (7) 

where  

( )i mC t  = traffic capacity of link i at discrete time (day) in a year  

0
iC  = initial capacity of link i 
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p = maintenance activity type, 

1: &

2 :

3: &

   

 

   

P C

p CAPM

R R


= 



 

pm  = construction time for maintenance activity p 

, ( )i py t  = a binary decision variable that is one if and only if maintenance activity p is 

conducted on link i in year t 

iL  = the total number of lanes on link i 

mt  = discrete time (day) in a year, [0,365]mt ∈  

As most preventive and corrective maintenance activities are conducted at night, its mp (p = 1) 

can be regarded as zero. 

2.3 Effectiveness and Cost of Maintenance  

The marginal effectiveness of maintenance expenditures depends on the conditions of the 

facility when maintenance is performed (Ouyang & Madanat, 2004). The effectiveness and cost of 

maintenance according to the 2015 State of the Pavement Report of California (Kim et al., 2015) are 

listed in Table 1. This table is summarized using a large number of data obtained from practice, 

which is instructive to other cases. 

Table 1. Average cost per lane mile of maintenance activities 

Activities Cost per Mile Extended Service Life Road Condition  

P&C (p=1) $115,000 4-7 years RQI≥4.195 

CAPM (p=2) $326,000 5-10 years 4.195 < RQI ≤ 2.435 

R&R (p=3) $894,000 20+ years RQI<2.435 

*  P&C: preventive and corrective maintenance; 
 CAPM: capital preventive maintenance; 
 R&R: rehabilitation and replacement. 
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In practice, the extended service life of the pavement varies according to the condition of the 

pavement when the activity is performed. This difference is affected by multiple factors, such as time, 

weather condition, pavement materials, traffic load, etc. To simplify the formulation, we transform 

the extend service life into effectiveness index ΔR(p) to approximately represent the impact of 

maintenance activities on pavement conditions. The extended service life of activity p is denoted by

Δl(p). The effectiveness index indicates the change in RQI due to a maintenance activity, as shown 

in Fig. 4. Eq. (8) reveals the relationship betweenΔl andΔR. 

 

Figure 4. Effectiveness index ΔR 

Given Rd as the lower bound of acceptable pavement performance, the initial lifecycle l0 can be 

calculated as in Eq. (8). The extended service life for each maintenance activity is indicated in Table 

1. Thus, the real service life following maintenance is l0 +Δl. Assuming that t  is the elapsed time 

from the recent reconstruction, the deterioration function is represented by Eq. (9). As the new 
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deterioration curve is supposed to reach failure when RQI decreases to Rd, and the ( )R t +  cannot 

exceed R0, the effectiveness indexΔR can be derived by Eq. (10). 

 0
0 0ln ln( )B

d

Al
R R R

=
− −

 (8) 
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(10) 

2.4 Bi-level Model Formulation  

Given the hierarchical relationship between maintenance activities and drivers’ choice of route, 

a bi-level optimization model is proposed to describe the two-layer process where the levels 

correspond to the layers. The upper level program can be formulated as follows: 

1 1
min [ ( ) ( ) ( ) (( 1) ) (( 1) ) (( 1) )] 2

N T

i i i i i i
i t

 Obj v t O t t v t O t tτ τ+ + + − − −

= =

= ⋅ ⋅ + + ⋅ + ⋅ +∑∑  (11) 

s.t. 
3

,
1

( ) 1, ,   I Ti p
p

y t i t
=
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0
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B

RR p t R A t
A

l l p
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  
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,2 ,3( ) 0,  ( ) 0,  if ( ) (4.195,5],   ,I Ti iy t y t R t i t−= = ∈ ∀ ∈ ∈  (17) 
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where  

yi,p(t) = a binary decision variable that is one if and only if maintenance activity p is conducted 

on link i in year t 

iL  = length of link i 

( )pc t  = maintenance cost of p activity per mile at t year 

r  = discount rate 

gB  = planning capital budget 

t+  = immediate time after year t 

t−  = immediate time before year t 

sR  = the lowest RQI requirement for driving safety 
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M  = a sufficiently large number 

