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A DATA-DRIVEN APPROACH FOR MULTISCALE ELLIPTIC PDES
WITH RANDOM COEFFICIENTS BASED ON INTRINSIC

DIMENSION REDUCTION\ast 

SIJING LI\dagger , ZHIWEN ZHANG\ddagger , AND HONGKAI ZHAO\S 

Abstract. We propose a data-driven approach to solve multiscale elliptic PDEs with random
coefficients based on the intrinsic approximate low-dimensional structure of the underlying elliptic
differential operators. Our method consists of offline and online stages. At the offline stage, a low-
dimensional space and its basis are extracted from solution samples to achieve significant dimension
reduction in the solution space. At the online stage, the extracted data-driven basis will be used
to solve a new multiscale elliptic PDE efficiently. The existence of approximate low-dimensional
structure is established in two scenarios based on (1) high separability of the underlying Green's
functions, and (2) smooth dependence of the parameters in the random coefficients. Various online
construction methods are proposed for different problem setups. We provide error analysis based
on the sampling error and the truncation threshold in building the data-driven basis. Finally, we
present extensive numerical examples to demonstrate the accuracy and efficiency of the proposed
method.
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1. Introduction. In this paper, we shall develop a data-driven method to solve
the following multiscale elliptic PDEs with random coefficients a(x, \omega ) and source
f(x, \theta ):

\scrL (x, \omega )u(x, \omega , \theta ) \equiv  - \nabla \cdot 
\bigl( 
a(x, \omega )\nabla u(x, \omega , \theta )

\bigr) 
= f(x, \theta ), x \in D, \omega \in \Omega \omega , \theta \in \Omega \theta ,

(1)

u(x, \omega , \theta ) = 0, x \in \partial D,(2)

where D \in \BbbR d is a bounded spatial domain. We separate the randomness in the
coefficient and source, where \Omega \omega and \Omega \theta denote the sample spaces for random variables
\omega and \theta , respectively, and treat them differently, as we shall see later. We assume
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f(x, \theta ) to be in L2(D) and assume uniform ellipticity of the PDE (see section 2 for
precise definition of the problem).

The problem (1)--(2) can be used to model the flow pressure in porous media,
such as water aquifer and oil reservoirs, where the permeability field a(x, \omega ) is a
random field whose exact values cannot be feasibly obtained in practice due to the
low resolution of seismic data.

In recent years, there has been an increased interest in quantifying the uncer-
tainty in systems with randomness, i.e., solving stochastic partial differential equations
(SPDEs, i.e., PDEs driven by Brownian motion) or partial differential equations with
random coefficients (RPDEs). Uncertainty quantification (UQ) is an emerging re-
search area that addresses these issues; see [20, 44, 5, 42, 4, 35, 34, 37, 39, 41, 13, 14, 22]
and references therein. However, when SPDEs or RPDEs involve multiscale features
and/or high-dimensional random inputs, these problems become challenging due to
high computational cost.

Recently, some progress has been made in developing numerical methods for mul-
tiscale RPDEs; see [31, 3, 36, 2, 21, 1, 27, 45, 18, 15] and references therein. For exam-
ple, data-driven stochastic methods for solving PDEs with random and/or multiscale
coefficients were proposed in [12, 45, 28, 29]. They demonstrated through numerical
experiments that those methods were efficient in solving RPDEs with many different
source functions. However, the polynomial chaos expansion [20, 44] is used to rep-
resent the randomness in the solutions. Although the polynomial chaos expansion is
general, it is a priori instead of problem specific. Hence many terms may be required
in practice for an accurate approximation which induces the curse of dimensionality.

We aim to develop a new data-driven method to solve multiscale elliptic PDEs
with randomness in (1) based on intrinsic dimension reduction in two scenarios. In
the first case, the coefficient a(x) \in L\infty (D) is fixed, while the random source can vary
arbitrarily in L2(D) with a bounded norm. As long as the domain of observation
for u(x, \theta ) is disjoint from the support of the source f(x, \theta ), the low-dimensional
structure of the underlying solution space in the observation domain is implied by the
high separability of the Green's function for uniformly elliptic operators [8], which
provides the theoretical foundation for hierarchical low-rank approximation to the
inverses of finite element method (FEM) matrices and other fast direct inverse solvers.
In this case, the curse of the dimension of randomness \theta in the source function can be
avoided without the need for smooth dependence on the randomness. For the other
case, the coefficient a(x, \omega ) \in L\infty (D) varies with smooth dependence on \omega , while the
source function is fixed. Since u(x, \omega ) depends smoothly on a(x, \omega ), and hence on \omega 
as shown in [16], we show an approximate low-dimensional structure in this case as
well.

Based on the above observations, our method consists of two stages. In the offline
stage, the approximate low-dimensional structure is extracted by computing a set of
data-driven and problem-specific basis functions from solution samples. For example,
the data can be generated by solving (1)--(2) corresponding to a sampling of the coeffi-
cient a(x, \omega ) and/or source f(x, \theta ). Here, different sampling methods can be applied,
including Monte Carlo (MC) and quasi-Monte Carlo (qMC) methods. The sparse-
grid-based stochastic collocation method [11, 43, 35] also works when the dimension
of the random variables is moderate. Or, the data may come from field measurements
directly in practice. Then the low-dimensional structure and the corresponding basis
are extracted using model reduction methods, such as proper orthogonal decomposi-
tion (POD) [10, 38, 9], a.k.a. principal component analysis (PCA), e.g., by efficient
random algorithms [24] due to the approximate low-rank structure. The key point
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1244 SIJING LI, ZHIWEN ZHANG, AND HONGKAI ZHAO

is that once the dimension reduction is achieved, the online stage of computing the
solution corresponding to a new coefficient and/or source becomes finding a linear
combination of the (few) constructed basis functions to approximate the solution.

However, the map from the input randomness of the PDE to the expansion coef-
ficients of the solution in terms of the data-driven basis can be highly nonlinear. We
propose a few possible online strategies (see section 3). For example, if the coefficient
is in parametric form, one can approximate the nonlinear map from the parameter
domain to the expansion coefficients through interpolation or neural network approx-
imation. Or, one can apply the Galerkin method using the extracted basis to solve
(1)--(2) for a new coefficient. In practice, the coefficient or the source function of
the PDE may not be available, but censors can be deployed to record the solution
at certain locations. In this case, one can compute the expansion coefficients of a
new solution by least square fitting those measurements at designed locations. We
also provide analysis and guidelines for sampling, dimension reduction, and other
implementations of our methods.

The rest of the paper is organized as follows. In section 2, we characterize the low-
dimensional structure in two scenarios for elliptic PDE (2). In section 3, we describe
our new data-driven method and its detailed implementation. In section 4, we present
numerical results to demonstrate the efficiency of our method. Concluding remarks
are made in section 5.

2. Low-dimensional structures in the solution space.

2.1. High separability of the Green's function of elliptic operators. We
first consider the scenario of a multiscale elliptic PDE with a random source. Let
\scrL (x) : V \rightarrow V \prime be a uniformly elliptic operator in a divergence form

\scrL (x)u(x) \equiv  - \nabla \cdot (a(x)\nabla u(x))(3)

in a bounded Lipschitz domain D \subset \BbbR d, where V = H1
0 (D) and a(x) \in L\infty (D).

The uniformly elliptic assumption means that there exist amin, amax > 0, such that
amin < a(x) < amax for all x \in D. The contrast ratio \kappa a = amax

amin
is an important

factor in the stability and convergence analysis. We consider the Dirichlet boundary
value problem with a random source f(x, \theta ), where \theta is some random variable:

\scrL (x)u(x, \theta ) = f(x, \theta ) in D u(x, \theta ) = 0 on \partial D.(4)

For all x, y \in D, the Green's function G(x, y) for differential operator \scrL is the solution
of

\scrL G(\cdot , y) = \delta (\cdot , y) in D, G(\cdot , y) = 0 on \partial D,(5)

where \scrL refers to the first variable \cdot and \delta (\cdot , y) is the Dirac delta function denoting an
impulse source point at y \in D. The Green's function G(x, y) is the Schwartz kernel
of the inverse \scrL  - 1; i.e., the solution of (4) is represented by

u(x, \theta ) = \scrL  - 1f(x, \theta ) =

\int 
D

G(x, y)f(y, \theta )dy.(6)

Since the coefficient a(x) is only bounded, G(x, y) can have a lower regularity, com-
pared with the Green's function associated with the Poisson's equation. In [23], the
authors proved the existence of the Green's function for d \geq 3 and the estimate
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| G(x, y)| \leq C(d,\kappa a)
amin

| x  - y| 2 - d, where C(d, \kappa a) is a constant depending on d and \kappa a.
For d = 2, the existence of the Green's function was proved in [17] together with the

estimate | G(x, y)| \leq C(\kappa a)
amin

log | x  - y| . Thus, when \scrL is a uniform elliptic operator,

\scrL  - 1 exists, and | | \scrL  - 1| | \leq Ca - 1
min, where C depends on d and \kappa a.

One can show the existence of a low-dimensional structure in the solution space
based on high separability of the underlying Green's function [8] as follows.

