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Abstract— In this paper, a distributed optimization prob-
lem is investigated via input feedforward passivity. First, an
input-feedforward-passivity-based continuous-time distributed
algorithm is proposed. It is shown that the error system of
the proposed algorithm can be interpreted as output feedback
interconnections of a group of Input Feedforward Passive
(IFP) systems. Second, based on this IFP framework, the
distributed algorithm is studied over weight-balanced directed
and uniformly jointly strongly connected switching topologies.
Specifically, the continuous-time distributed algorithm for uni-
formly jointly strongly connected digraphs has never been
considered before. Sufficient convergence conditions are derived
for the design of a suitable coupling gain.

I. INTRODUCTION

Distributed optimization over multi-agent systems has
been widely investigated in recent years, due to its broad
applications in various aspects including wireless networks,
smart grids, and machine learning. In addition to the discrete-
time algorithms (e.g., [1], [2]), a variety of continuous-
time distributed algorithms have been proposed to solve
distributed optimization problems [3]–[6], owing to the
benefit of continuous-time stability theory for convergence
analysis. However, many of the proposed algorithms are
only for undirected networks and not applicable in directed
networks [3]–[5]. To deal with this difficulty, the work in [7]
tunes some parameters in the original algorithm to stabilize
gradient dynamics while the work in [8] proposes a variant
algorithm. However, compared with these methods, a more
systematic approach is needed for this problem.

It is well known that dissipativity (and its special case,
passivity) is a useful tool for stability analysis and con-
trol design [9]. Recently, there emerge some continuous-
time passivity-based algorithms on distributed optimization
under some communication constraints [10]–[12]. However,
these passivity-based algorithms can only be applied over
undirected graphs, while it is shown that output consensus
can be achieved over directed graphs through simple output
feedback interconnections of passive systems [13]. Motivated
by these works, we aim to study distributed algorithms in
directed graphs via dissipativity/passivity techniques. On one
hand, we conjecture that it is in general difficult to directly
construct a distributed algorithm that can be interpreted as
output feedback interconnections of passive systems. On
the other hand, works in [14]–[16] point out that output
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consensus can be achieved over directed graphs even among
IFP systems (or passivity-short systems). Therefore, if a
distributed algorithm inherits input feedforward passivity, it
can be directly applied to directed graphs through output
feedback interconnections. As a byproduct of having the
IFP properties, the distributed algorithm is robust against
the switching topologies, while the effort in constructing
complicated candidate Lyapunov functions is greatly reduced
in convergence analysis. To the best of our knowledge,
though the case of uniformly jointly strongly connected
switching topologies has been considered in discrete-time
algorithms [17], it has never been considered in continuous-
time algorithms before.

The challenges in our work lie in the construction of a
group of verifiable nonlinear IFP systems that solve the dis-
tributed optimization problem, and the convergence analysis
over directed and switching topologies.

The rest of this paper is organized as follows. In Section II,
some background knowledge of convex analysis, graph the-
ory, and dissipativity/passivity is reviewed. In Section III, an
IFP-based distributed algorithm is proposed. In Section IV,
the proposed distributed algorithm is studied over directed
and switching topologies. In Section V, a numerical exam-
ple is presented to demonstrate the effect of the proposed
algorithm. Finally, the paper is concluded in Section VI.

II. PRELIMINARIES

A. Notation

Let R and Z be the set of real and integer numbers,
respectively. The notation ker(A) denotes the kernel of A.
The Kronecker product is denoted as ⊗. ‖A‖ denotes the
2-norm of A. Given a symmetric matrix M ∈ Rm×m, the
notation M > 0 (M ≥ 0) means that M is positive definite
(positive semi-definite). Denote the eigenvalues of M in
ascending order as s1(M) ≤ s2(M) ≤ . . . ≤ sm(M). I and
0 denote the identity matrix and zero matrix (or vector) of
proper dimensions, respectively. 1m := (1, . . . , 1)T ∈ Rm.
col(v1, . . . , vm) := (vT1 , . . . , v

T
m)T denotes the column vec-

tor stacked with vectors v1, . . . , vm. The notation diag{αi}
denotes a (block) diagonal matrix with its ith diagonal
element (block) being αi. The notation Ck is used to denote
a k ∈ Z≥1 times continuously differentiable function.