Eq. (11)–(19) describe the decision making process. The decision variables yi,p(t) determines the 

maintenance time t and activity p that should by applied on link i. The constraint (12) ensure that no 

more than one activity is conducted on the same link each year. Eq. (13) and (14) reflect the impact 

of maintenance-related decisions on variations in the condition of the pavement. In each year, (e.g., 

, 1,....t t + ), if a maintenance activity is conducted ( , ( ) 1i py t = ), the pavement status recovers 

according to its effectiveness. On the contrary, , ( ) 0i py t =  means that no measures have been taken 

and the RQI in the next year remains the same as at the end of the last year. Between time segments 

(e.g., [ , 1]t t + ), RQI deteriorates exponentially as shown in Eq. (14). Eq. (14) is effective as the 

variable unit is year, thus vi(t) can be regarded as a constant within each year. Eq. (5) defines the cost 

of fuel on each link based on HDM-4. Eq. (15) indicates budget limitations and the multiplier rte−  

discounts costs into values at the given time. Eq. (16) means that maintenance is compulsory if a 

road deteriorates to below the safety requirements. Eq. (17)–(18) make it clear that maintenance 

activities are to be determined by pavement status. No major maintenance or replacement is 

undertaken when the roads are in good conditions. Eq. (19) indicates that the variable yi,p(t) is binary. 

The coefficients , ,a b r , and Rd are derived from field tests and empirical studies. 

Once the maintenance decision concerning a given network has been made, the flow of traffic 

on each link may change according to the UE conditions. We formulate this as follows: 

( )

0
( ) arg min ( ( ))iv t

i i
i

v t tc v t dv
∈

∈ ∑∫
I

  (20) 

( ) ( ), ,
rs

rs
k m rs m

k
f t q t      r s

∈

= ∀ ∈ ∈∑
K

R S   (21) 
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,( ) ( ),
rs

rs rs
i m i k k m

r s k
v t δ f t     i

∈ ∈ ∈

= ∀ ∈∑∑ ∑ I
R S K

  (22) 

( ) 0, , ,rs
k m rsf t     r s k≥ ∀ ∈ ∈ ∈R S K                              (23) 

0

0

( 1) ,  [0,min( ,365)]
( )

,         (min( ,365),365]

i
i m p i

ii m

i m p i

L C t m L
LC t

C t m L

− ⋅ ∈ ⋅
= 
 ∈ ⋅

, (7) 

( )( ) 1
β

i m
i m i

i

v tt tco α
C

τ
  

= +  
   

 (24) 

( ( )) ( ) ( )i m i m i i mtc v t γR t L φ tτ= ⋅ + ⋅ , (25) 

where 

( ( ))itc v t  = generalized travel cost function on link i at year t 

vi(t) = the traffic flow on link i at year t, which can be estimated by the average traffic 

volume for a year,  

( ) ( ) ( )[0,min( ,365)] 365 (min( ,365),365]  
365

i p i m p i i p i m p iL m v t m L L m v t m L⋅ ⋅ ∈ ⋅ + − ⋅ ⋅ ∈ ⋅
 

( )rs
kf t  = flow on path rsk∈K  between origin – destination (OD) pair r-s at year t 

rsK  = set of paths between OD pair r-s 

R  = set of origin nodes in the network 

S  = set of destination nodes in the network 

( )rsq t  = fixed travel demand for OD pair r-s 

,
rs
i kδ  = a binary coefficient that equals one if path rsk ∈K between OD pair r-s uses link 𝑖𝑖 

and 0 otherwise 

γ  = RQI value coefficient: operating cost per unit length under a fixed RQI 

φ  = time value coefficient 
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itco  = free-flow travel time on link i 

( )i mtτ  = travel time on link i at m day in year t 

,α β  = model constant, generally 0.15, 4  α β= =  for BPR function 

Constraints (20)-(25) present the UE conditions. Constraint (19) shows the travel demand for 

the OD pairs. Constraint (22) defines the relationship between link flow and path flow. Constraint 

(23) ensures that path flow is nonnegative.  