Proposition 2.1. Let D \subset \BbbR d be a convex domain, and let X be a closed subspace
of L2(D). Then for any integer k \in \BbbN , there is a subspace Vk \subset X satisfying dimVk \leq 
k such that

distL2(D)(u, Vk) \leq C
diam(D)

d
\surd 
k

\| \nabla u\| L2(D) for all u \in X \cap H1(D),(7)

where the constant C depends only on the spatial dimension d.

The proof is based on the Poincar\'e inequality; see [8]. All distances and diameters
use the Euclidean norm in \BbbR d except the distance of functions which uses the L2(D)-
norm. In particular, a choice of VK in Proposition 2.1 is the L2 projection of piecewise

constant functions defined on a grid with grid size diam(D)
d\surd 
k

onto X.

Now we present the definition of an \scrL -harmonic function on a domain E \subset D
introduced in [8]. A function u is \scrL -harmonic on E if u \in H1( \^E) for all \^E \subset E with
dist( \^E, \partial E) > 0 and satisfies

a(u, \varphi ) =

\int 
E

a(x)\nabla u(x) \cdot \nabla \varphi (x)dx = 0 for all \varphi \in C\infty 
0 (E).

Denote the space of \scrL -harmonic functions on E by X(E), which is closed in L2(E).
The following key lemma shows that the space of \scrL -harmonic function has an approx-
imate low-dimensional structure.

Lemma 2.2 (Lemma 2.6 of [8]). Let \^E \subset E \subset D in Rd, and assume that \^E is
convex such that

dist( \^E, \partial E) \geq \rho diam( \^E) > 0 for some constant \rho > 0.

Then for any 1 > \epsilon > 0, there is a subspace W \subset X( \^E) so that for all u \in X(E),

distL2( \^E)(u,W ) \leq \epsilon \| u\| L2( \^E)

and
dim(W ) \leq cd(\kappa a, \rho )

\bigl( 
| log \epsilon | 

\bigr) d+1
,

where c(\kappa a, \rho ) > 0 is a constant that depends on \rho and \kappa a.

The key property of \scrL -harmonic functions used to prove the above result is the
Caccioppoli inequality, which provides the estimate \| \nabla u\| L2(\^\BbbE ) \leq C(\kappa a, \rho )\| u\| L2(E). In

particular, the Green's function G(\cdot , y) is \scrL -harmonic on E if y /\in E. Moreover, given
two disjoint domains D1, D2 in D, the Green's function G(x, y) with x \in D1, y \in D2

can be viewed as a family of \scrL -harmonic functions on D1 parameterized by y \in D2.
From the above lemma one can easily deduce the following result, which shows the
high separability of the Green's function for the elliptic operator (3).

Proposition 2.3 (Theorem 2.8 of [8]). Let D1, D2 \subset D be two subdomains, and
let D1 be convex (see, e.g., Figure 1). Assume that there exists \rho > 0 such that

0 < diam(D1) \leq \rho dist(D1, D2).(8)

D
ow

nl
oa

de
d 

09
/1

0/
20

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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D

D1 D2

G(x, y)

Fig. 1. The Green's function G(x, y) with dependence on x \in D1 and y \in D2.

Then, for any \epsilon \in (0, 1) there is a separable approximation

Gk(x, y) =

k\sum 
i=1

ui(x)vi(y) with k \leq cd(\kappa a, \rho )| log \epsilon | d+1,(9)

so that for all y \in D2,

\| G(\cdot , y) - Gk(\cdot , y)\| L2(D1) \leq \epsilon \| G(\cdot , y)\| L2( \^D1)
,(10)

where \^D1 := \{ x \in D : 2\rho dist(x,D1) \leq diam(D1)\} .
The above theorem shows that there exists a low-dimensional linear subspace,

e.g., spanned by ui(\cdot ), that can well approximate the family of functions G(\cdot , y) in
L2(D1) uniformly with respect to y \in D2. Moreover, if supp(f(x, \theta )) \subset D2, one can
well approximate the family of solutions u(x, \theta ) to (4) by the same space in L2(D1)
uniformly. Let

(11) uf (x, \theta ) =

\int 
D2

G(x, y)f(y, \theta )dy

and

(12) u\epsilon 
f (x, \theta ) =

\int 
D2

Gk(x, y)f(y, \theta )dy =

k\sum 
i=1

ui(x)

\int 
D2

vi(y)f(y, \theta )dy.

Hence

(13)

\| uf (\cdot , \theta ) - u\epsilon 
f (\cdot , \theta )\| 2L2(D1)

=

\int 
D1

\biggl[ \int 
D2

(G(x, y) - Gk(x, y))f(y, \theta )dy

\biggr] 2
dx

\leq \| f\| 2L2(D2)

\int 
D2

\| G(\cdot , y) - Gk(\cdot , y)\| 2L2(D1)
dy \leq C(D1, D2, \kappa a, d)\epsilon 

2\| f\| 2L2(D2)
,

since \| G(\cdot , y)\| L2( \^D1)
is bounded uniformly with respect to y \in D2 by a positive

constant that depends on D1, D2, \kappa a, d due to the uniform ellipticity. Note that the
low-dimensional structure does not need any regularity assumption in a(x). Moreover,
dependence of the source on randomness can be arbitrary in terms of dimensionality
and regularity.

D
ow

nl
oa

de
d 

09
/1

0/
20

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA-DRIVEN METHODS FOR MULTISCALE AND RANDOM PDEs 1247

Remark 2.1. Although the proof of high separability of the Green's function re-
quires x \in D1, y \in D2 for two disjoint D1 and D2 due to the singularity of the Green's
function at x = y, the above approximation of the solution u in a domain disjoint
with the support of f also works for u in the whole domain even when f is a globally
supported smooth function, as shown in our numerical tests.

Remark 2.2. Contrary to the elliptic operator, it is shown [19] that the Green's
function for the high frequency Helmholtz equation is not highly separable due to fast
decorrelation of two Green's functions with well separated (in terms of the wavelength)
sources.

2.2. Low-dimensional structures with respect to random coefficients.
In the second scenario we consider the following elliptic RPDEs:

\scrL (x, \omega )u(x, \omega ) \equiv  - \nabla \cdot 
\bigl( 
a(x, \omega )\nabla u(x, \omega )

\bigr) 
= f(x), x \in D, \omega \in \Omega \omega ,(14)

u(x, \omega ) = 0, x \in \partial D,(15)

where D \in \BbbR d is a bounded spatial domain, \Omega \omega is a sample space, and the source
function f(x) \in L2(D). We assume the random coefficient a(x, \omega ) in (14) is almost
surely uniformly elliptic, namely, there exist amin, amax > 0, such that

P
\bigl( 
\omega \in \Omega \omega : a(x, \omega ) \in [amin, amax] for all x \in D

\bigr) 
= 1.(16)

In addition, we assume the random coefficient a(x, \omega ) is parameterized by r indepen-
dent random variables. For example, a commonly used affine form is

a(x, \omega ) = \=a(x) +

r\sum 
m=1

am(x)\xi m(\omega ),(17)

where \xi m(\omega ),m = 1, . . . , r, are independent and identically distributed (i.i.d.) uniform
random variables in [ - 1, 1]. The random coefficient (17) can be used in multiscale
random elliptic PDEs, such as elliptic PDEs with highly oscillatory and/or high-
contrast coefficients.

Once a parametric form of the random coefficient a(x, \omega ) is given, computing the
solution u(x, \omega ) of the problem (14)--(15) defines a solution map from the parameter
domain \bfitxi (\omega ) = [\xi 1(\omega ), . . . , \xi r(\omega )]

T \in \scrU = [ - 1, 1]r to the solution space

\bfitxi (\omega ) \mapsto \rightarrow u(x, \omega ) = u(x, \bfitxi (\omega )) \in H1
0 (D),(18)

which is a Banach-space-valued function of the random input vector \bfitxi (\omega ). With
the uniform ellipticity assumption of a(x, \bfitxi (\omega )) and its smooth dependence on the
parameter \bfitxi , the solution u(x, \bfitxi ) also depends smoothly on the parameters, which
can be approximated via polynomial expansion in \bfitxi of the form\sum 

\bfitalpha \in \scrJ r

u\bfitalpha (x)\bfitxi 
\bfitalpha (\omega ),(19)

where \bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha r) is a multi-index, \scrJ r = \{ \bfitalpha | \alpha i \geq 0, \alpha i \in \BbbN , 1 \leq i \leq r\} is a
multi-index set of countable cardinality, and \bfitxi \bfitalpha (\omega ) =

\prod 
1\leq i\leq r \xi 

\alpha i
i (\omega ) is a multivariate

polynomial.
In particular, if the uniform ellipticity assumption of a(x, \bfitxi ) has a holomorphic

extension to an open set in a complex domain that contains the real domain for \bfitxi ,
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explicit estimates for the coefficients u\bfitalpha can be established similarly to those estimates
for the polynomial approximation for an analytic function. From the estimates, the
following result for best n-term approximation can be proved (see [16] for details).