B. Convex Analysis

A differential function f : Rm → R is convex over a
convex set X ⊂ Rm if and only if [∇f(x)−∇f(y)]

T
(x−

y) ≥ 0, ∀x, y ∈ X and strictly convex if and only if the
strict inequality holds. It is µ-strongly convex if and only



if [∇f(x)−∇f(y)]
T

(x− y) ≥ µ‖x− y‖22, ∀x, y ∈ X . An
equivalent condition for the strong convexity is the following:
f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2 ‖y − x‖
2
2, ∀x, y ∈ X . A

function f : Rm → Rm is l-Lipschitz continuous over a set
X if ‖f(x)− f(y)‖ ≤ l‖x− y‖, ∀x, y ∈ X .

C. Graph Theory

The information exchanging network is represented by a
graph G = (N , E), where N = {1, . . . , N} is the node set of
all agents and E ⊂ N×N is the edge set. The edge (i, j) ∈ E
denotes that agent i can obtain information from agent j,
and j ∈ Ni where Ni = {(i, j) ∈ E} is agent i’s neighbor
set. The graph G is said to be undirected if (i, j) ∈ E ⇔
(j, i) ∈ E and directed otherwise. A sequence of successive
edges {(i, p), (p, q), . . . , (v, j)} is a direct path from agent i
to agent j. An undirected path is defined similarly without
considering directions of edges. G is said to be strongly
(weakly) connected if there exists a directed (undirected)
path between any two agents. A time-varying graph G(t) is
said to be uniformly jointly strongly connected if there exists
a T > 0 such that for any tk, the union ∪t∈[tk,tk+T ]G(t)
is strongly connected. The adjacency matrix is defined as
A = [aij ], where aii = 0; aij = 1 if (i, j) ∈ E , and aij = 0,
otherwise. The in-degree and out-degree of the ith agent are
diin =

∑N
j=1 aij and diout =

∑N
j=1 aji, respectively. The

graph G is said to be weight-balanced if diin = diout, ∀i ∈ N .
The in-degree matrix is Win = diag{diin}. The Laplacian
matrix of G is defined as L = Win −A.

Lemma 1 ( [18]): A weight-balanced digraph G is
strongly connected if and only if it is weakly connected.

D. Passivity

Consider a group of agents having the nonlinear dynamics
described by

Σi :

{
ẋi = fi (xi, ui)

yi = hi (xi, ui)
, ∀i ∈ N (1)

where xi ∈ Xi ⊂ Rn, ui ∈ Ui ⊂ Rm and yi ∈ Yi ⊂
Rm are the state, input and output, respectively, and Xi, Ui
and Yi are the state, input and output spaces, respectively.
The functions fi ∈ Rn×n, hi ∈ Rn×m are assumed to be
sufficiently smooth.

Let us first give the definition of passivity for a nonlinear
system Σi based on [19], [20].

Definition 1: System Σi is said to be passive if there exists
a continuously differentiable positive semidefinite function
Vi(xi), called the storage function, such that

V̇i ≤ uTi yi, ∀(xi, ui) ∈ Xi × Ui. (2)

Moreover, it is said to be Input Feedforward Passive (IFP) if
V̇i ≤ uTi yi − νiuTi ui, for some νi ∈ R, denoted as IFP(νi).
The sign of the IFP index νi denotes an excess or shortage
of passivity. Particularly, when νi > 0, the system is said to
be Input Strictly Passive (ISP). When νi < 0, the system is
said to be Input Feedforward Passivity-Short (IFPS).

Throughout this paper, we consider the storage function
to be positive definite and radially unbounded.

III. IFP-BASED DISTRIBUTED ALGORITHM

Consider the convex distributed optimization problem
among a group of N agents

min
x

∑
i∈N

fi(x) (3)

where x ∈ Rm and each local objective function fi : Rm →
R satisfies the following assumption.

Assumption 1: Each fi(x), i ∈ N is C2 and µi–strongly
convex, with its gradient ∇fi(x) being li-Lipschitz continu-
ous.
This assumption also implies that ‖∇fi(x) − ∇fi(x′)‖ ≤
li‖x− x′‖ and µiI ≤ ∇2fi(x) ≤ liI , ∀x, x′.

