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ABSTRACT 

A special class of RC shear wall is identified with short shear span, attributed to the high 

coupling degree in the elastic design of tall buildings located in low-to-moderate seismicity 

regions. The short shear span characteristic precludes plastic hinge formation and increase the 

susceptibility of shear failure during seismic events. It is noted that shear damage alone does not 

indicate collapse by default. This paper formulates a Modified Mohr’s Axial Capacity Model 

associated with out-of-plane buckling, to quantify the residual axial capacity of shear damaged 

heavily reinforced walls. The model was benchmarked against four walls previously tested to 

axial failure. 

Keywords: reinforced concrete shear walls; short shear span; axial collapse, out-of-plane 

buckling; Mohr’s circle; low-to-moderate seismic region 

Shortened title: Axial collapse model for shear walls 

1. Introduction 
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The axial collapse of a special class of reinforced concrete (RC) shear walls due to seismic 

activity has been experimentally investigated in Looi et al. [2017] and Looi [2017] with seven 

walls; see Table 1. This special class of RC shear walls is largely found in shear wall buildings 

located in low-to-moderate seismic regions but at the same time, experience high typhoon winds 

(such as Hong Kong). The buildings are not seismically designed but strongly coupled with 

coupling beams to control roof drift. These walls, which have the distinct features of a short 

shear span (with or without a transfer structure), the ability to sustain a considerable axial load 

and are not designed with a strength hierarchy, are essentially a sub-structure at the base of a 

coupled shear wall. Figs. 1(a) and 1(b) are typical examples of these types of walls, where the 

wall adjacent to the transfer structure as shown in Fig. 1(b) has the smallest ratio of the shear 

span-to-length (SLR = a/L, where a is the shear span of the wall and L is the length of the wall). 

Bending moment diagrams (BMD) are drawn next to the walls to show the shear span changes.  

The axial collapse behaviour of RC walls with a short shear span is found to be significantly 

dependent on the applied axial stress to shear stress capacity ratio (p/v) in previous test results 

[Looi, 2017]. Fig. 2 illustrates the unique variations in the patterns of axial stiffness (Kaxial) of 

wall specimens with a short shear span that spans the drift ratios (DR). Fluctuations in the axial 

stiffness are observed in Fig. 2(a) for Specimens C30-N-ALR01, C30-N-ALR02, C30-B-ALR02 

and C30-N1%-ALR02 with p/v < 2. These wall specimens show axial tensile extension at certain 

drifts due to the tension of the vertical reinforcements, rotation of the diagonal struts in the 

concrete, and unrecoverable cracks. The vertical reinforcement was monolithically cast with 

sufficient anchorage length provided by a continuous 90 degree hook in the base, allowing full 

development of bond strength, hence the possibility of steel being pulled-out from the footing is 

unlikely and may not cause axial tensile extension. Degradation of axial stiffness under 
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compression action can be observed in Fig. 2(b) for p/v ≥ 2, including cases with a high axial 

load (C30-N-ALR03 and C30-N-ALR04) and more concrete strength (C60-N-ALR02), which 

differentiate them from those with previous fluctuating behaviour. Plotting the axial stiffness 

degradation is useful for providing a unique perspective into the governing failure mode. Table 2 

summarises the p/v ratio of the tested walls. In the opinion of the author, a p/v ratio of 2 appears 

to be the point that differentiates between the two different types of axial stiffness behaviours 

(i.e., tension-compression or compression-compression excursions). Interestingly, the axial load 

ratio (ALR = Po / (Ag fc,m′), where Po is the axial load sustained by the wall at zero eccentricity, 

Ag is a gross cross-sectional area of the wall and fc,m′ is the mean strength of the concrete) is not 

a direct indication of axial collapse but also depends on the shear stress capacity to differentiate 

the failure mode from axial collapse. For example, p/v < 2 applies to an ALR of about 0.2 on a 

30 MPa wall (C30-N-ALR02) whereas p/v ≥ 2 would apply to an ALR of about 0.2 on a 60 

MPa wall (C60-N-ALR02).   

Occasionally, a compression-compression load history (p/v ≥ 2) may also be found at the 

wall edge where there may not be tensile strain beyond yielding. However, such sudden brittle 

failure in the inelastic compression range as demonstrated in the testing of C30-N-ALR03, C30-

N-ALR04 and C60-N-ALR02 suggests that precaution should be taken with a wall with p/v ≥ 2. 

A simple fix is to limit the p/v ratio in structural framing (and not simply the ALR as observed in 

design codes) or apply capacity design factors to form flexural hinges, which means that this will 

not be a wall with a short spear span. If p/v ≥ 2 is unavoidable, Looi et al. [2017] recommended 

a check for collapse caused by drifting to determine whether there is axial collapse.  Note that the 

scope of the model proposed in this work is to specifically address walls with short shear span 

with p/v < 2 that are subjected to cyclic tension-compression excursions. 