As previously mentioned, travel time and pavement condition both influence drivers’ 

perceptions of route utility (Kerali, 2003) (Hawas, 2004) (Moreno-Quintero, 2006) (Ouyang, 2007). 

Therefore, the travel cost function ( ( ))itc v t  follows a generalized BPR equation as shown in Eq. 

(25). The first part of the function denotes losses due to pavement roughness, and the second part is 

the estimated travel time formulated in Eq. (24). γ ,φ  help unify the units and translate their values 

into equivalent monetary values. The details are introduced later in a case study. 

Eq. (5)–(25) represent a challenging bi-level problem owing to the implicit relationship between 

the maintenance decision variable yi,p(t) and link flow ( )iv t . They also constitute a mixed nonlinear 

integer and an NP-hard problem, which is challenging to articulate. Therefore, we proposed a 

modified active set method to solve the bi-level problem. 

3. ACTIVE SET METHOD 

The eco-based maintenance problem is a typical discrete network design problem (DNDP). 

Multiple solutions have been developed in the literature, such as branch and bound (Leblanc, 1975), 

simulated annealing (Friesz et al., 1992), and SO relaxation (S. Wang et al., 2013), etc. The most 

common procedure to solve a bi-level program is to reformulate it as an equivalent single-level one. 
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Given the complexity of nonlinear and complementary constraints, the single-level model of this 

problem still requires a prodigious amount of calculation. We employ the active set method (L. 

Zhang et al., 2009) to obtain a strongly stationary solution.  

The active set algorithm starts by setting an initial feasible solution. The binary variables, yi,p(t), 

representing the initial solution are grouped into two active sets: 

 { }0 ,( , , ) : ( ) 0i pi p t y tΩ = =  (26) 

 { }1 ,( , , ) : ( ) 1i pi p t y tΩ = = , (27) 

where 0 1 φΩ Ω∩ =   and 0 1Ω Ω∪ =  .  

With the active sets in Eq. (26) and (27), the maintenance scheme is fixed and the pavement 

condition for every year can be derived accordingly. We can then easily solve the UE problem to 

calculate traffic flow on each link of each year. Let ( , )y v  be the solution set to the UE model. 

Because the BPR function increases monotonically, v  must be unique. Therefore, ( , )y v  must be 

the optimal solution to the original model with the constraints expressed in Eq. (26) and (27) because 

( , )y v  is the only feasible solution to the lower-level model. 

The basic idea underlying the active set algorithm is to exchange elements between Ω0 and Ω1 

to reduce the overall fuel consumption in each iteration until optimization has been achieved. The 

elements to be exchanged are determined by calculating the Lagrange function of the original model. 

Given the optimal solution ( , )y v , the Lagrangian multipliers associated with Eq. (26) and (27) are 

denoted by , ( )i p tλ  and , ( )i p tµ , respectively. The following theorems were proved by Zhang et al. 

(L. Zhang et al., 2009), and can be used to adjust active sets: 
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Theorem 1: Given that 0Ω  and 1Ω are feasible solution sets, if , ( ) 0i p tλ <  for some 

0( , , )i p t′ ′ ′ ∈Ω , switching ( , , )i p t′ ′ ′ from 0Ω  to 1Ω  yields less objective function value. If 

, ( ) 0i p tµ >  for some 1( , , )i p t′ ′ ′ ∈Ω , switching ( , , )i p t′ ′ ′  from 1Ω  to 0Ω  yields less objective 

function value. 

Theorem 2: The active set method converges after a finite number of iterations. 