Problem (3) is equivalent to

min
xi,∀i∈N

f(x) =
∑
i∈N

fi(xi)

subject to xi = xj , ∀i, j ∈ N
(4)

where xi ∈ Rm is the local decision variable for agent i.

A. IFP-Based Distributed Algorithm

We propose an IFP-based distributed algorithm for agent
i, ∀i ∈ N as follows.

Algorithm 1 IFP-Based Distributed Algorithm

ẋi = −α∇fi(xi)−Kiλi + βui (5a)

λ̇i = −γJiui (5b)

KiJi = CT (5c)

ui = σ
∑
j∈Ni

aij(Cxj − Cxi) (5d)

For the ith agent, xi, λi,∈ Rm and ui ∈ Rm are
local variables and input, respectively; Ji,Ki ∈ Rm×m are
invertible matrices such that KiJi = CT is a common
matrix; α > 0, β ∈ R and γ > 0 are constant parameters
and σ > 0 is the coupling gain. To ease the discussion on
parameters, we assume that α, β, γ, C,Ki, Ji,∀i ∈ N are
some pre-given arbitrary values while σ is to be designed.
Apparently, Algorithm 1 is a distributed algorithm since each
agent only exchanges information with neighboring agents.

Denote x = col(x1, . . . , xN ) and λ = col(λ1, . . . , λN ),
then the compact form of system (5) is

ẋ = −α∇f(x)−Kλ− σβLCx (6a)

λ̇ = σγJLCx (6b)

where K = diag{Ki}, J = diag{Ji}, C = IN ⊗ C are
block diagonal matrices, L = L ⊗ Im, and L is the graph
Laplacian of the communication graph G.

Lemma 2: Suppose G is strongly connected and Assump-
tion 1 holds. If there exists an equilibrium point (x∗, λ∗) that
satisfies

∑
i∈N Kiλ

∗
i = 0 in system (6), then (x∗, λ∗) is also

unique with x∗i being the optimal solution to problem (3).



Proof: The equilibrium point (x∗, λ∗) satisfies

ẋ∗ = −α∇f(x∗)−Kλ∗ = 0 (7a)

λ̇∗ = γσJLCx∗ = 0. (7b)

λ̇∗ = 0 implies that Cx∗i = Cx∗j , ∀i, j ∈ N . Since KiJi =
CT and Ji,Ki are invertible, C is also invertible and x∗i =
x∗j , ∀i, j ∈ N . Moreover, multiplying (7a) by (1N ⊗ Im)T

from the left, one has,

− (1N ⊗ Im)Tα∇f(x∗)− (1N ⊗ Im)TKλ∗

=−
∑
i∈N

α∇fi(x∗i )−
∑
i∈N

Kiλ
∗
i

=− α
∑
i∈N
∇fi(x∗i ) = 0

which implies that x∗i is the optimal solution to problem (3).
By Assumption 1, x∗ is unique. Since K is invertible, λ∗ is
unique as well.
Hereafter, we call (x∗, λ∗) the optimal point. The conver-
gence of Algorithm 1 will be addressed in Section IV.

B. Input Feedforward Passivity of the Error System

Denote ∆xi = xi−x∗i , ∆λi = λi−λ∗i . Then, the group of
error subsystems between (6) and (7), with each one denoted
by Σi, is

∆ẋi = −α [∇fi(xi)−∇fi(x∗i )]−Ki∆λi + βui

∆λ̇i = −γJiui
yi = C∆xi

, ∀i ∈ N

(8)
where yi is the output of the ith subsystem. Then the input ui,
∀i ∈ N can be rewritten as output feedback of neighboring
agents

ui = σ
∑
j∈Ni

aij(yj − yi), ∀i ∈ N . (9)

Assume that, corresponding to the real agents, there exist
a group of virtual agents such that the ith virtual agent
possesses the subsystem Σi, i ∈ N . Then Algorithm 1 can
be seen as output feedback interconnections of these virtual
agents. In fact, no information of (x∗i , λ

∗
i ) is needed for

communication since yi−yj = C∆xi−C∆xj = C(xi−xj).
Then, each agent possesses the same information as its
corresponding virtual agent. The communication topology is
the same as well.