4 

 

 

2. Research significance 

The detrimental effects of axial loading as evidenced from past experiences with earthquakes 

[Carpenter et al., 2011; Westenenk et al., 2012] demonstrate the risk of shear wall failure under 

axial loading after experiencing shear failure. The shortcomings of structural features in many 

low-to-moderate seismic regions, such as vertical irregularities with shear walls constructed 

adjacent to transfer structures and the inability of shear walls to form plastic hinges prior to shear 

failure indicate that there is a need for structural engineers to re-examine the seismic 

performance of this special class of RC walls with short shear span. However, there is no 

appropriate method available to perform this check. Hence, a Modified Mohr’s Axial Capacity 

Model is proposed in this paper along with a set of procedures that explicitly check the seismic 

capacity for axial collapse of shear walls with short shear span. This analytical model is 

expressed as an ALR based on Mohr’s circle framework, which involves the compression 

buckling of vertical steel reinforcements at the onset of instability, as opposed to the 

conventional consideration of tension and compression steel in designing for in-plane force in 

RC membrane panel [Clark, 1976] with a standard Mohr’s circle. 

 

3. Literature review 

3.1 Axial collapse model of shear walls 

With the understanding of the potential risk of the axial collapse of walls due to seismic 

activity, a quick review of the literature shows that the focus of many in the literature is on the 

axial collapse of columns and not walls [Elwood and Moehle, 2005; Hashemi et al., 2017]. 
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Wallace et al. [2008] investigated a method to assess the axial load-carrying capacity of lightly 

reinforced wall piers (0.3% reinforcement ratio) but derived a shear friction model which cannot 

be directly applied to the context of Hong Kong for walls with short shear span because common 

practice is heavy reinforcement and shear friction failure is not the dominant mode of failure as 

observed in related experiments [Looi et al., 2017; Looi, 2017].  

An arch resistance model [Yang et al., 2015] was proposed to evaluate the residual axial load 

carrying capacity of RC columns. The model was based on the sound theory of structural 

mechanics by extending the shear friction model [Wallace et al., 2008] to confined concrete with 

partially crushed core. However, the study did not consider buckling of the vertical 

reinforcement prior to axial collapse which contradicts the experimental evidence in the extant 

literature [Looi et al., 2017; Looi, 2017]. 

3.2 Out-of-plane buckling model of shear walls 

Fig. 3 shows the out-of-plane buckling of shear walls observed in the Christchurch 

earthquake [Kam et al., 2011] and experiments carried out by the authors [Looi et al., 2017; Looi, 

2017]. Similar out-of-plane buckling was experimentally observed by others (see [Goodsir, 1985; 

Rosso et al., 2016]). By examining the axial collapse of walls through the conventional energy 

method or kinematic relations (similar to the formulation by Euler [1759] for structurally 

unstable critical load in columns), it is postulated that axial collapse is closely associated with 

out-of-plane buckling under in-plane cyclic loading with the presence of axial loading. The 

distinct effects of the p/v ratio for categorising the failure mode associated with out-of-plane 

buckling are schematically shown in Fig. 4. When p/v < 2, tensile stress is present which 

indicates that the wall may experience cyclic inelastic tension-compression excursions (see Fig. 

4(a)). When p/v ≥ 2, the applied ALR is two times larger than the normalised shear stress, and 
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the entire wall experiences cyclic compression-compression loading with elastic recoverable 

tensile strain (see Fig. 4(b)). Underlying this assumption are three key mechanical models 

developed for out-of-plane buckling, namely: (i) Paulay and Priestley [1993] (hereinafter PP-93), 

(ii) Chai and Elayer [1999] (hereinafter CE-99) and (iii) Parra and Moehle [2017] (hereinafter 

PM-17). 

Eq. (1) shows the indicative value of normalised out-of-plane displacement (ξ) as a function 

of the mechanical ratio of the longitudinal reinforcement (m) at the wall edge proposed by 

Paulay and Priestley [1993]. 

ξ ≤ 0.5(1 + 2.35m - √5.53m2+4.70m)       (1) 

where m equals to ρv fy,v / fc′, ρv is the vertical reinforcement ratio, fy,v is the yield strength of the 

vertical reinforcement and fc′  is the strength of the concrete cylinder. 

Various equations to estimate the maximum residual tensile strain (εsm) of the longitudinal 

reinforcement in the preceding cycle before buckling occurs are shown in Eqs. (2) to (4) for PP-

93, CE-99 and PM-17 respectively. 

PP-93: εsm = 8 βcr (
t

Lbuck

)2 ξ         (2) 

CE-99: εsm = 
π2

2
(

t

Lbuck

)2 ξ + 3εy         (3) 

PM-17:  εsm = κπ2 (
t

Lbuck

)2 ξ + 0.005        (4) 

where βcr and κ are 0.8 to take account for the distance from the vertical reinforcement to the 

point of the initial crack closure, t is the thickness of the wall, Lbuck is the buckling length along 

the wall height, ξ is in accordance with Eq. (1) and εy is the yield strength of the vertical 
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reinforcement. Besides the publications by respective authors of PP-93, CE-99 and PM-17, more 

detailed form of derivation can be followed by referring to Appendix B in Maffei et al. [2014].  

The models of PP-93, CE-99 and PM-17 are broadly similar but with subtle differences in 

assumptions of the out-of-plane buckling curvature shape (i.e. constant curvature or sinusoidal 

curvature) and in the buckling length (i.e. buckling length of wall or full height of pinned-pinned 

column). Some studies [see for e.g., Rosso et al., 2016; Chai and Elayer, 1999; Menegon et al., 

2015] have concluded that both the PP-93 and CE-99 models provide conservative estimations of 

the residual tensile strain, but that provided by Eq. (3) of CE-99 is closer to the test results of 

columns [Chai and Elayer, 1999] and walls [Menegon et al., 2015]. Nonetheless, the wall 

experimental results [Rosso et al., 2016] showed that normalised out-of-plane displacement (ξ) 

can be greater than 0.5, which will affect the estimation of maximum residual tensile strain (εsm). 