Proposition 2.4. Consider a parametric problem of the form (14)--(15) with a
random coefficient (17). Both the Taylor series and Legendre series of the form (19)
converge to u(x, \bfitxi (\omega )) in H1

0 (D) for all \bfitxi (\omega ) \in \scrU . Moreover, for any set \frakJ nr of indices
corresponding to the n largest of | | u\bfitalpha (\cdot )| | H1

0 (D), we have

sup
\bfitxi (\omega )\in \scrU 

\bigm| \bigm| \bigm| \bigm| u(\cdot , \bfitxi (\omega )) - \sum 
\bfitalpha \in \frakJ n

r

u\bfitalpha (\cdot )\bfitxi \bfitalpha (\omega )
\bigm| \bigm| \bigm| \bigm| 
H1

0 (D)
\leq C exp( - cn1/r),(20)

where \scrJ n
r is a subset of \scrJ r with cardinality \#\scrJ n

r = n, and C and c are positive and
depend on r.

Proposition 2.4 shows that there exists a linear subspace with dimension at most

O(n \sim ( logC
c + | log \epsilon | 

c )r), e.g., spanned by u\bfitalpha (x), \bfitalpha \in \scrJ n
r , that can approximate the

solution of (14)--(15) with random coefficient within an \epsilon error.
The result in Proposition 2.4 reveals the existence of approximate low-dimensional

structures in the solution space of (14)--(15). However, this approximation is obtained
by mathematical techniques, which cannot be directly implemented via a computa-
tional algorithm. For instance, we cannot perform an exhaustive search over a huge
index set to find \frakJ nr . Moreover, there may be a problem-dependent basis that can ap-
proximate the solution space more effectively than problem-independent polynomial
basis, which motivates our data-driven approach explained in section 3.

Remark 2.3. When the coefficient a(x, \omega ) is a nonlinear function of a finite num-
ber of random variables, one can apply the empirical interpolation method (EIM) [7]
to approximately convert a(x, \omega ) into an affine form. Thus, low-dimensional struc-
tures still exist in the solution space. In addition, we refer the reader to [26, 6] for the
results of the best n-term polynomial approximation of elliptic PDEs with lognormal
coefficients.

Remark 2.4. Although we present the problem and will develop the data-driven
method for the elliptic problem (14)--(15) with scalar random coefficients a(x, \omega ), our
method can be directly applied when the random coefficient is replaced by a symmetric
positive definite tensor ai,j(x, \omega ), i, j,= 1, . . . , d, with almost surely uniform ellipticity.

2.3. Some existing numerical methods for random elliptic PDEs. For
the reader's convenience, we give a short review of existing methods for solving
problem (14)--(15) involving random coefficients. There are basically two types of
methods. In intrusive methods, one represents the solution of (14) by u(x, \omega ) =\sum 

\bfitalpha \in \scrJ u\bfitalpha (x)H\bfitalpha (\omega ), where \scrJ is an index set, and H\bfitalpha (\omega ) are certain basis functions
(e.g., orthogonal polynomials or wavelet basis functions). Typical examples are the
Wiener chaos expansion (WCE) and polynomial chaos expansion (PCE) method.
Then, one uses the Galerkin method to compute the expansion coefficients u\bfitalpha (x);
see, e.g., [20, 44, 5, 33, 30, 34] and references therein. These methods have been
successfully applied to many UQ problems, where the dimension of the random input
is small or moderate. However, the number of basis functions increases exponentially
fast with respect to the dimension of random input; i.e., they suffer from the curse of
dimensionality of both the input space and the output (solution) space, because the
random basis H\bfitalpha (\omega )'s are built a priori based on the random variables in a(x, \omega ).

In nonintrusive methods, one can use the MC or the qMC method to solve (14)--
(15). However, the convergence rate is slow, and the method becomes more expensive
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when the coefficient a(x, \omega ) contains multiscale features. Stochastic collocation meth-
ods explore the smoothness of the solutions in the random space and use certain quad-
rature points and weights to compute the solutions [43, 4]. Exponential convergence
can be achieved for smooth solutions, but the quadrature points grow exponentially
fast as the number of random variables increases. Sparse grids can reduce the quad-
rature points to some extent [11, 35]. However, the sparse grid method still becomes
very expensive when the dimension of randomness is modestly high.

3. Derivation of the new data-driven method. The results in Propositions
2.3 and 2.4 show that there exist low-dimensional structures in the solution space
of multiscale elliptic PDEs with random coefficient and source. Our goal is to use
problem-specific and data-driven approaches to achieve a significant dimension reduc-
tion. The low-dimensional structures in the solution space are extracted directly from
the data, e.g., real measurements. The data-driven approach can also allow one to
deal with situations where it is difficult to have an accurate full model, e.g., a(x, \omega ),
or too expensive to solve a large-scale problem in real practice. As demonstrated by
our experiments, we find that the dimension of the extracted low-dimensional space
mainly depends on \kappa a (namely amin and amax) and very mildly on the dimension of
the random input. Therefore, the curse of dimensionality can be alleviated. From
now on, we use \omega to denote randomness in both coefficient a and source f when there
is no confusion.

Our method consists of offline and online stages. In the offline stage, we extract
the low-dimensional structure and a set of data-driven basis functions from solu-
tion samples. For example, a set of solution samples \{ u(x, \omega i)\} Ni=1 can be obtained
from measurements or generated by solving (14)--(15), e.g., with coefficient samples
\{ a(x, \omega i)\} Ni=1.

Let Vsnap = \{ u| \^D(x, \omega 1), . . . , u| \^D(x, \omega N )\} denote the solution samples, where \^D \subseteq 
D is a region where the solution is of interest. For instance, in the reservoir simulation,
one is interested in computing the pressure value u(x, \omega ) on a specific subdomain \^D.
We use POD [10, 38, 9] (a.k.a. PCA) to find the optimal subspace and its orthonormal
basis functions to approximate Vsnap to a certain accuracy. Define the correlation
matrix \Sigma = (\sigma ij) \in \BbbR N\times N with \sigma ij = \langle (\cdot , \omega i), u(\cdot , \omega j)\rangle \^D, i, j = 1, . . . , N , where \langle \cdot , \cdot \rangle \^D

denotes the standard inner product on L2( \^D). Let the eigenvalues of the correlation
matrix be \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \cdot \cdot \cdot \geq \lambda N \geq 0, and let the corresponding eigenfunctions
be \phi 1(x), \phi 2(x), . . . , \phi N (x), which will be referred to as data-driven basis functions.
The space spanned by the leading K data-driven basis functions has the following
approximation property to Vsnap.

Proposition 3.1.

\sum N
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u(x, \omega i) - 
\sum K

j=1 < u(\cdot , \omega i), \phi j(\cdot ) > \^D \phi j(x)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
L2( \^D)\sum N

i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u(x, \omega i)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
L2( \^D)

=

\sum N
s=K+1 \lambda s\sum N
s=1 \lambda s

.(21)

First, we expect a fast decay in the eigenvalues \lambda s so that a small set of data-
driven basis functions (K \ll N) will be enough to approximate the solution samples
well in the root mean square sense. Second, based on the existence of low-dimensional
structure, we expect that the data-driven basis, \phi 1(x), \phi 2(x), . . . , \phi K(x), can almost
surely well approximate the solution u| \^D(x, \omega ) too under some sampling condition
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1250 SIJING LI, ZHIWEN ZHANG, AND HONGKAI ZHAO

(see section 3.4) by

u| \^D(x, \omega ) \approx 
K\sum 
j=1

cj(\omega )\phi j(x) a.s. \omega \in \Omega \omega ,(22)

where the data-driven basis functions \phi j(x), j = 1, . . . ,K, are defined on \^D.
The computational costs of the offline stage mainly consist of two parts if data

are generated by simulation: (1) compute solution samples (of global problems), and
(2) compute the data-driven basis by the POD method. This is common nature for
many model reduction methods. Effective sampling of solutions (see section 3.4) and
the use of randomized algorithms [24] for the singular value decomposition (SVD)
(utilizing the low-rank structure) helps to reduce the offline computation cost.

Remark 3.1. In Proposition 3.1 we construct the data-driven basis functions from
eigendecomposition of the correlation matrix associated with the solution samples.
Alternatively, we can subtract the mean from the solution samples, compute the
covariance matrix, and construct the basis functions from eigendecomposition of the
covariance matrix. In this setting, the data-driven basis functions will be used to
approximate the fluctuation of the solution since the mean function is given.

Now the problem is how to find cj(\omega ) through an efficient online process given a
new realization of a(x, \omega ). We will prescribe several strategies in different setups.

3.1. A nonlinear solution map. Suppose that a(x, \omega ) is parameterized by r
independent random variables, i.e.,

a(x, \omega ) = a(x, \xi 1(\omega ), . . . , \xi r(\omega )).(23)

Thus, the solution can be represented as a functional of these random variables as
well, i.e., u(x, \omega ) = u(x, \xi 1(\omega ), . . . , \xi r(\omega )). Let \bfitxi (\omega ) = [\xi 1(\omega ), . . . , \xi r(\omega )]

T denote the
random input vector and c(\omega ) = [c1(\omega ), . . . , cK(\omega )]T denote the vector of solution co-
efficients in (22). Now, the problem can be viewed as constructing a map from \bfitxi (\omega ) to
c(\omega ), denoted by F : \bfitxi (\omega ) \mapsto \rightarrow c(\omega ), which is nonlinear. We approximate this nonlinear
map through the sample solution set. Given a set of solution samples \{ u(x, \omega i)\} Ni=1

corresponding to \{ \bfitxi (\omega i)\} Ni=1, e.g., by solving (14)--(15) with a(x, \xi 1(\omega i), . . . , \xi r(\omega i)),
from which the set of data-driven basis functions \phi j(x), j = 1, . . . ,K, is obtained by us-
ing the POD method as described above, we can easily compute the projection coeffi-

cients
\bigl\{ 
c(\omega i)

\bigr\} N

i=1
of u| \^D(x, \omega i) on \phi j(x), j = 1, . . . ,K, i.e., cj(\omega i) = \langle u(x, \omega i), \phi j(x)\rangle \^D.

