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Abstract 15 

Membrane separation properties are constrained by a tradeoff relationship between 16 

permeability and selectivity. This tradeoff relationship has been well established for 17 

gas separation membranes in the form of the Robeson’s upper bound. In contrast, the 18 

upper bound relationship is much less established for thin-film composite (TFC) 19 

polyamide membranes used for desalination. In this work, we analyzed the tradeoff 20 

between the water permeance and the water/NaCl selectivity for TFC membranes 21 

gathered from more than 300 published papers. A clear upper bound behavior 22 

relationship is established, and the various effects of membrane synthesis conditions 23 

and modifications are reviewed in relation to this permeance-selectivity tradeoff. Our 24 

work provides a critical tool for the evaluation and benchmarking of future membrane 25 

development works in the context of desalination and water reuse. 26 

 27 

Keywords: Upper bound; permeance-selectivity tradeoff; Thin-film composite 28 

polyamide; Reverse osmosis membranes; Desalination  29 
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1. Introduction  31 

Membrane-based desalination and water reuse have gained increasing popularity in 32 

arid regions to cope with water scarcity [1, 2]. These applications typically use 33 

thin-film composite (TFC) reverse osmosis (RO) and nanofiltration (NF) membranes, 34 

where a thin polyamide rejection layer is synthesized on top of a porous substrate by 35 

an interfacial polymerization (IP) reaction [3]. TFC membranes with greater water 36 

permeability can significantly reduce the specific energy consumption, whereas 37 

increasing their salt rejection is beneficial to improve the product water quality [4]. 38 

Nevertheless, there exists a strong tradeoff between membrane water permeability and 39 

selectivity: increasing water permeability generally leads to reduced salt rejection 40 

[5-7]. 41 

 42 

Historically, the tradeoff between membrane permeability and selectively was first 43 

introduced in the context of gas separation. In 1991, Robeson [8] published his 44 

classical work on the “upper bound” for the separation factor and permeability for 45 

two-gas systems (e.g., O2/N2, CO2/CH4, etc.), which quickly became a standard 46 

benchmark for gas separation membranes. Owing to the huge success of this seminal 47 

work, Robeson [9] published a follow-up paper in 2008 to update the upper bound by 48 

including several newly developed membrane materials (e.g., ladder-type and 49 

perfluorinated polymers). To date, the 2008 Robeson’s upper bound (Fig. 1a) is 50 

regarded as the golden ruler to gauge nearly all new membrane development works in 51 
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the gas separation field [10-17]. 52 

 53 

Compared to the huge success of the Robeson’s upper bound in gas separation, the 54 

upper bound is much less established for desalination membranes. For example, Tang 55 

and coworkers [7] reported the tradeoff relationship between water permeability 56 

coefficient and NaCl rejection based on 11 commercial TFC polyamide RO and NF 57 

membranes. In 2011, Geise et al. [5] formalized the theoretical framework for the 58 

upper bound of desalination membranes on the basis of classical solution-diffusion 59 

theory [18] for the first time. These authors then provided a log-log upper bound plot 60 

of the intrinsic water/NaCl permeability selectivity (Pw/Ps) vs. the intrinsic water 61 

permeability Pw for a set of 26 membranes of various chemistries (Fig. 1b). In their 62 

approach, the calculation of Pw and the intrinsic NaCl permeability Ps requires the 63 

determination of the exact thickness of rejection layers, which is often challenging for 64 

TFC polyamide membrane due to the nanosized voids contained in their 65 

“ridge-and-valley” surface roughness structures [19-22]. In a more recent review 66 

paper, Werber et al. [6] reported the tradeoff relationship in the form of water-salt 67 

permselectivity A/B vs. the water permeability coefficient A (Fig. 1c), which provides 68 

a simpler way to evaluate polyamide RO membranes. Nevertheless, all the existing 69 

attempts relied on relative small-sized data sets. A more comprehensive survey of the 70 

literature is yet to be performed to establish the state-of-the-art upper bound for 71 

desalination membranes. 72 
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 73 

In this study, we analyzed the separation performance of TFC RO and NF membranes, 74 

both commercial ones and those prepared in-house, using a dataset collected from 75 

more than three hundred of papers published in the last three decades. On this basis, 76 

we formulated their upper bound relationship, which could serve as a standard 77 

reference in the field of desalination membranes much like the Robeson’s upper 78 

bound for gas separation membranes. We further examined the effect of various 79 

membrane synthesis conditions on the resulting separation performance using the 80 

upper bound as a reference framework. Our study provides a new critical tool for the 81 

evaluation of membrane development works. 82 

 83 

 84 

Fig. 1. The tradeoff between membrane permeability and selectivity reported in the literature. 85 
(a) The Robeson upper bound for gas separation membranes (O2/N2 selectivity vs. O2 86 
permeability) [5, 8]; (b) the tradeoff between membrane intrinsic selectivity Pw/Ps and 87 
intrinsic water permeability Pw for desalination membranes [5]; and (c) the tradeoff between 88 
membrane water/NaCl selectivity A/B and water permeability coefficient A for desalination 89 
membranes [6]. Copyright permissions for (a), (b), and (c) have been obtained from 90 
references [8], [5] and [6] respectively. 91 