The simplification in PM-17 [Parra and Moehle, 2017] is supposed to be a reasonable 

approximation that describes the behaviour of uniformly loaded columns tested by Chai and 

Elayer [1999]. 

3.3 Modelling of post-yield buckling of rebar  

Eqs. (2) to (4) are useful for estimating the maximum residual tensile strain in vertical 

reinforcements prior to buckling; however, they do not provide the equivalent buckling stress of 

the reinforcements. To address this limitation, Dhakal and Maekawa [2002a] provided a simple 

model which can estimate the critical buckling stress (σbuck) of vertical bars based on the inter-

relationship between the average tension and the compression envelope. The model is 

mathematically expressed in Eqs. (5a) to (5c) as summarised below. 
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where ε* and σl* are the strain and stress respectively of a special intermediate point on the 

tension envelope when the compression stress starts to decrease, σ* is the corresponding stress of 

the intermediate point, σl is the point-wise stress corresponding to strain ε, εy denotes the yield 

strain of steel, εu denotes the ultimate strain of steel, εsh denotes the strain of the steel at the 

beginning of strain-hardening, εsm was defined in Eqs. (2) to (4), s is the diameter of the steel, fy 

is the yield strength of the steel, fu is the ultimate strength of the steel and Es is the modulus of 

elasticity of the steel. 

 

4. Analytical model development 

4.1 Modified Mohr’s Axial Capacity Model 

In this paper, the ALR capacity prior to collapse is formulated based on Mohr’s circle 

framework [Clark, 1976], but modified with the inclusion of reinforcement buckling. Fig. 5 
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illustrates the vertical axial capacity formulation expressed in a Mohr’s circle framework, with 

normalised normal stress (σ/fc΄) as the abscissa and normalised shear stress (τ/fc΄) as the ordinate. 

Fig. 5(a) is the envelope circle of steel reinforcements provided by horizontal steel reinforcement 

in tension and vertical steel reinforcement in compression buckling. Fig. 5(b) plots the 

contribution of cracked concrete, where the cracked concrete is assumed to have zero tension 

capacity at the onset of collapse. The axial collapse of the shear wall due to the buckling of the 

vertical reinforcement is assumed to take place after diagonal shear failure of the reinforced 

concrete. The limitations of the model are discussed in the latter part of this paper. Eq. (6) is a 

mathematical representation of Figs. 5(a) and 5(b) at the compression stress axis. 
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where pcap is the axial compression stress capacity, ALRcap is the ALR capacity of the wall, ρv is 

the vertical reinforcement ratio at the wall edge or centre, σbuck is the compression buckling stress 

of the reinforcement and v/fc′ is the normalised shear stress capacity. The compression buckling 

stress capacity (σbuck) given by the vertical reinforcement can be estimated by using the Dhakal 

and Maekawa model [2002a], which is modified in this paper in Eqs. (5a) to (5c). 

4.2 Estimation of maximum shear stress capacity 

In Fig. 5(c), the applied axial stress (p) is a known parameter in engineering design. The 

challenge is then to estimate the shear stress capacity (v) of the wall with a short shear span. The 
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shear stress capacity can be conveniently estimated by using Eqs. (7a) to (7c) proposed in Looi et 

al. [2017] for RC walls with short shear span.  
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where ωv, ωh and ωv,be are the mechanical ratio of the vertical longitudinal reinforcement, 

horizontal stirrups and vertical reinforcement of the boundary confinement on one side, 

respectively and defined in Eq. 7(b). 
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where ρv is the vertical and longitudinal reinforcement ratio, ρh is the horizontal stirrup ratio, ρv,be 

is the vertical reinforcement ratio of the boundary confinement on one side, fy,v is the yield 

strength of the vertical longitudinal reinforcement, fy,h is the yield strength of the horizontal 

stirrups, fy,be is the yield strength of the vertical reinforcements of the boundary confinement and 

fcc′ is the confined concrete strength of the boundary confinement. It should be noted that the 

reinforcement ratios (ρv, ρh and ρv,be) are decimal numbers (not percentage) when applying the 

model. a denotes the shear span of the wall and the effective shear depth (d) is assumed to be 0.8 

L, where L is the wall length. 

The confined concrete strength is defined in Eq. 7(c). 
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where lbe is the length of the boundary confinement along the in-plane direction of the wall 

specimen, sv,hoop is the vertical distance between the hoops on the specimen in the boundary 

confinement, sh,vbe is the horizontal distance between the vertical reinforcements in the boundary 

confinement along the in-plane direction of the wall specimen, ρhoopbe,vol is the volumetric ratio of 

the hoop steel reinforcements (in percentage) and fy,hoop is the yield strength of the hoops.  

 

5. Analytical model calibration by using numerical analysis 

5.1 Numerical modelling of RC walls with short shear span  

Non-linear finite element analysis (NLFEA) models were constructed by using VecTor2 

[Vecchio, 1989] to benchmark with the experimental results in Looi et al. [2017] and Looi 

[2017]. VecTor2 is based on the modified compression field theory (MCFT) [Vecchio and 

Collins, 1986] and a refined version of the disturbed stress field model (DSFM) [Vecchio, 2000] 

implemented into NLFEA routines for concrete structures.  