Before showing the convergence of Algorithm 1, we first
show that each error subsystem Σi in (8) is IFP(νi) with
index νi ≤ 0.

Lemma 3: Under Assumption 1, each error subsystem Σi
in (8) is IFP(νi).

Proof: Under Assumption 1, one has ∇fi(xi) −
∇fi(x∗i ) = Bxi (xi − x∗i ), where Bxi =

∫ 1

0
∇2fi(x

∗
i +

τ(xi − x∗i ))dτ is a positive definite matrix such that µiI ≤
Bxi ≤ liI ( [21, Lemma 1]). Apparently, Bxi is invertible
and B−1

xi is also positive definite. Then, the ith subsystem in

(8) can be written as

∆ẋi = −αBxi∆xi −Ki∆λi + βui

∆λ̇i = −γJiui
yi = C∆xi.

Denote

zi = αBxi∆xi +Ki∆λi. (10)

Let us consider the storage function

Vi =
η

2
zTi zi −

1

γ
∆xTi Ki∆λi +

α

γ
[fi(x

∗
i )− fi(xi)]

+
α

γ

[
∇fi(x∗i )T∆xi

] (11)

where η is a positive parameter such that η > 1
µiαγ

. By the
strong convexity of fi, one has

fi(x
∗
i ) ≥fi(xi)−∇fi(xi)T∆xi +

µi
2

∆xTi ∆xi

=fi(xi)−∇fi(xi)T
B−1
xi

α
(αBxi∆xi)

+ (αBxi∆xi)
T µiB

−2
xi

2α2
(αBxi∆xi) .

Then

Vi ≥
η

2
zTi zi −

1

γ
∆xTi Ki∆λi +

α

γ
∇fi(x∗i )T

B−1
xi

α
(αBxi∆xi)

− α

γ
∇fi(xi)T

B−1
xi

α
(αBxi∆xi)

+
α

γ
(αBxi∆xi)

T µiB
−2
xi

2α2
(αBxi∆xi)

=
η

2
zTi zi − (αBxi∆xi)

T B
−1
xi

αγ
Ki∆λi − (αBxi∆xi)

T ·

B−1
xi

αγ
(αBxi∆xi) + (αBxi∆xi)

T µiB
−2
xi

2αγ
(αBxi∆xi)

=

[
αBxi∆xi
Ki∆λi

]T
Ri

[
αBxi∆xi
Ki∆λi

]

where Ri =

[
η
2 I +

µiB
−2
xi

2αγ −
B−1
xi

αγ
η
2 I −

B−1
xi

2αγ

∗ η
2 I

]
. By the

Schur complement [22], Ri > 0 if and only if η
2 > 0 and

η

2
I+

µiB
−2
xi

2αγ
−
B−1
xi

αγ
−2

η

(
η

2
I −

B−1
xi

2αγ

)T (
η

2
I −

B−1
xi

2αγ

)
> 0.

Select η such that η > 1
µiαγ

, then Ri > 0. Hence, Vi > 0
and Vi = 0 if and only if (xi, λi) = (x∗i , λ

∗
i ).

Recall (10) and ẋ∗i = λ̇∗i = 0, then ∆ẋi = −zi + βui
and żi = α∇2fi(xi)∆ẋi + Ki∆λ̇i. Thus, the derivative of



Vi gives

V̇i =ηzTi
[
−α∇2fi(xi)(zi − βui)−KiγJiui

]
− 1

γ

[
∆xTi Ki(−γJiui) + (−zi + βui)

TKi∆λi
]

+
α

γ

{
− [∇fi(xi)−∇fi(x∗i )]

T
(−zi + βui)

}
=− ηαzTi ∇2fi(xi)zi + ηzTi [αβ∇2fi(xi)− γKiJi]ui

+ ∆xTi KiJiui +
1

γ
zTi Ki∆λi −

β

γ
uTi Ki∆λi

+
1

γ
(αBxi∆xi)

T
zi −

β

γ
(αBxi∆xi)