  92 
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2. Theoretical background 93 

The transport of water and solutes through a dense polyamide rejection layer can be 94 

described by the solution-diffusion model [18, 23, 24]:  95 

w (J A P     ）               (1) 96 

sJ B C                   (2) 97 

where Jw and Js are the water flux and solute flux, respectively; P, , and C are 98 

the differences in hydraulic pressure, osmotic pressure, and solute concentration 99 

across the membrane, respectively. The water permeability coefficient A (also known 100 

as the water permeance) and solute permeability coefficient B are related to the 101 

intrinsic membrane properties by [25]: 102 

w w w w wD K V P V
A

lRT lRT
                 (3) 103 

and  s s sD K P
B

l l
                (4) 104 

where Dw and Ds are the membrane diffusivities to water and solute, respectively; Kw 105 

and Ks are the membrane solubilities to water and solute, respectively; Vw is the molar 106 

of water; R is gas constant (8.31 Jmol-1K-1); T is the absolute temperature (K); l is the 107 

thickness of membrane rejection layer. The determination of intrinsic water and NaCl 108 

permeabilities (Pw and Ps, respectively) requires the thickness of the polyamide 109 

rejection layer, which is often unavailable in the published papers. Therefore, we 110 

adopt A and B values for the further development of the upper bound relationship. It is 111 

worthwhile to note that the intrinsic water/solute permeability selectivity (Pw/Ps) 112 

reported by Geise et al. [5] is related to the A/B ratio by: 113 
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w w

s

P VA

B P RT
                  (5) 114 

In Equations (1) and (2),  and C are related to the bulk solution properties: 115 

(cp f pf     ）               (6) 116 

and  (cp f pC f C C   ）             (7) 117 

where f and p are the osmotic pressures of the feed and permeate water, respectively; 118 

Cf and Cp are the solute concentrations of the feed and permeate water, respectively; 119 

the factor fcp describes the effect of concentration polarization and is calculated using 120 

Jw and the overall mass transfer coefficient K [25]: 121 

exp( w
cp

J
f

K
 ）                (8) 122 

The solute concentration in permeate water is related to Js and Jw by: 123 

s
p

w

J
C

J
                  (9) 124 

Substituting Equations (2) and (7) into Equation (9) results in: 125 

( )cp f p
p

w

Bf C C
C

J


               (10) 126 

Furthermore, the apparent solute rejection R for a membrane process is given by [25]:  127 

1f p p

f f

C C C
R

C C


                (11) 128 

Substituting Equation (10) into Equation (11) leads to: 129 

( )
1 1cp f p cp

w f w

Bf C C Bf
R R

J C J


               (12) 130 

Therefore, 131 

w

w cp

J
R

J Bf



               (13) 132 
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Equation (13) clearly shows that the solute rejection in a dense membrane is achieved 133 

by the competition between water transport (Jw) and solute transport (Bfcp). According 134 

to the solution-diffusion theory, water and solute molecules diffuse through the dense 135 

rejection layer independent of each. Fast diffusion of water molecules and slow 136 

diffusion of solute molecules result in increased rejection, whereas slow diffusion of 137 

water molecules and fast diffusion of solute molecules lead to a loss of rejection. The 138 

enhanced rejection at greater water flux is also commonly known as the dilution effect 139 

[25, 26]. Even with a fixed solute flux, a higher water flux dilutes the solute 140 

concentration in the permeate solution (Equation (9)) and thus enhances membrane 141 

rejection. 142 

 143 

By substituting Equation (1) into Equation (13), we can further obtain a relationship 144 

between solution rejection and the water-salt permselectivity A/B ratio: 145 

( )

( )

cp b

cp b cp

A
P f

BR
A

P f f
B





  


   
             (14) 146 

where b is the bulk osmotic pressure difference across the membrane (f - p). 147 

From Equation (14), salt rejection (R) is not only related to the A/B ratio but also 148 

affected by the operational conditions (e.g., applied pressure and concentration 149 

polarization).  150 

 151 

In general, the water flux Jw and the apparent solute rejection R can be determined 152 
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experimentally. However, the experimental conditions reported in the publications 153 

surveyed by us often do not contain sufficient information (e.g., the geometry of 154 

spacer and the dimensions of the flow channel) to accurately determine the 155 

concentration polarization factor fcp [27-31]. Therefore, we simplified Equations (1), 156 