The base compression pre-peak and post-peak curves for the concrete constitutive model 

were assigned the Popovics model for normal-strength concrete [Popovics, 1973] or Popovics 

model for high-strength concrete [Collins and Porasz, 1989; Thorenfeidt et al., 1987] depending 

on the concrete strength for walls with p/v < 2. A substantial sharp reduction in the compression 
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post-peak for walls with p/v ≥ 2 was found to be better simulated with the modified Park-Kent 

model [Kent and Park, 1971; Park et al., 1982].  Compression softening was modelled by using 

Vecchio 1992-B (e1/e0-Form) [Vecchio, 1992]; the tension stiffening effects were modelled by 

using the modified Bentz 2003 model [Bentz, 2005] and the tension softening effects were 

modelled by using nonlinear tension softening (derived by Hordijk who used data from 

Cornelissen et al. [1986]). VecTor2 uniquely considers both tension stiffening in cracked 

concrete and tension softening in regular concrete by taking the larger value in the post-cracking 

principal tensile stress [Wong et al., 2002]. Other inputs for concrete are shown in Table 3, 

which are taken from the literature [Wong et al., 2002; Palermo and Vecchio, 2007].  

For the steel constitutive model, Seckin’s model [1981] which accounts for the Bauschinger 

effects was selected; dowel actions that use the Tassios crack slip model [Vintzeleou and Tassios, 

1986] were included due to the heavily reinforced features of the wall specimens which may 

increase the shear capacity. The reinforcement buckling is modelled by using the model in 

Akkaya et al. (modified Dhakal-Maekawa model) [Akkaya et al., 2013] to account for the 

buckling effects of the reinforcement.  

The wall was modelled with plane membrane elements and the meshing was fixed at 50 x 50 

mm, which is finer than the recommended mesh size in related VecTor2 mesh sensitivity studies 

[Palermo and Vecchio, 2007; Lu and Henry, 2017]. Nonetheless, a quick sensitivity study 

showed that a finer mesh of 25 x 25 mm provides comparable results. The wall was subjected to 

reverse-cyclic loading (by support displacement) with two repeated cycles at each target 

displacement at the centroid node at a height of 950 mm above the base beam. Vertical loading 

was applied along the top rigid RC beam by distributing the load onto 19 nodes. The base of the 

walls was modelled as a fixed boundary with multiple nodes that are pinned. As observed from 
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the experiment [Looi et al., 2017], there was no noticeable shear sliding. The contribution of 

friction resistance between wall-base of the monolithically cast specimen is exceptionally high, 

and hence interface joint element was not considered for this case.  

Due to the size difference of the concrete wall and base, the shrinkage effects were 

investigated by using the pre-strain function in VecTor2 [Vecchio, 1989]. A -400 microstrain 

suggested by Palermo and Vecchio [2002] and up to an average ultimate of -780 microstrain 

proposed in ACI 209.2R-08 [2008] was applied over a wall height of about twice the thickness 

(i.e., 150 mm) above the base. It was found that a larger pre-strain “softens” the stiffness. 

However, there was no significant effects on the peak strength, post-peak values and pinching of 

hysteresis loop. Interestingly, the initial stiffness of the model without considering pre-strain fits 

the best with all the walls tested previously by the authors in Looi et al. [2017]. 

Since walls with short shear span are commonly heavily reinforced (1% to 2% of the 

reinforcement ratio), the use of smeared reinforcements in modelling can thus be justified. It is 

worth noting that even for lightly reinforced walls, some researchers have found that smeared 

reinforcement models provide as good or a similar degree of accuracy compared to explicit truss-

link reinforcement models [Hoult et al., 2017]. The default non-linear analysis parameters are 

used which is recommended for shear wall analysis. Typical NLFEA models of the tested walls 

[Looi et al., 2017; Looi, 2017] simulated with a pre-processor, FormWorks, developed for 

VecTor2 modelling [Wong et al., 2002] are shown in Fig. 6, in which Fig. 6(a) shows the model 

for C30-B-ALR02 with distinct regions of the boundary confinement and Fig. 6(b) shows the 

model for the rest of the tested walls with different configurations of the applied axial stress, 

concrete strength and reinforcement ratio. 
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The results of the NLFEA models can be readily extracted by using a program called 

Augustus as a post-processing tool [Bentz, 2010]. The maximum residual tensile strain at the 

cycle before buckling instability takes place was extracted from the elements found at the two 

edges at the bottom of the wall with p/v < 2.  

5.2 Calibration of buckling length 

The buckling length (Lbuck) is required to estimate the maximum residual tensile strain (εsm) 

with Eqs. (2) to (4). Fig. 7 shows the use of CE-99 [Chai and Elayer, 1999] superimposed onto 

the maximum residual tensile strains obtained from the NLFEA models and strain gauge reading 

of the four wall specimens tested with p/v < 2 [Looi, 2017], namely C30-N-ALR01, C30-N-

ALR02, C30-B-ALR02 and C30-N1%-ALR02. CE-99 is chosen in this study as it is an 

enhanced version of PP-93 and known to be less conservative. The approximation in PM-17 

[Parra and Moehle, 2017] was found to be comparable with CE-99 [Chai and Elayer, 1999], 

hence CE-99 is recommended.  