T
ui

=− ηαzTi ∇2fi(xi)zi + ηzTi [αβ∇2fi(xi)− γKiJi]ui

+ (C∆xi)
T
ui +

1

γ
zTi zi −

β

γ
zTi ui

≤−
(
µiηα−

1

γ

)
zTi zi + yTi ui

+ zTi

{
η[αβ∇2fi(xi)− γCT ]− β

γ
I

}
︸ ︷︷ ︸

gi

ui

≤−
(
µiηα−

1

γ

)
‖zi‖2 + ‖zi‖‖gi‖‖ui‖+ yTi ui

≤yTi ui − νiuTi ui
(12)

where µiηα − 1
γ > 0 follows from η > 1

µiαγ
, and νi ≤

− ‖gi‖2

4(µiηα− 1
γ )
≤ 0. Since ∇2fi(xi) and parameters in gi are

bounded, given finite η, a constant νi can be obtained. Thus,
Σi is IFP(νi).

When the error system (8) is linear, i.e., each fi is
quadratic, ∀i ∈ N , by solving an LMI in [23], it can also be
proved numerically that Σi is IFP(νi) with index νi ≤ 0.

As pointed out by [16], it is in general difficult to derive
the exact IFP index for a nonlinear system, and only its lower
bound can be obtained by specifying the storage function.
With the storage function (11), the lower bound of IFP index
can be obtained locally by solving the minimax problem

νi = −min
η

max
xi

∥∥∥η[αβ∇2fi(xi)− γCT ]− β
γ I
∥∥∥2

4
(
µiηα− 1

γ

) . (13)

The problem of reducing this gap remains open and leaves
to the future work.

Remark 1: Let Ji, Ki = I , and σ = 1. When γ = αβ,
Algorithm 1 reduces to the distributed algorithm in [8].
When α, γ = 1, and β = 0, Algorithm 1 reduces to the
simplified algorithm in [8]. Compared with algorithms in [8],
Algorithm 1 includes more general cases whose convergence
cannot be proved by methods in [8], e.g., when β is negative
and when γ is independent of α, β. Besides, agents in
Algorithm 1 can exchange the information of Cxi instead
of xi thanks to extra matrices Ji,Ki. Moreover, it is shown
later that Algorithm 1 is valid over uniformly jointly strongly
connected topologies in addition to directed and strongly
connected switching networks [8].

IV. DIRECTED AND SWITCHING TOPOLOGIES

In this section, we show that the IFP framework allows
the study of distributed algorithms over directed topologies
as well as uniformly jointly strongly connected switching
topologies, while the effort in constructing complicated can-
didate Lyapunov functions in convergence analysis is greatly
reduced.

A. Directed Graphs

Assumption 2: The communication graph G is weight-
balanced and strongly connected.

Definition 2: The group of agents (1) is said to achieve
output consensus if limt→∞ ‖yi(t)− yj(t)‖ = 0, ∀i, j ∈ N .

Theorem 1: Under Assumption 1 and Assumption 2,
Algorithm 1 will converge to the optimal point if∑
i∈N Kiλi(0) = 0 and the coupling gain satisfies

0 < σ <
s2

(
L+ LT

)
−2ν̄sN (LTL)

(14)

where ν̄ < 0 is the smallest value of IFP index νi, i ∈ N
and s(·) is defined in Section II-A.

Proof: Let V =
∑
i∈N Vi, where Vi is defined in (11).

Since Bxi and Ki are bounded,
∥∥∆x

∆λ

∥∥ → ∞ implies V →
∞, and then V is radially unbounded. The overall output is
y = col(y1, . . . , yN ) and the overall input is u = −σLy.

V̇ ≤
∑
i∈N

yTi ui − νiuTi ui

≤
∑
i∈N

yTi ui − ν̄uTi ui

=− σyT (L⊗ Im)y − σ2ν̄yT (LTL⊗ Im)y

=yT


[
−σ

2
(L+ LT )− σ2ν̄LTL

]
︸ ︷︷ ︸

M

⊗Im

 y

=yT (M ⊗ Im)y.

(15)

Observe that L, LT and LTL have the same null space
{c1N , c ∈ R}. Then there exists a similarity transformation
that reduces the zero eigenvalue of LTL and (L + LT ) at
the same time. Besides, since similarity transformation does
not change the eigenvalues, we can check the definiteness
of M by comparing the nonzero eigenvalues of LTL and
(L + LT ). Since (14) holds, M ≤ 0 and zero is the simple
eigenvalue with the eigenvector 1N . Then, V̇ ≤ 0 and the
system is globally stable.