(13) and (14) by assuming fcp = 1 for the determination of the values of A and A/B in 157 

the current study. This assumption is reasonable when Jw << K (e.g., by using spacers 158 

and high crossflow velocities to increase the mass transfer in the feed channels) [28]. 159 

Thus,    160 

w ( bJ A P     ）              (15) 161 

w

w

J
R

J B



                (16) 162 

( )

( ) 1

b

b

A
P

BR
A

P
B





  


   
             (17)  163 

Based on the limited data available in the literature [27-31], we performed a 164 

comparison of the A and A/B values with and without the simplication of fcp = 1 (Fig. 165 

A1, Supporting Information Appendix A). Readers are cautioned that this simplication 166 

leads to a slightly underestimated water permeance (i.e., A value). In addition, the 167 

water/NaCl selectivity (i.e., A/B ratio) is also underestimated. 168 

  169 
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3. The Upper Bound 170 

Fig. 2 presents the dependence of NaCl transmission (1 - R) and water/NaCl 171 

permselectivity (A/B) on water permeance A based on a set of 1204 data points 172 

collected from the literature [19, 20, 27-378]. There is a general trend of increased 173 

NaCl transmission (i.e., decreased NaCl rejection) for more permeable membranes, 174 

which has been well documented in the existing literature [5-7]. According to 175 

Equations (16) and (17), the solute rejection of a membrane depends not only on its 176 

permselectivity but also on the operational conditions (e.g., water flux or applied 177 

pressure). This relationship is further illustrated in Fig. 3. As shown in Fig. 3(a), for 178 

any given water flux and membrane water permeance A, increasing its water/NaCl 179 

permselectivity A/B results in improved NaCl rejection. Each shaded area in Fig. 3(a) 180 

represents the combinations of water permeance A, water/NaCl permselectivity A/B, 181 

and water flux Jw in order to achieve a given NaCl rejection. For example, to achieve 182 

a targeted rejection of 99% at a fixed flux of 10 Lm-2h-1, any A and A/B combinations 183 

yielding a constant B value of 0.1 Lm-2h-1 would satisfy the requirement (Equation 184 

(16)). These combinations are represented by the line passing through A = 2 185 

Lm-2h-1bar-1 and A/B = 20 bar-1 (the solid circle in Fig. 3) with a constant slope of 1. 186 

For the same membrane, if a higher water flux of 40 Lm-2h-1 is used, an improved 187 

rejection of 99.75% can be achieved according to Equation (16). Alternatively, to 188 

maintain the same rejection of 99% at the water flux of 40 Lm-2h-1, a less selective 189 
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membrane can be allowed (A = 2 Lm-2h-1bar-1 and A/B = 5 bar-1, represented by the 190 

empty circle in Fig. 3(a)). 191 

 192 

 193 
Fig. 2. The permeance-selectivity tradeoff for TFC polyamide membranes: (a) Correlation 194 
between water permeance and NaCl transmission (1-R, %), (b) upper bound of water/NaCl 195 
selectivity A/B and water permeance. The solid points are for RO and empty points are for NF. 196 
The grey points were obtained from [6], which makes further reference to a conference paper 197 
[379]. Nevertheless, the original source could not be verified. Therefore, these data points 198 
were excluded for the purpose of establishing the upper bound line.  199 

 200 

 201 
Fig. 3. Effect of membrane separation properties and operational conditions on salt rejection. 202 
(a) Combination of water flux, salt rejection, water permeance and water/NaCl selectivity 203 
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based on Eq. (16); (b) Combination of net driving force (ΔP-Δ), salt rejection, water 204 
permeance and water/NaCl selectivity based on Eq. (17). 205 

 206 

It is worthwhile to note that many publications reporting the synthesis of polyamide 207 

membranes often evaluate membrane performance at fixed pressure instead of fixed 208 

flux. In Fig. 3(b), each shaded area represents the combination of water permanence A, 209 

water/NaCl permselectivity A/B, and net driving force ΔP-Δ for achieving a given 210 

NaCl rejection. When a fixed net driving force is used, the NaCl rejection is solely 211 

dependent on the water/NaCl permselectivity A/B, and high rejection is obtained for 212 

membranes with greater A/B. For a given membrane, increasing the net driving force 213 

enhances its rejection as a result of increased water flux (the dilution effect, see Fig. 214 

3(a)). On the other hand, membranes with lower selectivity can be compensated by 215 

the use of greater net driving force to achieve the same NaCl rejection (e.g., A/B = 20 216 

bar-1 and ΔP-Δ = 5 bar vs. A/B = 5 bar-1 and ΔP-Δ = 20 bar for an NaCl rejection of 217 