A mean value of buckling length factor (k) equals to 0.7 seems to fit most of the walls tested 

with a higher mechanical reinforcement ratio (m) in Eq. (1) by benchmarking CE-99 [Chai and 

Elayer, 1999] with the test results and the NLFEA predictions, except for C30-N1%-ALR02. For 

a lower m value as in the case of C30-N1%-ALR02, k = 1.0 is recommended. The low εsm value 

captured by the strain gauges in C30-N1%-ALR02 is probably not a representative result. Rosso 

et al. [2016] observed that the inflection points for single layer reinforcements in thin RC walls 

are approximately 75% (k = 0.75) of the wall height, which shows that a ballpark figure of 0.7 ≤ 

k ≤ 1.0 with a roller-fixed boundary condition is not unreasonable. 



15 

 

Calculations were carried out by using an alternative solution based on RC columns [Dhakal 

and Maekawa, 2002b]. The buckling length is approximately in the order of the distance of two 

to four stirrups which is about 150 mm to 400 mm (except for C30-N1%-ALR02) which 

corresponds to k = 0.5, and about a distance of four stirrups (560 mm corresponds to k = 0.7) for 

C30-N1%-ALR02. The results indicated that a higher εsm can be attained but subjected to 

uncertainties. The actual behaviour is indeed more complex than the idealised mechanism 

proposed by PP-93 [Paulay and Priestley, 1993], CE-99 [Chai and Elayer, 1999] or PM-17 [Parra 

and Moehle, 2017]; for example, the redistribution of internal forces takes place after concrete 

cover and partial core spallings, imperfect vertical alignment of the reinforcements which causes 

eccentricity and strain gradients along the wall length are likely to affect the local buckling 

length at the edge of the walls. Therefore, for this study, Lbuck for walls with p/v < 2 is considered 

with a buckling length factor in the range of 0.7 ≤ k ≤ 1.0, which most approximates the 

experimental and NLFEA results.  

 

6. Explicit check on axial collapse validated with experimental results  

A systematic and explicit check on the axial collapse of RC walls with short shear span that 

incorporates the Modified Mohr’s Axial Capacity Model is proposed here to serve as a final 

check after the routine structural design of walls. A flowchart is provided in Fig. 8 to better 

explain the process. Two of the most important factors, namely the ALR capacity and the axial 

stress demand will be elaborated, as follows. 

6.1 Axial capacity of RC shear walls with short shear span 
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The axial capacity of RC shear walls with short shear span can be estimated in eight steps, as 

shown on the left diagram of Fig. 8. They are as follows. 

Step 1: The SLR is determined. 

Prior to achieving a wall with a short shear span, the SLR needs to be determined. The SLR can 

be obtained after carrying out a standard structural analysis with M/(VL) computation, where M 

is the bending moment at the base of the wall, V is the shear force at the base of the wall and M/V 

yields the shear span (a). The results of a previous study carried out by the authors [Su and Looi, 

2016; Looi et al., 2015] indicated that two distinct types of shear performances are identified in 

two groups, namely Group 1 which has a strut angle of 30° (SLR = 1.7) and Group 2 which has 

strut angles of 45° and 60° (SLR = 1.0 and 0.6 respectively). It should be noted that these strut 

angles refer to angles formed by the diagonal strut imposed by a point load with respect to the 

longitudinal axis of a deep RC beam, and not to be confused with the strut angle in RC walls 

with short shear span. However, the SLR parameter is commonly shared among them. 

Furthermore, a study on SLR [Looi, 2017] indicated that a wall with a short shear span should 

have an SLR of less than or equal to 1.5. If a wall has an SLR greater than 1.5, it is a slender wall 

and hence beyond the scope of this study. 

Step 2: The shear stress capacity is estimated. 

After confirming that the shear wall is a wall with short shear span, the shear stress capacity (v) 

which is the shear response of the wall with short shear span that interacts with the axial stress 

(vp), concrete strength (vc) and reinforcement (vs), has to be estimated. The previously developed 

model [Looi et al., 2017] that is rewritten in Eqs. (7a) to (7c) are the recommended empirical 

equations for estimating the shear stress of walls with short shear span.  
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Step 3: Zone S or F 

A standard analysis of the axial moment with a slope of the axial-moment (P-M) is carried out to 

theoretically obtain the flexural moment (Mf) and further compute the associated shear (Vf) by 

dividing Mf by its shear span (Vf = Mf/a). The ratio of the Vf to the shear capacity (V = v x bd) 

calculated in Step 2 is to further differentiate the wall with short shear span into either a shear 

controlled (Zone S) or flexural controlled (Zone F) wall. If a segment of the wall has a Vf / V that 

is less than unity, it is a flexural controlled wall in Zone F and hence beyond the scope of this 

study. On the contrary, if the wall has Vf/V that is more or equal to unity (i.e., Zone S), then Step 

4 is carried out. 

Step 4: The axial stress over shear stress (p/v) ratio and its governing failure modes are used. 

The axial stress demand (p) is a known parameter in engineering design and the shear stress 

capacity (v) is calculated in Step 2. The distinct use of the p/v ratio for categorising the failure 

modes have been previously discussed, where p/v < 2 denotes cyclic tension-compression 

excursions and p/v ≥ 2 denotes cyclic compression-compression excursions.  