To ensure the feasibility of the solution achieved in every iteration, an embedded program is 

developed to confine the solution to an area that is feasible according to the available budget, as 

follows: 

0 1

, , , ,
( , , ) ( , , )

min ( ) ( ) ( ) ( )i p i p i p i p
i p t i p t

t g t t h tλ µ
∈Ω ∈Ω

−∑ ∑  (28) 

 s.t ( )
0 1

, , , ,
( , , ) ( , , )

( ) ( ) ( ) ( ) ( ) 1 ( )rt rt
i i p p i p i i p p i p

i p t i p t
L y t c t g t e L y t c t h t e B− −

∈Ω ∈Ω

⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ≤∑ ∑  (29) 

 
0 1

, , , ,
( , , ) ( , , )

( ) ( ) ( ) ( )i p i p i p i p
i p t i p t

t g t t h tλ µ θ
∈Ω ∈Ω

− ≥∑ ∑  (30) 

 { }, ,( ), ( ) 0,1 , ,I Ti p i pg t h t i t∈ ∀ ∈ ∈ . (31) 

where , ( ) 1i pg t =  records a shift in 0( , , )i p t ∈Ω  to 1Ω  and , ( ) 1i ph t =  represents the opposite. 

θ  is set to guarantee a decrease in the objective function. In the first iteration, θ = −∞ . In the next 

iteration, θ  can be calculated using Eq. (32) in each step: 

 
0 1

1 1
, , , ,

( , , ) ( , , )
( ) ( ) ( ) ( )i p i p i p i p

i p t i p t
t g t t h tθ ε λ µ

∈Ω ∈Ω

= + −∑ ∑ ,  (32) 

where ε  is a sufficiently small constant. Initially, θ  is −∞  and solving (28)-(31) would yield an 

adjustment plan ( 1
, ( )i pg t , 1

, ( )i ph t ) with negative change, then a better solution can be found. 

However, the KKT multipliers are only estimates of the change of the objective function, ( 1
, ( )i pg t , 
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1
, ( )i ph t ) may not lead to an actual decrease. The constraint shown in Eq. (32) prevents the solution 

from degenerating back to that in the previous iteration. The objective of Eq. (28) is to minimize the 

estimated decrease, a high negative value of which implies a significant reduction in objective value. 

If Eq. (28) is zero, no better solution can be found. 

The steps of the algorithm are as follows: 

Step 1. Set the iteration variable 1η = , 0TO = +∞ , 0TD = −∞  and the initial feasible fixed 

solutions ( )0 1,η ηΩ Ω . 

Step 2. Solve (5)–(25) with ( )0 1,η ηΩ Ω  by Frank and Wolfe algorithm and derive , ( )i p tηλ  and 

, ( )i p tηµ . Calculate total fuel consumption TOη . If 1TO TOη η−≥ , then 1η η= − ; go to 

step 3. 

Step 3. Solve (28)–(32) and 1TDηθ ε −= + . 

a) If the optimal objective value is zero, ( )0 1,η ηΩ Ω  is the best solution and the iteration 

ends; 

b) if not, derive ( ), ,( ), ( )i p i pg t h t  by the derivative of the Lagrangian function, and the 

objective value TDη  and go to step 4. 

Step 4. Obtain a new solution to ( )1 1
0 1,η η+ +Ω Ω : 

{ } { }1
0 0 0 , 1 ,( , , ) : ( ) 1 ( , , ) : ( ) 1i p i pi p t g t i p t h tη η η η+Ω Ω Ω Ω= − ∈ = + ∈ = , 

{ } { }1
1 1 1 , 0 ,( , , ) : ( ) 1 ( , , ) : ( ) 1i p i pi p t h t i p t g tη η η η+Ω Ω Ω Ω= − ∈ = + ∈ = ,  

then 1η η= + ; go to step 2. 

*TOη and TDη both represents the value of the objective function in the ηth iteration. 

4. NUMERICAL EXAMPLES 
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This section reports a case study based on the Sioux Falls Network in South Dakota (Morlok, 

1973). The aim is to understand the capability of this combined OPT & TC method in various 

environments. Figs. 5(a) and 5(b) show the topology and geographical patterns of the Sioux Falls 

network, and Fig. 5(c) shows the population distribution in the area (Chakirov & Fourie, 2014). For 

the sake of simplicity, we consider only a part of the original network based on population density, 

shown in Fig. 5(c), the topology of which is illustrated in Fig. 5(d). 