99%).  218 

 219 

Due to the inherent dependence of rejection on water flux in addition to membrane 220 

intrinsic separation properties (Fig. 3(a)), the plot of the NaCl transmission (1 - R) vs. 221 

the water permeance A is less preferred for the establishment of the upper bound. A 222 

more preferred way is to plot the water/NaCl permselectivity A/B vs. the water 223 

permeance A. Fig. 2b shows a clear tradeoff behavior, with the upper bound line given 224 

by: 225 
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஺

஻
ൌ 16000𝐴ିଷ.ଶ   (with A/B in bar-1 and A in Lm-2h-1bar-1)  (18) 226 

For the first time, we established the upper bound relationship based on a 227 

comprehensive dataset, which can be used as a standard reference for benchmarking 228 

membrane separation properties in future studies. 229 

 230 

Fig. 4 further presents the separation properties of commercial seawater RO (SWRO), 231 

brackish water RO (BWRO), and NF polyamide membranes in relation to the upper 232 

bound. The empty symbols in Fig. 4 represent membranes synthesized at bench scales. 233 

The area under the upper bound line is further divided into three regions based on the 234 

threshold rejection of 99% and 90% (assuming a water flux of 20 Lm-2h-1). As 235 

expected, most of the SWRO membranes have rejections of > 99% whereas the 236 

majority of NF membranes have rejections of < 90%. Even though the separation 237 

performances of commercial BWRO and NF membranes are reasonably close to the 238 

upper bound line, the data points for SWRO fall far below this line. This difference 239 

shows a great margin for further improving SWRO membranes.    240 

 241 

It is worthwhile to note that the upper bound in Fig. 2b was developed without the 242 

explicit treatment of concentration polarization effect (refer to Section 2 and Eq. 243 

12-17 for further information). Although a thorough review of the mass transfer and 244 

concentration polarization in the bulk solution [380-383] is beyond the scope of the 245 

current study, concentration polarization could have important effect on the apparent 246 
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membrane performance. Therefore, the development of novel strategies for enhanced 247 

mass transfer (e.g., by using novel spacers [384-387]) is critical along with the 248 

development of high performance membranes. It is also recommended that future 249 

membrane development studies should explicitly report the mass transfer coefficient 250 

and membrane A and B values in addition to their routine report of water flux and 251 

apparent salt rejection for a more wholistic assessment of membrane separation 252 

performance.   253 

 254 
Fig.4. Water permeance and selectivity of commercial seawater RO (SWRO), brackish water 255 
RO (BWRO) and NF membranes in the water permeance and selectivity diagram. Blue dash 256 
lines correspond to the NaCl rejection of 99% and 90%, respectively, at a flux of 20 Lm-2h-1. 257 
The empty symbols in Fig. 4 represent membranes synthesized at bench scales. The 258 
separation performance of commercial membranes was collected based on manufacture’s 259 
specifications provided by DuPont Filmtech, GE-Osmonics (Desal), Nitto Hydranautics and 260 
Toray Industries [375-378].  261 
 262 
  263 
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4. Major factors affecting the separation performance of TFC 264 

4.1. Monomers 265 

4.1.1. Monomer types 266 

The state-of-the-art TFC RO membrane is composed of a dense crosslinked 267 

polyamide, a porous ultrafiltration support layer and a non-woven fabric layer to 268 

provide strong mechanical stability (Fig. 5a). The polyamide layer, which largely 269 

determines the water flux and salt rejection [93], is usually prepared by an interfacial 270 

polymerization reaction between m-phenylenediamine (MPD in aqueous phase) and 271 

trimesoyl chloride (TMC in organic phase, Fig. 5b). At the meantime, a wide range of 272 

alternative monomers/reactants has also been reported in the literature. Table 1 273 

provides a summary of different types of monomers/reactants and the typical 274 

membrane performance. More comprehensive information on the impact of monomer 275 

on membrane performance is provided in Table B1 of the Supporting Information. 276 

 277 
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(b)

(a)

TFC Membrane

Non-woven fabric

Polyamide thin-film rejection layer

Porous substrate

trimesoyl
chloride (TMC)

m-Phenylene
diamine
(MPD)

interfacially formed 
polyamide

HCl

 278 

Fig. 5. Structure and preparation of TFC polyamide membrane: (a) typical membrane 279 
structure; (b) interfacial polymerization reaction between MPD and TMC. 280 

 281 

The separation performance of membranes prepared by TMC/MPD chemistry is 282 

shown in Fig. 6. In general, this membrane chemistry can provide high NaCl rejection 283 