Step 5a: The buckling length is estimated. 

The buckling length factor (k) was calibrated from the NLFEA models and tests, based on the 

physical formulation of CE-99 [Chai and Elayer, 1999]. k = 0.7 is recommended for a higher 

reinforcement ratio of 2% vertical reinforcement (m > 0.4 with approximately fy,v = 600 MPa and 

fc′ = 30 in Eq. (1)) and k = 1.0 is recommended for a lower reinforcement ratio of 1% vertical 

reinforcement (m < 0.4). 

Step 5b: Collapse due to drift is checked. 
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A check for collapse due to drift is recommended per Looi et al. [2017] for walls with short shear 

span with p/v < 2 before proceeding to Step 6. 

Step 6: The maximum residual tensile strain of the vertical reinforcement is estimated. 

With k determined in Step 5a, the maximum residual tensile strain (εsm) can be easily estimated 

by using Eq. (3). CE-99 [Chai and Elayer, 1999] is applied here as it is known to be less 

conservative and particularly important as an ultimate check for axial collapse in the rare event 

of an earthquake in low-to-moderate seismic region. 

Step 7: Post-yield buckling of rebar is modelled. 

The critical buckling stress (σbuck) of the vertical bars that is formulated based on the inter-

relationship between the average tension and the compression envelope [Dhakal and Maekawa, 

2002a] can be estimated by using Eqs. (5a) to (5c).  

Step 8: The ALR capacity is computed. 

The ALR capacity that is mathematically formulated in Eq. (6) is computed based on the 

proposed Modified Mohr’s Axial Capacity Model. 

6.2 Axial stress demand on RC shear walls with short shear span 

Out-of-plane buckling in a wall typically occurs at the edges before it takes place at the 

centre of the wall. The axial damage at the edge of a wall with short shear span may lead to 

significant P-delta effects from the walls above that are beyond the shear span, and eventually 

leads to a near collapse state in which the walls cannot be repaired. Hence, axial collapse is 

assumed when the axial stress of an element at the edge of a wall exceeds its axial capacity. The 

axial stress of RC walls with short shear span can be calculated in two steps (Steps 9 to 10) as 
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shown on the right side of Fig. 8. Steps 11 to 12 are optional steps to determine whether there is 

axial collapse at the centre of the wall. 

Step 9:  The strut-and-tie method is adapted. 

The strut-and-tie method (STM) can be adapted to provide another perspective, in which the 

walls can be idealised with an embedded diagonal strut balanced by a tension tie that has yielded 

in the longitudinal steel in cyclic tension-compression (p/v < 2) (see Fig. 9(a)). On the other hand, 

in cyclic compression-compression (p/v ≥ 2), the walls can be considered as a large fan shaped 

strut in the STM, which induces significant crushing of the web at the base (see Fig. 9(b)). The 

diagonal and fan shaped struts will impose additional axial stress at the wall edges, and hence 

commonly, axial failure takes place at the wall edges first. 

Depending on the SLR of the wall, additional vertical stress is induced by the diagonal strut 

with the use of the STM. Eq. (8) is formulated to compound the total ALR demand at the wall 

edges, where limits to the SLR are recommended, roughly corresponding to a strut angle (θ) of 

30˚ ≤ θ ≤ 60˚ with respect to the horizontal axis of the shear wall.  

5.1≤SLR≤5.0 where
'

SLR×+
=ALRedge

cf

vp
      (8) 

Step 10: Axial collapse is checked at the wall edges. 

The ALR capacity calculated in Step 8 is compared to the ALR demand at the wall edges in Step 

9. If demand exceeds the capacity, axial failure will occur. Further calculations in Step 11 as 

shown in Fig. 8 are then optional. However, if axial failure does not occur at the wall edges, the 

wall is considered to be stable although it is experiencing shear damage. 
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6.3 Previously tested shear walls - examples 

The procedure outlined above for explicitly checking axial collapse by using the Modified 

Mohr’s Axial Capacity Model is applied to walls with short shear span that have been previously 

tested [Looi, 2017]. Figs. 10(a) to 10(d) show the checks with the use of the Mohr’s circle for the 

four tested walls with p/v < 2, namely C30-N-ALR01, C30-N-ALR02, C30-B-ALR02 and C30-

N1%-ALR02 respectively. The post-processed results of digital image correlation (DIC) show 

that the cracks and spalled concrete are included to illustrate failure in the form of collapse at the 

wall edges and centre of the wall near the base of the wall.  

C30-N-ALR01 fails at the edges due to local out-of-plane buckling without causing a 

noticeable decrease in axial stress during the test; nonetheless, the significant damage at the wall 

edges cannot be repaired and axial shortening is a sign of axial collapse. Interestingly, the 

Mohr’s circle of the applied ALRcentre in Fig. 10(a) is situated to the right of the Mohr’s circle of 

the cracked concrete, thus indicating the existence of tension in the vertical steel. This explains 

the large amount of concrete spalling observed in the testing.  

Fig. 10(b) to 10(d) show the state of axial collapse at the wall edges and excluded the state at 

the wall centre for clarity. C30-N-ALR02 experiences axial collapse at the wall edges (see Fig. 