4.1 Basic Setting 

The basic characteristics of the selected Sioux Falls network are listed in Table 2 and the 

origin–destination trip matrix is given in Table 3. The other default parameters were as follows: (1) 

The capacity of each lane was approximately is 1500 pcu/h. (2) The number of lanes on each link 

was estimated by dividing link capacity by lane capacity. (3) The initial RQI = 5. (4) The discount 

rate r = 0.08. (5) The maintenance planning period T = 10 (years). (6) The BPR 

function: 0.15, 4α β= = . (7) The lowest RQI requirement for safety Rs was set to 2.0. (8) The 

maintenance cycle 0l =10 (years). (9) The average construction time mp for three types of 

maintenance activities was assumed to be 0, 30, and 60 days/mile/lane respectively (Ram & Peshkin, 

2014). In practice, these parameters are supposed to be estimated according to the local situation. (10) 

The price of maintenance of each activity cp is shown in Table 1. (11) A and B were the deterioration 

parameters as referred to in Sun(L. Sun, 2016). 
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 (a) (b) (c) (d) 

Figure 5 The highway network of Sioux Falls: (a) the original network topology; (b) the 

geographical network; (c) the population distribution; (d) the redrafted topology 

Table 2 Network characteristics of Sioux Falls network 

Link Free flow 
time (min) 

Length 
(mile) 

Capacity 
(103pcu/h) 

Link Free flow 
time (min) 

Length 
(mile) 

Capacity 
(103pcu/h) 

1 1.2 1 7.5 12 2.4 0.9 6.5 
2 3.3 1.5 6.0 13 3.6 1.1 7.5 
3 3 1.1 7.0 14 2.4 1 6.7 
4 2 1.9 6.7 15 3 1.1 7.0 
5 1.8 1.1 10.6 16 2.4 1.1 6.4 
6 1.8 0.4 5 17 3.6 1.4 8 
7 3 1.2 6.7 18 3.6 1.8 8 
8 1.2 1.2 7 19 2.4 1.1 6.6 
9 3 0.8 10 20 2.4 2.5 5.3 
10 3 1.1 6.8 21 1.8 1 6.5 
11 1.8 0.9 7.5 22 3.6 1.3 6.7 

Table 3 Network OD demand (103 pcu/h) 

  1 2 6 7 9 10 11 12 13 14 15 

1 0 1.32 1.07 1.08 1.21 0.9 0.84 0.8 0.8 0.64 1.62 

2 0 0 0 1.13 0.88 0 0.81 0.73 0 0.81 0.8 

6 0 0 0 1.5 0.79 1.32 1.11 0.95 1.05 0.61 0.74 

7 0 0 0 0 1.02 0 1.32 1.17 0 0.9 0.95 

9 0 0 0 0 0 0 0 0 0 0 0.99 

10 0 0 0 0 0 0 1.32 2.13 1.13 0.87 0.95 
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11 0 0 0 0 0 0 0 1.32 0 1.14 1.27 

12 0 0 0 0 0 0 0 0 0 0 1.32 

13 0 0 0 0 0 0 0 0 0 1.32 0.61 

14 0 0 0 0 0 0 0 0 0 0 1.32 

15 0 0 0 0 0 0 0 0 0 0 0 

4.2 Parameter Calibration 

Many field tests have been conducted to calibrate the coefficients of the model in Eq. (5). 

Analysis of a sample of Virginia Department of Transportation pavements indicates that the fuel 

consumption grows about 2.6235 gal/h along with the increase of the 1m/mile IRI (Gillespie & 

McGhee, 2007). These data were applied to calibrate the model coefficients, as shown in Eq. (33): 

 
26.122 ( )( ) 27.661 2.6235 , ,

1.963
i

i
R tO t     i t− = + ⋅ ∀ ∈ ∈ 

 
I T   (33) 

The generalized BPR function in Eq. (25) has two components: the cost incurred by pavement 

roughness and that incurred by travel time. The former leads to extra fuel consumption and a 

corresponding loss of comfort. The fuel consumption per vehicle mile is assumed to rise by 0.13% 

for every 1% increase in pavement roughness, as reported from Florida (Jackson, 2004), and the 

price at the time of the study was approximately $2.64 /gallon, that is about $0.0398 /(RQI˙mile). 