From the data set, F (\bfitxi (\omega i)) = c(\omega i), i = 1, . . . , N , we construct the map F. Note
the significant dimension reduction by reducing the map \bfitxi (\omega ) \mapsto \rightarrow u(x, \omega ) to the map
\bfitxi (\omega ) \mapsto \rightarrow c(\omega ). We provide several ways to construct F, depending on the dimension
of the random input vector. More implementation details will be explained in section
4.

1. Interpolation.
When the dimension of the random input r is small or moderate, one can use
interpolation. In particular, if the solution samples correspond to \bfitxi located
on a uniform or sparse grid, standard polynomial interpolation can be used
to approximate the coefficient cj at a new point of \bfitxi . If the solution samples
correspond to \bfitxi at scattered points or the dimension of the random input r is
moderate or high, one can first find a few nearest neighbors to the new point
efficiently using the k-d tree algorithm [40] and then use moving least square
approximation centered at the new point to approximate the mapped value.
See Figure 5 for an example of the map F based on interpolation.
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2. Neural network.
When the dimension of the random input r is high, the interpolation approach
becomes expensive and less accurate. We tried a simple neural network with
small output dimension (due to the dimension reduction) that seems to pro-
vide a satisfactory solution.

For the uniform-grid- or sparse-grid-based polynomial interpolation approach,
the approximation property (error estimate) can be studied based on the regularity of
map F , which is smooth with respect to \bfitxi if a(x, \bfitxi (\omega )) depends on \bfitxi smoothly. Our
numerical results in section 4 show that the moving least square approach and neural
network approach are efficient and accurate. However, since the map F is nonlinear
and lives in a high-dimensional space, many issues need to be further investigated, such
as how to optimally choose the training samples and how to study the approximation
property of the map F .

In the online stage, one can compute the solution u(x, \omega ) using the constructed
map F. For example, given a new realization of a(x, \xi 1(\omega i), . . . , \xi r(\omega i)), we plug \bfitxi (\omega )
into the constructed map F to approximate c(\omega ) = F(\bfitxi (\omega )), which are the projection
coefficients of the solution on the data-driven basis. So we can quickly obtain the new
solution u| \^D(x, \omega ) using (22), where the computational time is negligible. Once we
obtain the numerical solutions, we can use them to compute statistical quantities of
interest, such as mean, variance, and joint probability distributions.

3.2. Galerkin approach. In the case \^D = D, we can solve the problem (14)--
(15) on the whole domain D by the standard Galerkin formulation using the data-
driven basis for a new realization of a(x, \omega ).

The data-driven basis functions \phi j(x), j = 1, . . . ,K, are defined on the domain D
and are obtained from solution samples in the offline stage. Given a new realization
of the coefficient a(x, \omega ), we approximate the corresponding solution as

u(x, \omega ) \approx 
K\sum 
j=1

cj(\omega )\phi j(x), a.s. \omega \in \Omega \omega ,(24)

and use the Galerkin projection to determine the coefficients cj(\omega ), j = 1, . . . ,K, by
solving the following linear system in the online stage:

K\sum 
j=1

\int 
D

a(x, \omega )cj(\omega )\nabla \phi j(x) \cdot \nabla \phi l(x)dx =

\int 
D

f(x)\phi l(x)dx, l = 1, . . . ,K.(25)

Remark 3.2. The computational cost of solving the linear system (25) is small
compared to using a Galerkin method, such as the FEM, directly for u(x, \omega ) because
K is much smaller than the degree of freedom needed to discretize u(x, \omega ) in the whole
domain.

Note that if a(x, \omega ) has the affine form (17), we first compute the terms that do
not depend on randomness, including

\int 
D
\=a(x)\nabla \phi j(x) \cdot \nabla \phi l(x)dx,

\int 
D
am(x)\nabla \phi j(x) \cdot 

\nabla \phi l(x)dx and
\int 
D
f(x)\phi j(x)dx, j, l = 1, . . . ,K. Then, we save them in the offline stage.

This leads to considerable savings in assembling the stiffness matrix for each new
realization of the coefficient a(x, \omega ) in the online stage. Of course, the affine form is
automatically parameterized. Hence, one can also construct the map F : \bfitxi (\omega ) \mapsto \rightarrow c(\omega )
as described in section 3.1.

3.3. Least square fitting from direct measurements at selected loca-
tions. In many applications, only samples (data) or measurements of u(x, \omega ) are
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available, while the model of a(x, \omega ) or its realization is not known. In this case,
we propose to compute the coefficients c by least square fitting the measurements
(values) of u(x, \omega ) at appropriately selected locations. First, as before, from a set of
solution samples, u(xj , \omega i), measured on a mesh xj \in \^D, j = 1, . . . , J , one finds a set
of data-driven basis functions \phi 1(xj), . . . , \phi K(xj), e.g., using POD. For a new solution
u(x, \omega ) measured at x1, x2, . . . , xM , one can set up the following least square problem

to find c = [c1, . . . , cK ]T such that u(x, \omega ) \approx 
\sum K

k=1 ck\phi k(x):

Bc = y, y = [u(x1, \omega ), . . . , u(xM , \omega )]T , B = [\bfitphi M
1 , . . . ,\bfitphi M

K ] \in RM\times K ,(26)

where \bfitphi M
k = [\phi k(x1), . . . , \phi k(xM )]T .

The key issue in practice is the conditioning of the least square problem (26).
One way is to select the measurement (sensor) locations x1, . . . , xM such that rows of
B are as decorrelated as possible. We adopt the approach proposed in [32], where a
QR factorization with pivoting for the matrix of data-driven basis functions is used
to determine the measurement locations. More specifically, let \Phi = [\bfitphi 1, . . . ,\bfitphi K ] \in 
RJ\times K , \bfitphi k = [\phi k(x1), . . . , \phi k(xJ)]

T . IfM = K, QR factorization with column pivoting
is performed on \Phi T . If M > K, QR factorization with pivoting is performed on \Phi \Phi T .
The first M pivoting indices provide the measurement locations. More details can be
found in [32].

3.4. Determine a set of good learning samples. A set of good solution
samples is important for the construction of data-driven basis in the offline stage.
Since the solution depends on the source linearly with an explicit bound, the analy-
sis is straightforward. Here we provide an error analysis for the coefficient based
on the finite element formulation. However, the results extend to general Galerkin
formulation. First, we make a few assumptions.

Assumption 3.2. Suppose a(x, \omega ) has the following property: given \delta 1 > 0, there
exist an integer N\delta 1 and a choice of snapshots \{ a(x, \omega i)\} , i = 1, . . . , N\delta 1 , such that

E

\biggl[ 
inf

1\leq i\leq N\delta 1

\bigm| \bigm| \bigm| \bigm| a(x, \omega ) - a(x, \omega i)
\bigm| \bigm| \bigm| \bigm| 
L\infty (D)

\biggr] 
\leq \delta 1.(27)

Let \{ a(x, \omega i)\} 
N\delta 1
i=1 denote the samples of the random coefficient, which form a \delta 1-

net for the coefficient a(x, \omega ). For every realization of a(x, \omega ), we can find a coefficient
sample a(x, \omega i) that is close to a(x, \omega ) in the norm | | \cdot | | L\infty (D). We define this \delta 1-net
in the sense of the expectation E[\cdot ], which allows us to exclude a small set of outliers.

A good sampling of the solution is important for computational efficiency and
accuracy. When the coefficient has the affine form (17), one can verify Assumption

3.2 and provide a constructive way to sample snapshots \{ a(x, \omega i)\} 
N\delta 1
i=1 if we know the

distribution of the random variables \xi m(\omega ), m = 1, . . . , r, since the linear map from
\bfitxi space to the function space of a(x, \bfitxi ) is explicitly determined by a(x), am(x),m =
1, . . . , r. In general, it becomes a sampling problem for \{ a(x, \omega i)\} , which may be
challenging especially when the dimension of the random variables r is high and/or
a(x, \omega ) does not have an affine form. However, Assumption 3.2 provides some insight
into how to choose coefficient samples \{ a(x, \omega i)\} in order to obtain a set of accurate
data-driven basis functions.

Let Vh \subset H1
0 (D) denote a finite element space that is spanned by nodal basis

functions on a mesh with size h, and let \~Vh \subset Vh denote the space spanned by the
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data-driven basis \{ \phi j(x)\} Kj=1. We assume the mesh size is fine enough so that the
finite element space can well approximate the solutions to the underlying PDEs. For
each a(x, \omega i), let uh(x, \omega i) \in Vh denote the FEM solution, and let \~uh(x, \omega i) \in \~Vh

denote the projection on the data-driven basis \{ \phi j(x)\} Kj=1.