10(b)). C30-B-ALR02 has boundary confinements, which shows marginal failure due to axial 

collapse at the wall edges (see Fig. 10(c)). It is worth noting that the computation for boundary 

confinements requires a vertical steel ratio (ρv) of the boundary confinement on one side, and in 

this case, it is about 3%. The ratio was calculated by taking the cover thickness into account, 

with a wall thickness area of 80 mm and a boundary confinement length of 200 mm. C30-N1%-

ALR02 is a wall with less reinforcement, so its capacity is clearly less. Hence, C30-N1%-ALR-

02 fails at the wall (see Fig. 10(d)).  
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The results of the explicit checks concur well with the experimental results [Looi, 2017]. 

Details on the calculations used to estimate the maximum residual tensile strain by using CE-99 

[Chai and Elayer, 1999] and buckling stress [Dhakal and Maekawa, 2002a] for one of the walls 

with p/v < 2 (i.e. C30-N-ALR01) are found in Appendix A as an example of the ease of carrying 

out the calculation steps. Table 4 shows a summary of the calculations in a tabulated form. 

6.4 Limitations of the model 

Assumptions were made in developing the Modified Mohr’s Axial Capacity Model. The 

known limitations are highlighted here to remind engineers to use the model with care in 

practical applications.  

(a) The RC walls with short shear span are not designed with a strength hierarchy, have an SLR 

that is less than 1.5, vertical reinforcement ratio that is more than 1%, and shear failure precedes 

the formation of plastic hinges;  

(b) axial collapse behaviour is assumed to be closely related to out-of-plane buckling; 

(c) the Modified Mohr’s Axial Capacity Model should be only used to check walls with p/v < 2; 

(d) walls with short shear span (with any value of p/v) should be checked for collapse by 

examining the limits of drift; 

(e) cracked concrete with zero tension capacity is assumed; and 

(f) post-peak shear sliding failure is assumed does not occur at the base of walls with sufficient 

dowel action, and hence axial collapse by means of concrete crushing and rebar buckling at the 

wall edge precedes the shear yielding of the vertical reinforcements. The buckling of the vertical 

reinforcement is assumed to take place after diagonal shear failure of the reinforced concrete. 
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This failure mode was observed from the experiment in Looi et al. [2017], with insignificant 

pinching of hysteresis loop induced by shear sliding. 

 

7. Summary  

RC walls with short shear span are a special class of shear walls largely found in low-to-

moderate seismic regions. The risk of collapse of these walls due to seismic activity in the rare 

event of an earthquake has called for a suitable method that can be used to check the ultimate 

seismic performance of these walls. Hence, this paper has provided a Modified Mohr’s Axial 

Capacity Model for estimating the axial collapse of RC walls with short shear span in seismic 

events, which is expressed as an ALR formulated based on Mohr’s circle framework.  

The Modified Mohr’s Axial Capacity Model assumes that the axial collapse of walls due to 

seismic activity is closely related to out-of-plane buckling. The model incorporates the maximum 

shear capacity of cracked concrete and the compression buckling of vertical steel reinforcements 

at the onset of instability. The buckling length which is inter-dependent with the residual 

maximum tensile strain is calibrated by using NLFEA numerical models and corroborated with 

strain gauge readings from previous tests. A systematic procedure for determining the axial 

collapse of RC walls with short shear span has been elaborated, and shown to agree well with the 

observed axial collapse of four tested RC walls. Given that the proposed Modified Mohr’s Axial 

Capacity Model along with an explicit process for determining axial collapse, structural 

engineers can now perform checks on RC walls with short shear span within the limitations of 

this model. 
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APPENDIX A 

An example of calculating the maximum residual tensile strain (εsm) by using CE-99 [Chai and 

Elayer, 1999] and extending the model by calculating the buckling stress with the reinforcement 

post-yield model [Dhakal and Maekawa, 2002a] is presented here with C30-N-ALR01 from Looi 

et al. [2017]. 

Dimensions and properties of C30-N-ALR01 

H = 800 mm, L = 800 mm, t = 80 mm; fc΄ = 29.1 MPa, ρv = 1.96%, fyv = 601 MPa, fu = 644 MPa, 

εy = 0.003, εsh = 0.02, εu = 0.12, s = 10 mm, and Es = 203,000 MPa 

Step 1: Estimating maximum residual tensile strain [Paulay and Priestley, 1993; Chai and 

Elayer, 1999] 

From Eq. (1), 41.0=
1.29
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From Eq. (3), 
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Step 2: Calculating buckling stress by using reinforcement post-yield model [Dhakal and 

Maekawa, 2002a] 
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From Eq. 5(a), 
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Following point wise stress-strain relationship: 
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At yield plateau (εy ≤ εsm ≤ ε*): 

From Eq. 5(b), point wise stress-strain relationship is followed 
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At tension strain hardening, compression descending slope (εsm ≥ ε*): 
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From Eq. 5(c), 

2.120=  hence     ;2.120<4.119=
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Since εsm = 0.023 > ε* = 7(0.003) = 0.021, hence σbuck = 120.2 MPa 
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Table 1 - Previously tested RC walls with short shear span in Looi et al. [2017] and Looi [2017] 

Specimen Average 

axial load 

(Po), kN 

ALR Vertical 

reinforcement ratio 

(ρv), %  

Remarks on the test objective 

C30-N-ALR01 220 0.12 2 Low axial load 

C30-N-ALR02 380 0.22 2 Common axial load in Hong 

Kong 

C30-N-ALR03 680 0.38 2 Higher axial load anticipated in 

an earthquake event 

C30-N-ALR04 780 0.44 2 Highest limit of axial load 

C60-N-ALR02 850 0.22 2 Higher concrete strength 

C30-B-ALR02 420 0.24 3 (edge), 2 (centre) Boundary element detailing 

C30-N1%-ALR02 410 0.21 1.2 Lower steel ratio 

 

Table 2 - Axial stress over shear stress ratios (p/v) of tested wall specimens. 