The world bank estimated that users’ operation costs rise at a rate of two to four percent per IRI unit 

of roughness as roughness increases (Paterson, 1987), that is approximately $0.0007 /(RQI˙mile). In 

sum, the RQI value coefficient γ  was $0.0405 /(RQI˙mile). 
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To transform travel time into monetary units, a method based on the gross domestic product 

(GDP) was used to calculate the equivalent temporal values (Zong et al., 2009), as follows:  

 
GDP
P T

ϕ η= ⋅
⋅

,  (34) 

where ϕ  is the time value coefficient, GDP indicates regional GDP, P  represents the local 

population, T  represents average working hours per year, and η  is the time factor, set to 0.5 for 

transportation. Sioux Falls has a population of 174,360 and a GDP of RMB $15,768 million (U.S. 

Bureau of Economic Analysis, 2018), with most citizens working 8.1 hours per day. ϕ  was $15.49 

/h. Then Eq. (25) can be calibrated as: 

 ( ( )) 0.3 ( ) 15.49 ( )i i i i itc v t L 0.04 R t L tτ= ⋅ − ⋅ ⋅ + ⋅            (35) 

Although the multiplier of pavement roughness (−0.04) was considerably smaller than that for 

travel time, it had a similarly significant impact on drivers if the pavement conditions were poor (Ri(t) 

was large) and the road was very long. 

4.3 Comparison of Strategies 

In this section, we compare three maintenance strategies. The network defaults and parameters 

have been introduced in the last two sections. The budget was set to $0–$70 million for 10 years. The 

first strategy tested was worst first, which is designed to first repair roads in the worst condition 

without considering its effects on traffic flow. In most cases, the budget for each year was assigned 

on average. Maintenance decisions were made separately each year within the lifecycle. The budget 

remaining at the end of a year was added to the budget for the next year. The WF method can be 

summarized as follows: 
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t = 1 ← initial year 

j(t) = 0 ← number of maintained links in year t  

1( )
1

r

a rT
eB t B
e

−

−

−
= ×

−
← annual budget, T ←projected lifetime 

Br(t) = Ba(t) ← remaining budget in year t  

( )iC t  = 0 ← maintenance cost in year t 

while t < 10 

    while ( )iC t  ≤ Br(t) 

solve lower model (20)-(25) and calculate Ri(t-) using Eq. (14) 

The maintained link 
{ },

arg min
arg min [ ( )]

( )
, . . ( ) 0,

i
i

i p

i v t
i R t

i s t y t p
−

 =   ∀ ∈  ∀ ∈ = ∀  I

  

Calculate maintenance cost ( )iC t  based on Table 1 

( ) ( ) ( )r r iB t B t C t= −   

, ( ) 1i py t = ← parameter p refers to Table 1 

       ( ) ( ) 1j t j t= +  

calculate R(t+) using Eq. (13) 

end 

( 1) ( 1) r
a a rB t B t B e+ = + + ⋅  ← the unused budget flows to the next year 

1t t= +  

end 

The second strategy was threshold control, where the thresholds (Table 1) were set as triggers 

for the maintenance activities. For the early years, the maintenance threshold is normally set as 90% 
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of the initial condition, which is about 4.5 for RQI. In practice, many links may reach their 

thresholds simultaneously, because of which we need to pick the “more urgent” links among them 

owing to the limited annual budget. An “urgent” link is the one with a higher rate of deterioration, 

and can be calculated by Eq. (2). The TC method can be summarized as follows: 

t = 1 ← initial year 

1( )
1

r

a rT
eB t B
e

−

−

−
= ×

−
← annual budget, T ←projected lifetime 

Br(t) = Ba(t) ← remaining budget in t year 

while t < T 

solve lower model (20)–(25) and calculate Ri(t-) using Eq. (14) 

Calculate the deterioration rate Dr(i) of each link based on Eq. (2). 