(typically > 90% and often > 99%) along with moderate water permeance of 1-10 L 284 

m-2h-1bar-1. Indeed, this chemistry has been the most commonly used one for 285 

commercial SWRO and BWRO membranes [3, 105]. Since both TMC and MPD 286 

contain a benzene ring, membrane prepared using this chemistry are often known as 287 

fully aromatic polyamide membranes [388]. The TMC/MPD chemistry typically 288 

results in highly crosslinked polyamide rejection layer that is a pre-requisite of 289 

achieving high NaCl rejection [7, 342, 389]. This densely crosslinked structure can be 290 

explained by the high electron density of the benzene ring that makes the amine 291 

functional groups of MPD more reactive compared to aliphatic diamines [20]. In 292 



17 

 

addition to MPD, other aromatic diamines (see Table 1) can also react with TMC to 293 

form highly-crosslinked fully aromatic polyamide rejection layers with NaCl rejection 294 

of >90% (Fig. 6). Likewise, fully aromatic polyamide can be prepared by reacting 295 

MPD with other aromatic acryl chlorides (Table 1). In general, these fully aromatic 296 

polyamide membranes are located in SWRO or BWRO regions of the upper bound 297 

diagram (Fig. 6).  298 

 299 

In contrast to the relatively high NaCl rejection of fully aromatic polyamide 300 

membranes, semi-aromatic polyamide membranes prepared by the reaction of TMC 301 

with aliphatic diamines (Table 1) have much lower salt rejection (typically <90%, see 302 

Fig. 6) due to the relatively low reactivity of the amine functional groups [20]. 303 

Therefore, these semi-aromatic polyamide membranes are generally not suitable for 304 

RO applications. Instead, they are more commonly used as high-permeability NF 305 

membranes. Piperazine (PIP) is one of the most commonly used aliphatic diamine for 306 

the fabrication of semi-aromatic polyamide nanofiltration membrane. For example, 307 

the widely reported commercial NF membrane NF270 (DuPont FilmTech®) is 308 

prepared by a TMC/PIP chemistry. In addition to aliphatic amine monomers, 309 

polymer-based aliphatic amines can also be used. For example, polyethyleneimine 310 

(PEI), which contains abundant amine groups, can react with TMC to form positively 311 

charged TFC membranes with high water permeance but low NaCl rejection [314]. 312 

Other monomers in an aqueous phase, such as alcohols or alcohol-like monomers 313 
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(containing hydroxyl groups), could also react with TMC to form polyester-based 314 

rejection layer, which has much looser structure and thus low NaCl rejection (Fig. 6).  315 

 316 

Table 1. Main types of monomers. 317 

 Type of 

monomers 

Examples Chemical formula Membrane types Remarks 

Aqueous 

phase 

Aromatic 

diamine 

 

MPD [105] 

 

Most widely used 

chemistry for 

SWRO and  

BWRO. Also used 

for tight NF 

membranes. 

Typical NaCl 

rejection > 90%; 

rejection of >99% can 

also be achieved; low 

to moderate water 

permeance 

Homologue: 

MMPD [390] 

 

OPD: 

1,2-phenylene 

diamine 

NH2

NH2  

Allotrope of MPD, 

to fabricate BWRO 

and tight NF 

membranes. 

Moderate NaCl 

rejection 85-91%; 

moderate water 

permeance [304] 
PPD: 

1,4-phenylene 

diamine 
 

Aliphatic 

diamine 

PIP [343] 

 

Most widely used 

chemistry for NF 

membranes.  

Negatively charged 

NF; typical salt 

rejection s followed: 

Na2SO4≈MgSO4>MgC

l2≈NaCl 

EDA [273] 

 

NF membranes High water 

permeance; low salt 

rejection 

Aliphatic 

polymer-b

ased 

PEI [314] 

 

NF membranes Often resulting in 

positively charged NF 

membranes; Rejection 
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multi-amin

e 

typically follows 

MgSO4≈MgCl2> 

Na2SO4≈NaCl 

Alcohol or 

hydroxyl 

groups  

containing 

chemicals 

PVA: Polyvinyl 

alcohol [283] 

 

Polyester-based 

rejection layer; 

resulting in loose 

NF membranes 

Relatively high water 

permeance and low 

salt rejections 

TEOA [178] 

 

Others Melamine [301] 

 

Loose NF 

membranes 

Negative charge, 

relatively high water 

permeance, and 

moderate salt rejection 

Sulfonated 

diamine [303] 
 

SWRO and BWRO 

membranes  

Low water permeance; 

high boron rejection 

 

NF membranes  Enhanced antifouling 

properties 

Disulfonated 

diamine [28] 
 

Tight NF 

membranes 

High water 

permeance, but low 

NaCl rejection  

Organic 

phase 

Aromatic 

acryl 

chloride 

. 