Specimen Shear capacity 

obtained from 

experiment, 

kN 

p/v Remarks on the cyclic excursion 

at the wall edge  

C30-N-ALR01 252.5 0.87 tension-compression 

C30-N-ALR02 245.0 1.55 tension-compression 

C30-N-ALR03 249.3 2.73 compression-compression 

C30-N-ALR04 250.9 3.11 compression-compression 

C60-N-ALR02 395.5 2.15 compression-compression 

C30-B-ALR02 310.6 1.35 tension-compression 

C30-N1%-ALR-02 240.4 1.71 tension-compression 
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Table 3 - Miscellaneous inputs for concrete in VecTor2 [Vecchio, 1989]. 

Input 

parameter 

Model  Input 

parameter 

(continued) 

Model 

Confined 

strength 

Kupfer/Richart [Kupfer et al., 

1969; Richart et al., 1928] 

 Crack width 

check 

Agg/2.5 Max. Crack Width 

Dilation Variable – Isotropic [Kupfer et 

al., 1969] 

 Crack slip 

calculation 

Walraven [1981] 

Cracking 

criterion 

Gupta 1998 [Gupta, 1998]  Creep and 

relaxation 

Not considered 

Crack stress 

calculation 

Basic (DSFM/MCFT) 

[Vecchio and Collins, 1986; 

Vecchio, 2000] 

 Hysteretic 

response 

Palermo 2002 (w/Decay) 

[Palermo and Vecchio, 2002] 
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Table 4 - Explicit check for two-tier axial collapse due to seismic events on tested specimens with p/v < 2. 

Specimen Concrete 

cylinder 

strength 

(fc'), 

 MPa 

Shear 

stress 

capacity 

(v), 

 MPa 

Vertical 

reinforcement 

ratio (ρv),  

% 

Buckling 

stress 

(σbuck), 

MPa 

ALRcap  

=  

v/fc΄ +  

ρv σbuck/ fc΄ 

Applied ALRedge  

=  

(p + v x SLR)/ fc΄ 

Status at 

wall edge 

Applied 

ALRcentre  

= 

 p/ fc΄ 

Status at 

wall centre 

(optional 

check) 

C30-N-ALR01 29.1 3.95 2 120.2 0.22 0.25 Collapse 0.12 OK 

C30-N-ALR02 26.4 3.83 2 120.2 0.23 0.37 Collapse 0.22 OK 

(marginal) 

C30-B-ALR02 27.3 4.85 3 (edge),  

2 (centre) 

146.9 0.39 0.42 Collapse 

(marginal) 

0.24 OK 

C30-N1%-ALR02 30.8 3.76 1.2 202.2 0.20 0.33 Collapse 0.21 OK 

(marginal) 
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Fig. 1 - RC shear walls with short shear span (a) over-strength of coupling shear wall (b) over-

strength of coupling shear wall on transfer structure 
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Fig. 2 - Axial stiffness degradation for (a) p/v < 2, cyclic tension-compression excursion (b) p/v 

≥ 2, cyclic compression-compression excursion. 

 

 

Fig. 3 - Out-of-plane buckling of shear walls under seismic action (a) Christchurch earthquake 

[Kam et al., 2011] (b) Experiment [Looi et al., 2017; Looi, 2017] 
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Fig. 4 - Inter-relationship between axial collapse and out-of-plane buckling in walls with short 

shear span (a) p/v < 2, cyclic tension-compression excursion (b) p/v ≥ 2, cyclic compression-

compression excursion. 
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Fig. 5 - Schematic illustration of Modified Mohr’s Axial Capacity Model (a) contribution from 

envelope of steel (b) contribution from cracked concrete (c) applied ALR 
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Fig. 6 - NLFEA model using VecTor2 [Vecchio, 1989] (a) wall with boundary confinement (i.e. 

C30-B-ALR-02) (b) other walls with different configuration of applied axial stress, concrete 

strength and reinforcement ratio 
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Fig. 7 – Calibration of buckling length factor (k) with maximum residual tensile strain (εsm) of 

experimental results, NLFEA and prediction model of CE-99 [Chai and Elayer, 1999]. 
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Fig. 8 - Flowchart of explicit check for axial collapse of RC walls with short shear span in seismic events. 
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Fig. 9 - STM for (a) p/v < 2, cyclic tension-compression excursion with diagonal strut and 

yielded ties (b) p/v ≥ 2, cyclic compression-compression excursion with fan shaped strut and 

elastic ties. 
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Fig. 10 - Examples of checks for axial collapse on walls with short shear span that experience 

cyclic tension-compression excursion (p/v < 2) (a) C30-N-ALR01 (b) C30-N-ALR02 (c) C30-B-

ALR02 (d) C30-N1%-ALR02 