By (15) and the first inequality in (12), V̇ = 0 only if
(M⊗Im)y = 0 and zi = 0, where zi is defined in (10). Thus,
S = {zi = 0, yi = yj ,∀i, j ∈ N} is the largest invariant set.
Then, by (8), (10), and the LaSalle’s Invariance Principle
[19], ∆ẋ → 0, ∆λ̇ → 0 as t → ∞. The states converge to
an equilibrium point.

Since λ − λ(0) =
∫ t

0
λ̇(τ)dτ , given the initial condition



∑
i∈N Kiλi(0) = 0,

(1N ⊗ Im)TKλ

=(1N ⊗ Im)TK

(∫ t

0

σγJLCx(τ)dτ + λ(0)

)
=σγ

∫ t

0

(1N ⊗ Im)T (IN ⊗ CT )(L⊗ Im)Cx(τ)dτ

+
∑
i∈N

Kiλi(0)

=σγ

∫ t

0

(1TNL⊗ CT )Cx(τ)dτ

=0

where the third equality follows from rules of Kronecker
product and the fourth follows from 1TNL = 0. Then
Lemma 2 holds, the equilibrium point is the optimal point.
Therefore, Algorithm 1 will converge to the optimal point.

To obtain ν̄, it does not require the knowledge of the objec-
tive functions of other agents but only the strong convexity
index νi and Lipschitz index li to estimate νi in (13). Details
of the design of σ are given in Section IV-C.

Note that only weight-balanced digraphs are considered
here. The consensus under unbalanced graphs can be guar-
anteed similarly with V =

∑
i∈N ξiVi, where ξi > 0 is the

ith element of the left eigenvalue of L [14], [16]. However,
the sum of local objective functions will have a shift from
global optimum [17]. Thus, some modification is needed,
which will be discussed in the future.

B. Uniformly Jointly Strongly Connected Digraphs

Consider the distributed algorithm over uniformly jointly
strongly connected switching digraphs. To the best of our
knowledge, the continuous-time algorithm for uniformly
jointly strongly connected networks has never been consid-
ered before.

Assumption 3: The agents interact with each other over
a uniformly jointly strongly connected digraph G(t) that is
weight-balanced pointwise in time with Laplacian L(t) 6= 0,
∀t ≥ 0.
Here the trivial case of L(t) = 0 is omitted without affecting
the feasible range of the coupling gain σ.

Theorem 2: Under Assumption 1 and Assumption 3,
Algorithm 1 will converge to the optimal point if∑
i∈N Kiλi(0) = 0 and the coupling gain σ satisfies

0 < σ <
s+

(
L(t) + LT (t)

)
−2ν̄sN (LT (t)L(t))

, ∀t > 0 (16)

where s+(·) denotes the nonzero smallest eigenvalue.
Proof: Since G(t) is weight-balanced pointwise in

time, by Lemma 1, if agent i and j are weakly connected,
there must exist an index set Nq containing these two
agents such that its corresponding graph GNq is strongly
connected. Therefore, the graph G(t) at any time t can
be seen as the union of one or several disjoint strongly
connected digraphs. Consequently, L(t) and LT (t) have

the same null space, i.e., ker (L(t)) = ker
(
LT (t)

)
.

Then, due to the well known fact that ker(L(t)) =
ker

(
LT (t)L(t)

)
, there exists a similarity transformation that

reduces the zero eigenvalues of LT (t)L(t) and (L(t) +
LT (t)) at the same time. Besides, for weight-balanced di-
graphs, ζT

(
L(t) + LT (t)

)
ζ =

∑
i,j∈N aij(t)(ζj − ζi)2 ≥

0, ∀ζ ∈ RN . Then,
(
L(t) + LT (t)

)
and LT (t)L(t) are

both nonnegative. The rest of the lines are similar to the
proof in Theorem 1. Define Q(t) = − 1

2

(
L(t) + LT (t)

)
−

σν̄LT (t)L(t). Since (16) holds, Q(t) ≤ 0, which leads to
V̇ ≤ 0. Then the system is globally stable.