Assumption 3.3. Given \delta 2 > 0, we can find a set of data-driven basis functions
\phi 1, . . . , \phi K\delta 2

such that

| | uh(x, \omega i) - \~uh(x, \omega i)| | L2(D) \leq \delta 2 for all 1 \leq i \leq K\delta 2 ,(28)

where \~uh(x, \omega i) is the L
2 projection of uh(x, \omega i) onto the space spanned by \phi 1, . . . , \phi K\delta 2

.

Assumption 3.3 can be verified by setting the threshold in the POD method; see
Proposition 3.1. Now we present the following error estimate.

Theorem 3.4. Under Assumptions 3.2 and 3.3, for any \delta i > 0, i = 1, 2, we

can choose the samples of the random coefficient \{ a(x, \omega i)\} 
N\delta 1
i=1 and the threshold in

constructing the data-driven basis accordingly, such that

E
\Bigl[ \bigm| \bigm| \bigm| \bigm| uh(x, \omega ) - \~uh(x, \omega )

\bigm| \bigm| \bigm| \bigm| 
L2(D)

\Bigr] 
\leq C\delta 1 + \delta 2,(29)

where C depends on amin, f(x), and the domain D.

Proof. Given a coefficient a(x, \omega ), let uh(x, \omega ) and \~uh(x, \omega ) be the corresponding
FEM solution and data-driven solution, respectively. We have\bigm| \bigm| \bigm| \bigm| uh(x, \omega ) - \~uh(x, \omega )

\bigm| \bigm| \bigm| \bigm| 
L2(D)

(30)

\leq 
\bigm| \bigm| \bigm| \bigm| uh(x, \omega ) - uh(x, \omega i)

\bigm| \bigm| \bigm| \bigm| 
L2(D)

+
\bigm| \bigm| \bigm| \bigm| uh(x, \omega i) - \~uh(x, \omega i)

\bigm| \bigm| \bigm| \bigm| 
L2(D)

+
\bigm| \bigm| \bigm| \bigm| \~uh(x, \omega i) - \~uh(x, \omega )

\bigm| \bigm| \bigm| \bigm| 
L2(D)

,

:= I1 + I2 + I3,

where uh(x, \omega i) is the solution corresponding to the coefficient a(x, \omega i), and \~uh(x, \omega i)
is its projection. Now we estimate the error term I1 first. In the sense of the weak
form, we have

\int 
D

a(x, \omega )\nabla uh(x, \omega ) \cdot \nabla vh(x)dx =

\int 
D

f(x)vh(x) for all vh(x) \in Vh(31)

and

\int 
D

a(x, \omega i)\nabla uh(x, \omega i) \cdot \nabla vh(x)dx =

\int 
D

f(x)vh(x) for all vh(x) \in Vh.(32)

Subtracting the variational formulations (31) and (32), we have, for all vh(x) \in Vh,\int 
D

a(x, \omega )\nabla (uh(x, \omega ) - uh(x, \omega i)) \cdot \nabla vh(x)dx(33)

=  - 
\int 
D

(a(x, \omega ) - a(x, \omega i))\nabla uh(x, \omega i) \cdot \nabla vh(x).

Let wh(x) = uh(x, \omega )  - uh(x, \omega i) and L(vh) =  - 
\int 
D
(a(x, \omega )  - a(x, \omega i))\nabla uh(x, \omega i) \cdot 

\nabla vh(x) denote a linear form. Equation (33) means that wh(x, \omega ) is the solution of
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the weak form
\int 
D
a(x, \omega )\nabla wh \cdot \nabla vh(x)dx = L(vh) for all vh(x) \in Vh. Therefore, we

have

\bigm| \bigm| \bigm| \bigm| wh(x)
\bigm| \bigm| \bigm| \bigm| 
H1(D)

\leq 
| | L| | H1(D)

amin
.(34)

Notice that

| | L| | H1(D) = max
| | vh| | H1(D)=1

| L(vh)| \leq | | a(x, \omega ) - a(x, \omega i)| | L\infty (D)| | uh(x, \omega i)| | H1(D)

\leq | | a(x, \omega ) - a(x, \omega i)| | L\infty (D)

| | f(x)| | H1(D)

amin
.(35)

Since wh(x) = 0 on \partial D, combining (34) and (35) and using the Poincar\'e inequality
for wh(x), we obtain an estimate for the term I1 as follows:\bigm| \bigm| \bigm| \bigm| uh(x, \omega ) - uh(x, \omega i)

\bigm| \bigm| \bigm| \bigm| 
L2(D)

\leq C1

\bigm| \bigm| \bigm| \bigm| uh(x, \omega ) - uh(x, \omega i)
\bigm| \bigm| \bigm| \bigm| 
H1(D)

\leq C1| | a(x, \omega ) - a(x, \omega i)| | L\infty (D)

| | f(x)| | H1(D)

a2min

,(36)

where C1 only depends on the domain D. For the term I3 in (30), similarly we can
get

\bigm| \bigm| \bigm| \bigm| \~uh(x, \omega i) - \~uh(x, \omega )
\bigm| \bigm| \bigm| \bigm| 
L2(D)

\leq C1| | a(x, \omega ) - a(x, \omega i)| | L\infty (D)

| | f(x)| | H1(D)

a2min

.(37)

The term I2 in (30) can be controlled according to Assumption 3.3. Combining the
estimates for terms I1, I2, and I3 and integrating over the random space, we prove
the theorem.

Corollary 3.5. If we use the MC method to compute the expectation in (29),
from the proof of Theorem 3.4 we still have

1

NMC

NMC\sum 
j=1

\bigm| \bigm| \bigm| \bigm| uh(x, \omega j) - \~uh(x, \omega j)
\bigm| \bigm| \bigm| \bigm| 
L2(D)

\leq C\delta 1 + \delta 2,(38)

where NMC is the sample number, and C, \delta 1, and \delta 2 are the same as in Theorem 3.4.

In this paper, we restrict our attention to the approximation in the physical space.
So we assume the sampling error (i.e., the error of approximation for the expectation of
a random solution) is negligible. Theorem 3.4 and Corollary 3.5 indicate that the error
between uh(x, \omega ) and its approximation \~uh(x, \omega ) using the data-driven basis consists
of two parts. The first part depends on how well the random coefficient is sampled,
while the second part depends on the truncation threshold in constructing the data-
driven basis from the solution samples. In practice, a balance of these two factors
gives us guidance on how to choose solution samples and the truncation threshold
in the POD method to achieve optimal accuracy. Again, the key advantage of our
data-driven approach for this form of elliptic PDE is the low-dimensional structure in
the solution space which provides a significant dimensional reduction.
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4. Numerical results. In this section we will present various numerical results
to demonstrate the accuracy and efficiency of our proposed data-driven method.

In all of our numerical experiments, we use the same uniform triangulation to
implement the standard FEM, and we choose mesh size h = 1

512 in order to resolve
the multiscale information. We use N = 2000 samples in the offline stage to construct
the data-driven basis and determine the number of basis functions K according to
the decay rate of the eigenvalues of the correlation matrix \Sigma = (\sigma ij) of the solution
samples, i.e., \sigma ij = \langle u(x, \omega i), u(x, \omega j)\rangle , i, j = 1, . . . , N . Let N1 and N2 denote the
number of training samples in constructing the nonlinear map F and the number of
testing samples in the online stage, respectively. We will choose N1 \ll N2.

In the numerical results, the testing error is the error between the numerical
solution obtained by our mapping method and the reference solution obtained by the
FEM on the same fine mesh used to compute the sample solutions. The projection
error is the error between the FEM solution and its projection on the space spanned
by the data-driven basis, i.e., the best possible approximation error.

4.1. An example with deterministic multiscale coefficients and random
sources. First, we consider a deterministic multiscale elliptic PDE with a random
source defined on a square domain D = [0, 1]\times [0, 1],

 - \nabla \cdot (a(x, y)\nabla u(x, y, \theta )) = f(x, y, \theta ), (x, y) \in D, \theta \in \Omega \theta ,

u(x, y, \theta ) = 0, (x, y) \in \partial D.
(39)

The multiscale coefficient a(x, y) is defined as

a(x, y) = 0.1 +
2 + p1 sin(

2\pi x
\epsilon 1

)

2 - p1 cos(
2\pi y
\epsilon 1

)
+

2 + p2 sin(
2\pi (x+y)\surd 

2\epsilon 2
)

2 - p2 sin(
2\pi (x - y)\surd 

2\epsilon 2
)
+

2 + p3 cos(
2\pi (x - 0.5)

\epsilon 3
)

2 - p3 cos(
2\pi (y - 0.5)

\epsilon 3
)

+
2 + p4 cos(

2\pi (x - y)\surd 
2\epsilon 4

)

2 - p4 sin(
2\pi (x+y)\surd 

2\epsilon 4
)
+

2 + p5 cos(
2\pi (2x - y)\surd 

5\epsilon 5
)

2 - p5 sin(
2\pi (x+2y)\surd 

5\epsilon 5
)
,(40)

where [p1, p2, p3, p4, p5] = [1.98, 1.96, 1.94, 1.92, 1.9]. We choose D1 = [ 14 ,
3
4 ]\times [ 1116 ,

15
16 ]

and D2 = [14 ,
3
4 ] \times [ 1

16 ,
5
16 ]. The source function f(x, y, \theta ) is a spatially uncorrelated

white noise defined on D2. Note that D2 is partitioned into a 256\times 128 fine mesh. In
this experiment, f(x, y, \theta ) is an independent Gaussian random variable on each mesh.