{ }1 ( ) ( ,  5]i trdi R t Rπ −= ∈ ← divide links into two components  

{ }2 ( ) [0,  ]i trdi R t Rπ −= ∈ ←where Rtrd denotes the controlled threshold 

Set π2 contains links requiring maintenance 

Solve the following program: 

     
3

,
1

max ( ) ( )i p
i p

Dr i y t
∈ =

⋅∑∑
I

← choose the most urgent links  

2

3

,
1

s.t.   ( ) ( ) ( )i p p a
p i

y t C t B t
π= ∈

⋅ ≤∑ ← annual budget constraint 

C(t) = 
2

3

,
1

( ) ( )i p p
p i

y t C t
π= ∈

⋅∑  ← calculate the maintenance cost 

calculate R(t+) using Eq. (13) 

( ) ( ) ( )r aB t B t C t= −  
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( 1) ( 1) r
a a rB t B t B e+ = + + ⋅  

t = t+1 

end 

Constraints (12), (19) are still valid in WF and TS. The fuel consumption of these three methods 

is shown in Figure 6. The network fuel consumption decreased with an increase in the budget. This 

trend followed a quasi-linear pattern before the $20 million budget. Following it, this decreasing 

tendency diminished along with continued investment. Compared with the other two methods, the 

eco-based strategy always had the lowest network fuel consumption, and saved 20% in fuel cost 

more than WF and almost 40% more than TC. When the budget was very high, the fuel cost of the 

eco-based strategy and WF converged as every road in the network had been repaired. However, the 

result for TC was still relatively high, indicating that no other roads could reach the threshold if all 

roads had been maintained in the early years. 
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Figure 6. Changing patterns of network fuel cost with budget for the newly-built network 

Fig. 7 shows the detailed schemes with budgets of 0.5, 1.5, 2, and 3 million USD. For eco-based 

strategy, most maintenance activities were scheduled in the early years of the lifecycle, indicating the 
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benefits of preventive maintenance. In general, roads with high traffic volumes were more inclined to 

be repaired continually. The others were likely to be maintained every other year or even a more 

extended period. When the budget was $2 million, no measures were taken in the seventh and eighth 

year. Sequentially, all links were rehabilitated in ninth year, which implied that maintaining roads 

every year might not have been the optimal solution in terms of fuel consumption. For worst-first 

strategy, when the budget is relatively low, the maintained roads are exclusive for the adjacent years, 

which is consistent with the features of WF algorithm. For threshold control strategy, no maintenance 

activities would be conducted at fifth and sixth years, because all the links in the network are in good 

conditions. Thus, there might be some budget left during the designed lifecycle for TC algorithm. 

This also explained why the maintenance schemes are constant for the budget > $1.5 million. 

 
(a) Eco-based Strategy 
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(b) Worst-first Strategy 

 
(c) Threshold Control Strategy 

Figure 7 Maintenance schedule under different budgets for the newly-built network 

As the functions A(v) and B(v) are piecewise functions, their values are relatively stable in most 

cases. However, there are some vulnerable links whose deteriorating trends are easily affected by 

traffic redistribution, such as links 6, 11 and 19, as shown in Fig. 8. In general, the traffic loads on 

these roads are not heavy, and they are adjacent to the main-volume links. The impact of 

maintenance activities on these links is interactive and simultaneous. Once some maintenance is 
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conducted, the A and B of some links become larger, and the others become smaller due to the 

transfer of the traffic. 
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(a) The changes of parameter A (b) The changes of parameter B 

Figure 8 The changes of parameters A and B under two million budgets 

We further compared these strategies in terms of the average pavement condition and total 

travel time. Fig. 9 shows the average condition of the network using different schemes. The three 

strategies yielded similar effects on average road condition while the maintenance budget remained 

relatively small (<1.75 × 106 USD). Under such a circumstance, the TC strategy exhibited greater 

capabilities in terms of restoring pavement roughness, as this method was designed to maintain the 

overall network condition. When the budget was higher (>1.75 × 106 USD), the eco-based method 

yielded a significant improvement, especially as the budget ranged from 1.75 to 4 × 106 USD.  
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Figure 9 Average road conditions under different budgets for the newly-built network 

Travel time was another crucial factor that needed to be considered when scheduling 

maintenance activities. Fig. 10 shows the total travel time with different approaches. It fluctuated 

drastically with lower budgets. This impact dropped off with an increase in the maintenance budget. 