Consider an infinite sequence V (ti), i = 1, . . ., where
the time ti approaches infinity as i approaches infinity.
Notice from Q(t) that V̇ (ti) = 0 only if all the locally
connected agents at time ti reach consensus. There exist
tk and tl, where tl − tk ≥ T such that [tk, tl] encom-
passes some time interval across which the agents are uni-
formly jointly strongly connected. Then, limk→+∞ V̇ (tk) =
limk→+∞ V̇ (tk+1) = . . . = limk→+∞ V̇ (tl) = 0, which
implies that y ∈ S = {yi = yj ,∀ i, j}, i.e., output consensus
is achieved.

Therefore, following the proof in Theorem 1, the system
will converge to the equilibrium point that is exactly the
unique optimal point. Consequently, Algorithm 1 will con-
verge to the optimal point.

C. Design of the Coupling Gain

Theorems 1 and 2 provide sufficient conditions for con-
vergence to the optimal point. In this subsection, we proceed
to discuss the design of the coupling gain σ given the values
of α, β, γ, C,Ki, Ji,∀i ∈ N .

Note that all agents should have the same σ in order
to converge to the optimal point, which means that all
agents should have a predetermined protocol to design a
proper identical coupling gain. For instance, the coupling
gain can be simply chosen as σ = kσe, where k < 1 is a
predetermined positive constant and σe is the threshold of
coupling gains obtained in the above theorems.

To say the least, though some graph information is re-
quired in order to obtain the exact threshold σe, by the fact
that the upper bounds in (14) and (16) are positive, there
always exists a small-enough σ such that the trajectories
of Algorithm 1 will converge to the optimal point. In fact,
for proper parameters, there is usually a wide feasible range
for the coupling gain. Let us take for instance the quadratic
functions (i.e., linear time-invariant systems in (8)) from the
perspective of passivity, with α, β, γ = 1, C = I . When the
strongly convex index µi > 1, it can be shown by solving
an LMI in [23] that the IFP index νi is infinitesimal for each
agent. Then σe can be arbitrarily large based on the above
theorems.

We will derive design methods free of graph information
in the near future.

V. A NUMERICAL EXAMPLE

We present a numerical example to demonstrate the effect
of Algorithm 1 over switching digraphs in this section.



Consider a network of 4 agents possessing the following
local objective functions, respectively,

fi(x) = 0.4(x− i)2, x ∈ R, i = 1, 2, 3, 4.

Let α, β, γ = 1, and Ji = diag{1/i},Ki = diag{i}. Then it
can be obtained that each subsystem in (8) is IFP with νi =
−0.3125,∀i. Next, we consider two cases of topologies. The
graph G(t) is arbitrarily switching among three modes 1 ←
2 ← 3 ← 1 , 2 ← 3 ← 4 ← 2 , and 1 ←
3 ← 4 ← 1 . The corresponding graph Laplacians

are L1 =


1 −1 0 0
0 1 −1 0
−1 0 1 0
0 0 0 0

, L2 =


0 0 0 0
0 1 −1 0
0 0 1 −1
0 −1 0 1

,

and L3 =


1 0 −1 0
0 0 0 0
0 0 1 −1
−1 0 0 1

, respectively.

The threshold coupling gain is obtained as σe = 1.60 in
(16). Algorithm 1 is tested on MATLAB with xi(0) ∈ [0, 1],
λ(0) = 0 satisfying the initial condition, and σ = 0.70 lower
than the threshold. The convergence results are shown in
Fig. 1. It can be observed that the trajectories of xi asymp-
totically converge to the optimal solution x∗i = 2.5, ∀i.
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Fig. 1. The trajectories of xi over a uniformly jointly strongly connected
switching digraph.

VI. CONCLUSION

This paper has addressed a distributed optimization prob-
lem via input feedforward passivity. An IFP framework has
been adopted to construct a distributed algorithm that is
applicable over directed and uniformly jointly connected
switching topologies. Sufficient convergence conditions have
been derived for the design of a suitable coupling gain.

Future work may consider the proposed distributed algorithm
in more complicated communication constraints.
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