We generate N = 2000 samples of the source function f(x, y, \theta ). Then, we solve
the problem (39) by using FEM and obtain 2000 solution samples u(x, y, \theta ). The
eigenvalues of the correlation matrix of the solution samples u(x, y, \theta )| D2

are referred
to as the eigenvalues of the local problem. The eigenvalues of the correlation matrix of
the solution samples u(x, y, \theta ) on the whole domainD are referred to as the eigenvalues
of global problem.

In Figure 2(a), we plot the decay properties of the eigenvalues of the local problem.
We see the fast decay in the eigenvalues of the correlation matrix, which reveals the
existence of low-dimensional structure in the solution space implied by Proposition
2.3. We also plot the decay properties of the eigenvalues of the global problem in
Figure 2(b). The first 50 eigenvalues take up 96\% of the total sum of the eigenvalues.
This means that a certain low-dimensional structure still exists in the solution space
of the global problem; however, the dimension of such an approximate space is larger
than that of the local problem.

We change the distance between D1 and D2 and repeat the above experiment.
In Figure 3, we plot the decay properties of the local problem. One can see that
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(a) Decay of eigenvalues of local problem.
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(b) Decay of eigenvalues of global problem.

Fig. 2. The decay properties of the eigenvalues in the problem of section 4.1.
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Fig. 3. The decay properties of the eigenvalues for different separate distances.

the distance between D1 and D2 affects the effective dimension of the approximate
solution space, which is embedded in the constant for the separability estimate.

4.2. An example with random coefficient. Here we consider a multiscale
elliptic PDE with a random coefficient that is defined on a square domain D =
[0, 1]\times [0, 1],

 - \nabla \cdot (a(x, y, \omega )\nabla u(x, y, \omega )) = f(x, y), (x, y) \in D,\omega \in \Omega \omega ,

u(x, y, \omega ) = 0, (x, y) \in \partial D.
(41)
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In this example, the coefficient a(x, y, \omega ) is defined as

a(x, y, \omega ) = 0.1 +
2 + p1 sin(

2\pi x
\epsilon 1

)

2 - p1 cos(
2\pi y
\epsilon 1

)
\xi 1(\omega ) +

2 + p2 sin(
2\pi (x+y)\surd 

2\epsilon 2
)

2 - p2 sin(
2\pi (x - y)\surd 

2\epsilon 2
)
\xi 2(\omega )(42)

+
2 + p3 cos(

2\pi (x - 0.5)
\epsilon 3

)

2 - p3 cos(
2\pi (y - 0.5)

\epsilon 3
)
\xi 3(\omega )

+
2 + p4 cos(

2\pi (x - y)\surd 
2\epsilon 4

)

2 - p4 sin(
2\pi (x+y)\surd 

2\epsilon 4
)
\xi 4(\omega ) +

2 + p5 cos(
2\pi (2x - y)\surd 

5\epsilon 5
)

2 - p5 sin(
2\pi (x+2y)\surd 

5\epsilon 5
)
\xi 5(\omega ),

where [\epsilon 1, \epsilon 2, \epsilon 3, \epsilon 4, \epsilon 5] = [ 1
47 ,

1
29 ,

1
53 ,

1
37 ,

1
41 ], [p1, p2, p3, p4, p5] = [1.98, 1.96, 1.94,

1.92, 1.9], and \xi i(\omega ), i = 1, . . . , 5, are i.i.d. uniform random variables in [0, 1]. The
contrast ratio in the coefficient (42) is \kappa a \approx 4.5 \times 103. The source function is
f(x, y) = sin(2\pi x) cos(2\pi y) \cdot ID2

(x, y), where ID2
is an indicator function defined

on D2 = [14 ,
3
4 ] \times [ 1

16 ,
5
16 ]. The coefficient (42) is highly oscillatory in the physical

space. Therefore, one needs a fine discretization to resolve the small-scale variations
in the problem. We shall show results for the solution to (41) with coefficient (42)
in (1) a restricted subdomain D1 = [ 14 ,

3
4 ]\times [ 1116 ,

15
16 ] away from the support D2 of the

source term f(x, y); and (2) the full domain D.
In Figure 4, we show the decay property of eigenvalues. Specifically, we show

the magnitude of the eigenvalues in Figure 4(a) and the ratio of the accumulated
sum of the leading eigenvalues over the total sum in Figure 4(b). These results and
Proposition 3.1 imply that a few leading eigenvectors will provide a set of data-driven
basis functions that can well approximate all solution samples.
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Eigenvalue index
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(a) Decay of eigenvalues.
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(b) 1 - 
\sqrt{} \sum N

j=n+1 \lambda j/
\sum N

j=1 \lambda j , n = 1, 2, . . . .

Fig. 4. The decay properties of the eigenvalues in the local problem of section 4.2.

After we construct the data-driven basis functions, we use the polynomial in-
terpolation to approximate the map F : \bfitxi \mapsto \rightarrow c(\bfitxi ). Notice that the coefficient of
(42) is parameterized by five i.i.d. random variables. We partition the random space
[\xi 1(\omega ), \xi 2(\omega ), . . . ,
\xi 5(\omega )]

T \in [0, 1]5 into a set of uniform grids in order to construct the map F. Here we
choose N1 = 95 samples. We can choose other sampling strategies, such as sparse-
grid points and Latin hypercube points, for moderate- or high-dimensional cases. In
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Fig. 5. Top: profiles of data-driven basis functions \phi 1 and \phi 2. Bottom: profiles of the maps
c1(\xi 1, \xi 2; \xi 3, \xi 4, \xi 5) and c2(\xi 1, \xi 2; \xi 3, \xi 4, \xi 5) with fixed [\xi 3, \xi 4, \xi 5]T = [0.25, 0.5, 0.75]T .

Figure 5, we show the profiles of the first two data-driven basis functions \phi 1 and
\phi 2 and the plots of the maps c1(\xi 1, \xi 2; \xi 3, \xi 4, \xi 5) and c2(\xi 1, \xi 2; \xi 3, \xi 4, \xi 5) with fixed
[\xi 3, \xi 4, \xi 5]

T = [0.25, 0.5, 0.75]T . One can see that the data-driven basis functions con-
tain multiscale features, while the maps c1(\xi 1, \xi 2; \xi 3, \xi 4, \xi 5) and c2(\xi 1, \xi 2; \xi 3, \xi 4, \xi 5) are
smooth with respect to \xi i, i = 1, 2. The behaviors of other data-driven basis functions
and other maps are similar (not shown here). Once we get the map F, the solution
corresponding to a new realization a(x, \bfitxi (\omega )) can be computed easily by finding c(\bfitxi )
and plugging in the approximation (22).

In Figure 6, we show the mean relative L2 and H1 errors of the testing error
and projection error, where N2 = 10N1. For the experiment, only four data-driven
basis functions are needed to achieve a relative error less than 1\% in the L2-norm
and less than 2\% in the H1-norm. Moreover, the numerical solution obtained by our
mapping method is close to the projection solution, which is the best approximation
of the reference solution by the data-driven basis. This result also indicates that
the nonlinear map F is a smooth function and has been approximated well by the
uniform-grid-based polynomials interpolation.

We also study the approximation property of the nonlinear map F based on
different uniform grids. Specifically, we partition the random space [\xi 1(\omega ), \xi 2(\omega ), . . . ,
\xi 5(\omega )]

T \in [0, 1]5 into different uniform grids with N1 = 55, 65, 75, 85, 95 samples and
use the polynomial interpolation to construct the map F. Figure 7 shows the mean
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Fig. 6. Relative L2 and H1 error with increasing number of basis functions for the local problem
of section 4.2.
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Fig. 7. Relative L2 and H1 error of the solution computed by the nonlinear map F based on
different uniform grids for the local problem of section 4.2.

relative L2 and H1 errors of the testing errors and of the project error (which does not
depend on the grid partition), where N2 = 106. We observe a convergence behavior
in constructing the map F if we increase the partition number in the uniform grids.

The standard FEM takes 0.82 second to compute one solution. In the offline stage
of our method, we need to compute N solution samples to construct the POD basis
and N1 solution samples to construct the nonlinear map F. The random SVD method
takes 1.2 seconds to compute the POD basis. In the online stage of our method, the
CPU time is almost negligible. For instance, when the number of basis functions is
K = 10, it takes about 0.0022 seconds to compute one solution. In Figure 8, we
compare the CPU times of the FEM and our method (including both stages) as a
function of the number of new solutions computed in the online stage. This result
shows that our method is very efficient if one needs to solve many forward problems
for (41) (e.g., in the context of solving an inverse problem by using the Bayesian
method).

In Figure 9, we show the accuracy of the proposed method when we use different
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Fig. 8. CPU time for the local problem of section 4.2.

numbers of samples N in constructing the data-driven basis functions. Although in
general the numerical error decreases when the sampling number N is increased, the
difference is very mild.