TMC [105] 

 

Most widely used 

chemical for 

fabricating SWRO 

and BWRO. Also 

used for tight NF 

membranes. 

Typical NaCl 

rejection > 90%; 

rejection of > 99% can 

also be achieved; low 

to moderate water 

permeance 

Tri-functional 

acid chloride 

BTRC: [294] 
 

React with MPD to 

fabricate SW/BW 

RO membranes 

Low water permeance; 

high NaCl rejection 

(>98%) 
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Tri-functional 

acid chloride 

CFIC [173, 297] 

 

Tetra-functional 

acid chloride 

BTEC: [294] 
 

Bi/mono-f

unctional 

aromatic 

acryl 

chloride 

PC: phthaloyl 

chloride 

 

NF membranes 

[304] 

Moderate water 

permeance; low NaCl 

rejection (< 50%) 

IPC: 

isophthaloyl 

chloride 

 

TPC: 

terephthaloyl 

chloride 
 

BC: Benzoyl 

chloride 
 

Cycloaliph

atic acryl 

chloride 

HTC: 

cyclohexane-1,3

,5-tricarbonyl 

chloride [390] 
 

SW/BW membranes Moderate water 

permeance and high 

NaCl rejection 

(>95%); high chlorine 

resistance  

Others CC: cyanuric 

chloride[287] 

 

NF membranes High permeance; low 

salt rejection 

GA: 

Glutaraldehyde 

[283] 

NF membranes Often used a 

crosslinking agent 
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 318 
Fig. 6. The impact of monomer types on the upper bound correlation based on Table 1. Blue 319 
dash lines correspond to the NaCl rejection of 99% and 90%, respectively, at a flux of 20 320 
Lm-2h-1. 321 
 322 
 323 
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4.1.2. Monomer concentration and reaction conditions 325 

Monomer concentration plays an important role in determining membrane separation 326 

performance due to its effect on monomer diffusivity and reaction rate. This section 327 

focuses on the effect of monomer concentration of MPD, PIP, and TMC due to the 328 

wide coverage in the literature on these monomers and their commercial success. 329 

Effects of other reaction conditions are also briefly mentioned.  330 

 331 

Table 2 presents a summary of some recently published literature relating membrane 332 

separation performances to monomer concentrations in the aqueous and organic phase, 333 

with a more comprehensive summary presented in Table B2 in the Supporting 334 

Information. Increasing monomer concentration in the aqueous phase, regardless of 335 

whether MPD or PIP was used, generally results in significantly decreased water 336 

permeance and increased salt rejection (Table 2). This can be attributed to the 337 

enhanced crosslinking degree of the polyamide rejection layer caused by the greater 338 

presence of the amine monomers [119, 183]. Likewise, the increased reaction time, 339 

increased immersion time in the aqueous amine solution and higher temperature of 340 

interfacial polymerization can also result in a denser and more crosslinked rejection 341 

layer [58, 173, 182, 193].  342 

 343 

The effect of TMC concentration in the organic phase appears to be more disparate. 344 
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Some studies reported that the increased TMC concentration could result in less 345 

crosslinked polyamide film with reduced salt rejection [28, 183], while other studies 346 

showed enhanced salt rejection at higher TMC concentration [182, 343]. These 347 

contradictions may be reconciled by recognizing a “two-stage” effect of TMC 348 

concentration on membrane separation performance [391]. When TMC concentration 349 

is low (e.g., 0.01-0.1 wt.%), increasing its concentration could potentially enhance the 350 

crosslinking degree and/or the thickness of the polyamide rejection layer, resulting in 351 

increased salt rejection and decreased water flux [119, 183]. However, a much higher 352 

TMC concentration can lead to the formation of a less crosslinked TFC membrane: 353 

the high abundance of TMC over MPD caused more acryl chloride groups to 354 

hydrolyze instead of forming polyamide bonds with MPD [119, 183]. This effect 355 

leads to higher water permeance yet reduced NaCl rejection. Therefore, maintaining 356 

an optimal stoichiometry is critical for the preparation of high-rejection membranes. 357 

Based on experience, an MPD/TMC concentration ratio of 10 – 20 is often reported in 358 

the literature [28]. Theoretically, this optimum ratio will also depend on the affinity of 359 

MPD to the substrate and the desorption and diffusivity of MPD. For example, the use 360 

of an intermediate layer  (e.g., formed tannic acid-Fe3+ complex [349] or 361 

polydopamine[347]) enhances amine monomer sorption and regulate its diffusion, 362 

which led to a tighter rejection layer compared to the control membrane. 363 

 364 

The pH of the aqueous solution could have a profound impact on membrane 365 
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performance. Higher pH can effectively remove proton, a product produced during the 366 