None of these strategies was scheduled to minimize travel time. However, as the maintenance 

activities can redistribute traffic flow by changing the roughness of the pavement, these strategies 

bring about an additional impact on network travel time in turn. Overall, the eco-based scheme 

exhibited the lowest total travel time and the best capability of improving the road conditions. 
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Figure 10 Total travel time under different budgets for the newly-built network 

Fig. 6-10 illustrates the effectiveness of the proposed model for a newly-built network. 

Therefore only the P&C and CAPM are applied on the deteriorated roads during the planning period. 

In the second case, we considered the network had not been maintained in the last ten years, whose 

RQIs have deteriorated down to about 3.0. The planning period is set as five years. Fig.11-13 shows 

a comparison between the three maintenance scheduling strategies. As the RQIs in the network stay 

at a low level, there is no essential difference between WF and TC. Fig.11 shows that the eco-based 

method can reduce fuel consumption by 0.2% ~ 29.7% more than WF/TC. The eco-based strategy is 

also superior to the other two methods in terms of total travel time and average road conditions. 

Compared with the newly-built roads scenario, the benefits of eco-based approach in the old roads 

scenario are more stable and less volatile. However, the differences between three methods in terms 

of fuel consumption, travel time, and road condition are not as significant as in the scene of new 

roads due to the poor road conditions in the network and short planning cycle, as shown in Fig. 12 

and Fig. 13. Fig. 14 demonstrates the maintenance schedule under different budgets for three 

optimization methods. 
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Figure 11. Changing patterns of network fuel cost with budget for the old-road network 
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Figure 12 Average road conditions under different budgets for the old-road network 
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Figure 13 Total travel time under different budgets for the old-roads network 
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(a) Eco-based Strategy 

 
(b) Worst-first Strategy/ Threshold Control Strategy 

Figure 14 Maintenance schedule under different budgets for the old-road network 

5. CONCLUSIONS 

This paper proposed an eco-based method of optimizing the scheduling of maintenance 

activities to minimize network fuel consumption from the perspective of the lifecycle of a road 

network. An integrated bi-level mathematical model that incorporates interactions between 

maintenance and the driver’s choice of route was formulated to optimize a repair scheme. Three 

major maintenance activities—preventive and corrective maintenance (P&C), capital preventive 

maintenance (CAPM), and major rehabilitation and replacement (R&R)—were considered. The 

network fuel consumption incorporated the cost of fuel induced by roughness and traffic disruption 

during construction. A modified active set algorithm with nested sub-programming was developed to 

solve the challenging bi-level problem. Two traditional maintenance strategies—worst first and 

threshold control—were compared. A numerical example based on the Sioux Falls network was 

investigated to reveal the effects of various budgetary constraints and verify the improvement yielded 

by the proposed model. A generalized BPR function was built by considering the joint effect of travel 

time and road roughness. Compared with travel time, unit pavement roughness had a much smaller 
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impact on the driver’s choice of route. However, on long roads in fairly poor condition, the effect of 

pavement roughness would be amplified, leading drivers to reconsider their travel routes. The results 

show that on the whole, the proposed schemes outperformed two traditional ones under all budgetary 

constraints from the perspective of fuel consumption. They saved 20% more fuel than the other two 

methods in different scenarios, which shows the ecological benefits of implementing them. The 

eco-based strategy also performed well with regard to overall roads conditions and total travel time. 

Note that the effectiveness of the proposed bi-level model is based on the fundamental 

assumptions introduced in section 2.1. In practice, the pavement deterioration process may not 

strictly follow as Markov property, and sometimes multiple maintenance treatments may be 

conducted at the same time Under such conditions, we would extend our research from three 

perspectives in future: (1) To construct a more accurate pavement deterioration model based on data 

driven methods; (2) To predict the traffic volume and the impact of traffic disruption by a mass of 

field data; (3) To investigate the real fuel consumption on the road in terms of different vehicles and 

time variant speed. 
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