Next, we test our method on the whole computation domain for (41) with coeffi-
cient (42). We choose N2 = 10N1. Figure 10 shows the decay property of eigenvalues.
Similarly, we show magnitudes of the leading eigenvalues in Figure 10(a) and the
ratio of the accumulated sum of the eigenvalues over the total sum in Figure 10(b).
We observe similar behaviors. Since we approximate the solution in the whole com-
putational domain, we take the Galerkin approach described in section 3.2 using the
data-driven basis functions. In Figure 11, we show the mean relative error between our
numerical solution and the reference solution in the L2- and H1-norms, respectively.
In practice, when the number of basis functions is 15, it takes about 0.084 seconds
to compute a new solution by our method, whereas the standard FEM method costs
about 0.82 seconds for one solution.

4.3. An example with an exponential-type coefficient. We now solve the
problem (41) with an exponential-type coefficient. The coefficient is parameterized
by eight random variables, which has the form

a(x, y, \omega ) = exp

\biggl( 8\sum 
i=1

sin

\biggl( 
2\pi (9 - i)x

9\epsilon i

\biggr) 
cos(

2\pi iy

9\epsilon i
)\xi i(\omega )

\biggr) 
,(43)

where the multiscale parameters [\epsilon 1, \epsilon 2, . . . , \epsilon 8] = [ 1
43 ,

1
41 ,

1
47 ,

1
29 ,

1
37 ,

1
31 ,

1
53 ,

1
35 ] and

\xi i(\omega ), i = 1, . . . , 8 are i.i.d. uniform random variables in [ - 1
2 ,

1
2 ]. Hence the con-

trast ratio is \kappa a \approx 3.0 \times 103 in the coefficient (43). The source function is f(x, y) =
cos(2\pi x) sin(2\pi y) \cdot ID2(x, y), where ID2 is an indicator function defined on D2 =
[ 14 ,

3
4 ]\times [ 1

16 ,
5
16 ]. In the local problem, the subdomain of interest isD1 = [ 14 ,

3
4 ]\times [ 1116 ,

15
16 ].

In Figure 12, we show the decay property of eigenvalues. Specifically, in Figure
12(a) we show the magnitude of leading eigenvalues, and in Figure 12(b) we show the
ratio of the accumulated sum of the eigenvalues over the total sum. These results imply
that the solution space has a low-dimensional structure, which can be approximated
by the data-driven basis functions.

Since the coefficient a(x, y, \omega ) is parameterized by eight random variables, it is
expensive to construct the map F : \bfitxi (\omega ) \mapsto \rightarrow c(\omega ) using the interpolation method with
uniform grids. Instead, we use a sparse grid polynomial interpolation approach to
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(a) Testing errors in L2-norm.
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(b) Projection errors in L2-norm.

2 4 6 8 10 12 14 16

Number of basis

0.005

0.01

0.015

0.02

0.025

0.03

0.035

re
la

tiv
e 

H
1  e

rr
or

N=2000
N=1000
N=500
N=250

(c) Testing errors in H1-norm.
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(d) Projection errors in H1-norm.

Fig. 9. The relative testing/projection errors in L2- and H1-norms with different numbers of
samples (i.e., N) for the local problem of section 4.2.

approximate the map F. Specifically, we use Legendre polynomials with total order
less than or equal to 4 (i.e., sparse grid of level 5) to approximate the map, where the
total number of nodes is N1 = 2177; see [11].

Figures 13(a) and 13(b) show the relative errors of the testing error and projection
error in the L2- and H1-norms, respectively, where N2 = 10N1. The sparse grid
polynomial interpolation approach gives a comparable error as the best approximation
error. We observe similar convergence results in solving the global problem (41) with
the coefficient (43) (not shown in this paper). Therefore, we can use the sparse grid
method to construct maps for problems of a moderate number of random variables.

We also study the approximation property of the nonlinear map F based on
sparse grids of different levels. Specifically, sparse grids of accuracy levels 3, 4, and 5,
respectively contain N1 = 129, 609, and 2177 grid points. Figure 14 shows the mean
relative L2 and H1 errors of the testing errors and of the project error (which does
not depend on the grid partition), where N2 = 21700. One can see that the nonlinear
map F based on sparse grids of accuracy level 4 is accurate enough.

4.4. An example with discontinuous coefficients. We solve the problem
(41) with a discontinuous coefficient, which is an interface problem. The coefficient is
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(a) Decay of the eigenvalues.
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Fig. 10. The decay properties of the eigenvalues for the global problem of section 4.2.
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(a) Relative error in L2-norm.
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(b) Relative error in H1-norm.

Fig. 11. The relative errors with increasing number of basis functions for the global problem of
section 4.2.

parameterized by 12 random variables and has the form

a(x, y, \omega ) = exp

\biggl( 6\sum 
i=1

sin

\biggl( 
2\pi 

x sin( i\pi 6 ) + y cos( i\pi 6 )

\epsilon i

\biggr) 
\xi i(\omega )

\biggr) 
\cdot ID\setminus D3

(x, y)

+ exp

\biggl( 6\sum 
i=1

sin

\biggl( 
2\pi 

x sin( (i+0.5)\pi 
6 ) + y cos( (i+0.5)\pi 

6 )

\epsilon i+6

\biggr) 
\xi i+6(\omega )

\biggr) 
\cdot ID3

(x, y),(44)

where \epsilon i =
1+i
100 for i = 1, . . . , 6, \epsilon i =

i+13
100 for i = 7, . . . , 12, \xi i(\omega ), and i = 1, . . . , 12

are i.i.d. uniform random variables in [ - 2
3 ,

2
3 ], and ID3

, ID\setminus D3
are indicator functions.

The contrast ratio in the coefficient (44) is \kappa a \approx 3\times 103. The subdomain D3 consists
of three small rectangles whose edges are parallel to the edges of domain D with width
10h and height 0.8. The lower left vertices are located at (0.3, 0.1), (0.5, 0.1), (0.7, 0.1),
respectively. One can use the coefficient (44) to model channels in the permeability
field in the reservoir simulation. In Figure 15 we show two realizations of the coefficient
(44).

We now solve the local problem of (41) with the coefficient (44), where the domain
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(a) Decay of eigenvalues.

1 2 3 4 5 6 7 8 9 10

Eigenvalue index

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

A
c
c
u

ra
c
y

(b) 1 - 
\sqrt{} \sum N

j=n+1 \lambda j/
\sum N

j=1 \lambda j , n = 1, 2, . . . .

Fig. 12. The decay properties of the eigenvalues in the problem of section 4.3.
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(b) Relative error in H1-norm.

Fig. 13. The relative errors with increasing number of basis functions in the problem of section
4.3.

of interest is D1 = [ 14 ,
3
4 ]\times [ 1116 ,

15
16 ]. The source function is f(x, y) = cos(2\pi x) sin(2\pi y)\cdot 

ID2
(x, y), where D2 = [ 14 ,

3
4 ] \times [ 1

16 ,
5
16 ]. In Figures 16(a) and 16(b) we show the

magnitude of dominant eigenvalues and approximate accuracy. These results show
that only a few data-driven basis functions are enough to approximate all solution
samples well.

Since the coefficient (44) is parameterized by 12 random variables, constructing
the map F : \bfitxi (\omega ) \mapsto \rightarrow c(\omega ) using the sparse grid polynomial interpolation becomes
very expensive too. Here we use the least square method combined with the k-d tree
algorithm for searching nearest neighbors to approximate the map F.

In our method, we first generate N1 = 5000 data pairs \{ (\bfitxi n(\omega ), cn(\omega )\} N1
n=1 that

will be used as training data. Then, we use N2 = 10N1 samples for testing in the
online stage. For each new testing data point \bfitxi (\omega ) = [\xi 1(\omega ), . . . , \xi r(\omega )]

T (here r = 12),
we run the k-d tree algorithm to find its n nearest neighbors in the training data
set and apply the least square method to compute the corresponding mapped value
c(\omega ) = [c1(\omega ), . . . , cK(\omega )]T . The complexity of constructing a k-d tree for N1 data
points is O(N1 logN1). Given the k-d tree, for each testing point the complexity of
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Fig. 14. Relative L2 and H1 errors of the solution computed by the nonlinear map F based on
different sparse grids for the local problem of section 4.3.

Fig. 15. Two realizations of the coefficient (44) in the interface problem.

finding its n nearest neighbor is O(n logN1) [40].
Since the n nearest neighbors (training data) are close to the testing data point

\bfitxi (\omega ), for each set of training data
\bigl( 
\bfitxi m(\omega ), cm(\omega )

\bigr) 
, m = 1, . . . , n, we compute the

first-order Taylor expansion of each component cmj (\omega ) at \bfitxi (\omega ) as

cmj (\omega ) \approx cj(\omega ) +

r=12\sum 
i=1

(\xi mi  - \xi i)
\partial cj
\partial \xi i

(\omega ), j = 1, 2, . . . ,K,(45)

where \xi mi , i = 1, . . . , r, cmj (\omega ), j = 1, . . . ,K are given training data, and cj(\omega ) and
\partial cj
\partial \xi i

(\omega ), j = 1, . . . ,K, are unknowns associated with the testing data point \bfitxi (\omega ). In
the k-d tree algorithm, we choose n = 20, which is slightly greater than r + 1 = 13.
By solving (45) using the least square method, we get the mapped value c(\omega ) =
[c1(\omega ), . . . , cK(\omega )]T . Finally, we use the formula (22) to get the numerical solution of
(41) with the coefficient (44).