IP reaction (Fig. 5b), thus resulting in a more crosslinked polyamide rejection layer 367 

[173, 390]. In addition, controlling the temperature of the aqueous or organic phase is 368 

an effective strategy to regulate the IP reaction. For instance, Khorsidi et al. [200] 369 

decreased the temperature of the organic phase to react with MPD, which could 370 

significantly reduce the diffusion rate of MPD. The formed polyamide layer under the 371 

low temperature of the organic phase (e.g., -20 C) was much thinner and more 372 

flattened compared to that of the control membrane prepared under room temperature. 373 

As a result, membrane water permeance increased with slightly decreased NaCl 374 

rejection. In another study, Liu et al. [344] also decreased the temperature of the 375 

organic phase to react with PIP. Their low-temperature approach not only reduced the 376 

thickness and roughness of the rejection layer but also generated a Janus polyamide 377 

layer with opposite charge due to the reduced diffusion of PIP. The resulting 378 

membrane showed approximately 3-fold higher water permeance with similar salt 379 

rejection. Despite advances, a more systematic and fundamental framework is yet to 380 

be established for the control of the IP reaction.  381 

 382 

Table 2. Monomer concentration. 383 

Applica
tion 

Effect of monomer concentration 
(aqueous phase) 

Effect of monomer concentration (organic 
phase) 

Ref. 

RO/FO 
Increasing MPD concentration from 0.5 to 2 

wt.%: water permeance ↓ and RNaCl ↑ 

Increasing TMC concentration from 0.05 to 
0.1 w/v%: water permeance ↓ and RNaCl↓; 
increasing TMC concentration from 0.1 to 1 
w/v%: water permeance ↑ and RNaCl↓ 

[183] 

RO 
Increasing MPD concentration from 0.5 to 3 
w/v%: water permeance ↗↘and RNaCl no 

Increasing TMC concentration from 0.025 to 
0.13 w/v %: water permeance ↗↘ and 

[28] 
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major change RNaCl no major change 

RO 
Increasing MPD concentration from 0.01 to 

1 wt.% (MPD:TMC molar ratio=10): 

water permeance ↓ and NaCl rejection ↑ 

Increasing TMC concentration from 0.001 to 
0.1 wt.% (MPD:TMC molar ratio=10): water 

permeance ↓ and RNaCl ↑ ↑ 
[177] 

NF 
Increasing PIP concentration from 0.25 to 

1.5 wt.%: water permeance ↓ and RNa2SO4 ↑ 

Increasing TMC concentration from 0.05 to 
0.3 wt.% and reaction time from 10 to 240: 

water permeance ↓; RNa2SO4 ↑ 
[58] 

NF 
Increasing PIP concentration from 0.1 to 

2% and immersion time from 0.5 to 4 min: 
water permeance ↓; RNa2SO4 ↑ 

Increasing TMC concentration from 0.01 to 
0.2% and reaction time from 0.5 to 3 min: 

water permeance ↓ and RNa2SO4 ↑ 
[161] 

NF 
Increasing PIP concentration from 0.03 to 
0.5 wt.%: water permeance ↓ and RMgSO4 ↑ 

Increasing TMC concentration from 0.05 to 
0. 3 w/v% and reaction time from 10 to 110 
s: water permeance ↓ and RMgSO4 rejection ↑ 

[182] 

NF 
Increasing PIP concentration from 0.5 to 2 

g/L: water permeance ↓ and RNa2SO4 ↑ 

Increasing TMC concentration from 0.5 to 
2.5 g/L and reaction time from 0.5 and 4 min: 

water permeance ↓ and RNa2SO4 ↑ 
[343] 

NF 
Increasing PIP concentration from 0.1 to 2 

wt.%: water permeance ↓ and RNa2SO4 ↑ 
- - [348] 

NF 
Increasing PIP concentration from 0.1 to 2.4 

wt.%: water permeance ↓ and RNa2SO4 ↑ 

Increasing TMC concentration from 0.00625 
to 0.025 w/v%: water permeance ↓and 

RNa2SO4 ↑; increasing TMC concentration 
from 0.025 to 0.1 w/v%: water permeance ↑ 

and RNa2SO4 ↓ 

[392] 

 384 
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4.2. Additives 385 

4.2.1. Additives in aqueous solution 386 

Incorporating additives in the aqueous phase during interfacial polymerization 387 

reaction could significantly affect monomer diffusion rate, monomer solubility and 388 

miscibility between the aqueous and organic phase [335]. Subsequently, various 389 

additives have been reported for optimizing membrane separation performances [105]. 390 

The major types of additives and their main impact on membrane performance are 391 

summarized in Table 3, and more detailed information is provided in Table B3 in the 392 