Because of the discontinuity and high-dimensional random variables in the coef-
ficient (44), the problem (41) is more challenging. The nearest neighbors based least
square method provides an efficient way to construct maps and achieve relative errors
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(a) Decay of eigenvalues.
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Fig. 16. The decay properties of the eigenvalues in the problem of section 4.4.

0 5 10 15 20 25

Number of basis

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

re
la

tiv
e 

L
2  e

rr
or

testing error
projection error

(a)

0 5 10 15 20 25

Number of basis

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

re
la

tiv
e 

H
1  e

rr
or

testing error
projection error

(b)

Fig. 17. The relative errors with increasing number of basis functions in the local problem of
section 4.4.

less than 3\% in both the L2- and H1-norms; see Figure 17. Alternatively, one can use
the neural network method to construct maps for this type of challenging problem;
see section 4.5.

4.5. An example with high-dimensional random coefficient and source
function. We solve the problem (41) with an exponential-type coefficient and random
source function, where the total number of random variables is 20. Specifically, the
coefficient is parameterized by 18 i.i.d. random variables, i.e.,

a(x, y, \omega ) = exp

\biggl( 18\sum 
i=1

sin

\biggl( 
2\pi 

x sin( i\pi 18 ) + y cos( i\pi 18 )

\epsilon i

\biggr) 
\xi i(\omega )

\biggr) 
,(46)

where \epsilon i = 1
2i+9 , i = 1, 2, . . . , 18 and \xi i(\omega ), i = 1, . . . , 18 are i.i.d. uniform random

variables in [ - 1
5 ,

1
5 ]. The source function is a Gaussian density function f(x, y) =

1
2\pi \sigma 2 exp( - (x - \theta 1)

2+(y - \theta 2)
2

2\sigma 2 ) with a random center (\theta 1, \theta 2) that is a random point uni-
formly distributed in the subdomain D2 = [ 14 ,

3
4 ]\times [ 1

16 ,
5
16 ], and \sigma = 0.01. When \sigma is
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(a) Decay of eigenvalues.
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Fig. 18. The decay properties of the eigenvalues in the problem of section 4.5.

small, the Gaussian density function f(x, y) can be used to approximate the Dirac-\delta 
function, such as modeling wells in reservoir simulations.

We first solve the local problem of (41) with N = 2000 samples of the coefficient
(46), where the subdomain of interest is D1 = [ 14 ,

3
4 ]\times [ 1116 ,

15
16 ]. In Figures 18(a) and

18(b), we show the magnitude of leading eigenvalues and the ratio of the accumulated
sum of the eigenvalues over the total sum, respectively. We observe similar exponential
decay properties of eigenvalues even if the source function contains randomness. These
results show that we can still build a set of data-driven basis functions to solve problem
(41) with coefficient (46).

Notice that both the coefficient and source contain randomness here. We put
together the random variables \bfitxi (\omega ) in the coefficient and the random variables \bfittheta (\omega )
in the source when we construct the map F. Moreover, the dimension of randomness,
18 + 2 = 20, is too large even for sparse grids. Here we construct the map F :
(\bfitxi (\omega ),\bfittheta (\omega )) \mapsto \rightarrow c(\omega ) using the neural network as depicted in Figure 19. The neural
network has 4 hidden layers and each layer has 50 units. Naturally, the number of
the input units is 20, and the number of the output units is K. The layer between
input units and the first layer of hidden units is an affine transform, as is the layer
between output units and last layer of hidden units. Each set of two layers of hidden
units is connected by an affine transform, a tanh (hyperbolic tangent) activation and
a residual connection, i.e., hl+1 = tanh(Alhl+bl)+hl, l = 1, 2, 3, where hl is the lth
layer of hidden units, Al is a 50-by-50 matrix and bl is a 50-by-1 vector. Under the
same neural network setting, if the rectified linear unit (ReLU), which is piecewise
linear, is used as the activation function, we observe a much larger error. Therefore, we
choose the hyperbolic tangent activation function and implement the residual neural
network (ResNet) here [25].

We use N1 = 5000 samples for network training in the offline stage and N2 =
10N1 samples for testing in the online stage. The sample data pairs for training are\bigl\{ 
(\bfitxi n(\omega ),\bfittheta n(\omega )), cn(\omega )

\bigr\} N1

n=1
, where \bfitxi n(\omega ) \in [ - 1

5 ,
1
5 ]

18, \bfittheta n(\omega ) \in [ 14 ,
3
4 ] \times [ 1

16 ,
5
16 ], and

cn(\omega ) \in RK . We define the loss function of network training as

loss
\bigl( 
\{ cn\} , \{ \^cn\} 

\bigr) 
=

1

N1

N1\sum 
n=1

1

K
| cn  - \^cn| 2,(47)

where cn are the training data and \^cn are the output of the neural network (see Figure
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Fig. 19. Structure of neural network, where r1 = 18 and r2 = 2.

19).
Figure 20(a) shows the value of the loss function during the training procedure.

Figure 20(b) shows the corresponding mean relative error of the testing samples in
the L2-norm. Eventually the relative error of the neural network reaches about 1.5\%.
Figure 20(c) shows the corresponding mean relative error of the testing samples in the
H1-norm. We remark that many existing methods become extremely expensive or
infeasible when the problem is parameterized by high-dimensional random variables.
Our data-driven basis method based on a neural network still provides a satisfactory
result.

4.6. An example with unknown random coefficient and source function.
Finally, we present an example where the models of the random coefficient and source
are unknown. Only a set of sample solutions is provided, and a few censors can be
placed at certain locations for solution measurements. This kind of scenario appears
often in practice. We take the least square fitting method as described in section 3.3.
Our numerical experiment is still based on (41), which is used to generate solution
samples (instead of experiments or measurements in real practice). But once the data
are generated, we do not assume any knowledge of the coefficient or the source when
computing a new solution.

To be specific, we say that the coefficient takes the form

a(x, y, \omega ) = exp

\biggl( 24\sum 
i=1

sin

\biggl( 
2\pi 

x sin( i\pi 24 ) + y cos( i\pi 24 )

\epsilon i

\biggr) 
\xi i(\omega )

\biggr) 
,(48)

where \epsilon i = 1+i
100 , i = 1, 2, . . . , 24 and \xi i(\omega ), i = 1, . . . , 24 are i.i.d. uniform random

variables in [ - 1
6 ,

1
6 ]. The source function is a random function f(x, y) = sin(\pi (\theta 1x+

2\theta 2)) cos(\pi (\theta 3y + 2\theta 4)) \cdot ID2(x, y) with i.i.d. uniform random variables \theta 1, \theta 2, \theta 3, \theta 4 in
[0, 2]. We first generateN = 2000 solution samples (using standard FEM) u(xj , \omega i), i =
1, . . . , N, j = 1, . . . , J , where xj are the points where solution samples are measured.
Then, a set of K data-driven basis functions \phi k(xj), j = 1, . . . , J, k = 1, . . . ,K, are
extracted from the solution samples as before.

Next, we determine M good sensing locations from the data-driven basis so that
the least square problem (26) is not ill-conditioned. We follow the method proposed
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Fig. 20. Left column: the value of loss function during training procedure. Middle column and
right column: the mean relative errors of the testing set during training procedure in the L2- and
H1-norms, respectively.

in [32]. Define \Phi = [\bfitphi 1, . . . ,\bfitphi K ] \in RJ\times K , where \bfitphi k = [\phi k(x1), . . . , \phi k(xJ)]
T . If

M = K, QR factorization with column pivoting is performed on \Phi T . If M > K,
QR factorization with pivoting is performed on \Phi \Phi T . The first M pivoting indices
provide the measurement locations. Once a new solution is measured at these M
selected locations, the least square problem (26) is solved to determine the coefficients

c1, c2, . . . , cK , and the new solution is approximated by u(xj , \omega ) =
\sum K

k=1 ck\phi k(xj).
In Figures 21 and 22, we show the results of the local problem and global problem,

respectively. In these numerical results, we compared the error between the recon-
structed solutions and the reference solution. We find the our proposed method works
well for problem (41) with a nonparametric coefficient or source.

5. Conclusion. In this paper, we propose a data-driven approach to solve
multiscale elliptic PDEs with random coefficients or random sources. This type of
multiscale problem has many applications, such as heterogeneous porous media flow
problems in water aquifer and oil reservoir simulations. Motivated by the existence of
approximate low-dimensional structures in the solution space of the multiscale prob-
lems, we construct a set of problem-specific data-driven basis functions directly from
samples solutions or experimental data. Once the data-driven basis is available, de-
pending on different problem setups, we design several ways to compute a new solution
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Fig. 21. The relative errors with increasing number of basis functions in the local problem of
section 4.6.
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Fig. 22. The relative errors with increasing number of basis functions in the global problem of
section 4.6.

efficiently.
Error analysis based on the sampling error of the coefficients and the projection

error of the data-driven basis is presented to provide some guidance on the implemen-
tation of our method. Numerical examples show that the proposed method is very
efficient in solving multiscale elliptic PDEs with random input, especially when the
random input is relative high dimensional. Therefore, these data-driven basis func-
tions indeed provide a nearly optimal approximation to the low-dimensional structures
in the solution space.
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