Supporting Information.  393 

 394 

Proton acceptor is an import type of additives that are often used in the aqueous phase 395 

(Table 3). As shown in Fig. 5b, the IP reaction generates hydrochloric acid as a 396 

reaction byproduct, whose accumulation could result in a poor crosslinking of the 397 

polyamide rejection layer. This issue can be addressed by the addition of proton 398 

acceptors, such as NaOH/Na2CO3 [178], NaHCO3 [19, 20] and triethylamine (TEA) 399 

[333], to neutralize H+ generated during membrane formation. The resulting 400 

membranes tend to have more crosslinked rejection layers with improved NaCl 401 

rejection [178, 333]. For example, Fig. 7a shows improved selectivity by the addition 402 

of TEA [333] and NaHCO3 [19, 20]. Furthermore, the addition of NaHCO3 led to the 403 

formation of nanosized CO2 bubbles, whose encapsulation in the polyamide resulted 404 

in a rougher membrane with a greatly increased surface area – a phenomenon referred 405 
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as nano-foaming by Tang and co-workers [20]. However, excessive addition of proton 406 

acceptors could potentially hydrolyze TMC, resulting in poor crosslinking degree, 407 

increased water flux and decreased NaCl rejection [178, 333].  408 

 409 

Aside from the addition of bases as proton acceptors, acids can also be incorporated 410 

into the aqueous phase to control the IP reaction (Table 3). Camphor sulfonic acid 411 

(CSA), a relatively strong acid, is often added into the aqueous solution to improve 412 

membrane water permeance (Fig. 7a). Rahimpour et al. [333] reported that the 413 

addition of CSA into MPD solution could generate a less crosslinked polyamide RO 414 

membrane, thus resulting in increased water flux and decreased NaCl rejection. In 415 

addition, membrane surface hydrophilicity was improved due to the abundant sulfonyl 416 

hydroxide groups in CSA [329]. Likewise, incorporating acid such as 417 

3,5-diaminobenzoic acid into PIP aqueous solution result in a more permeable NF 418 

membrane with decreased NaCl salt rejection [324]. Interestingly, the rejection of 419 

divalent ions (e.g., Na2SO4 or Mg2SO4) was improved as a result of the enhanced 420 

Donnan exclusion effect due to the increased membrane surface charge.  421 

 422 

Surfactants, such as sodium dodecyl sulfate (SDS), contains a hydrophobic tail and a 423 

hydrophilic head [393]. Thus, the addition of SDS into the aqueous phase can 424 

significantly reduce the surface/interfacial tension between the aqueous and organic 425 

phases [394]. Often, membrane separation performances are not significantly affected 426 
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by the addition of SDS alone in the aqueous solution [394]. In contrast, adding SDS 427 

and TEA together can significantly enhance membrane separation performance [394]. 428 

In addition to surfactant, hydrophilic additives/salts can also be incorporated in the 429 

aqueous phase to participate in the IP reaction to enhance membrane performance 430 

(Table 3). For example, the use of TEACSA [209, 334], ABA-TEA salt [115, 335], 431 

2-(2-hydroxyethyl) pyridine, 4-(2-hydroxyethyl) morpholine [357], CaCl2 [359] and 432 

taurine [40] have been shown to not only enhance membrane hydrophilicity, but only 433 

provide additional water transport pathway and enhanced membrane charge. 434 

Subsequently, membrane permeance and selectivity can be increased at the same time 435 

([357] and Fig. 7b). Hao et al. [359] reported that the addition of Ca2+ in the 436 

MPD/water solution resulted in a polyamide membrane with enhanced antifouling 437 

property thanks to the sequestration of the carboxyl groups.  438 

 439 

In addition to the use of water as the solvent for the amine monomer, organic solvents 440 

(e.g., dimethyl sulfoxide (DMSO) [329, 330]) or aqueous co-solvents (e.g., alcohols 441 

such as isopropyl alcohol (IPA) [327, 335], ethanol [326] and 2-ethyl-1,3-hexane diol 442 

(EHD) [318]) can also be added into the aqueous phase to control the IP reaction 443 

(Table 3 and Fig. 7c). For example, adding co-solvents, such as alcohols, reduces the 444 

surface tension of the aqueous phase, thus helping MPD penetrating into the pores of 445 

the relatively hydrophobic substrate to promote the IP reaction [327, 335]. 446 

Accordingly, the membrane roughness is significantly increased, leading to increased 447 
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water flux and nearly unchanged selectivity [327]. However, the addition of IPA at 448 

high concentration (e.g., greater than 20%) would result in reduced NaCl rejection 449 

[327], probably due to the formation of polyester-based rejection layer caused by the 450 

poor crosslinking degree. The incorporation of another alcohol, 2-ethyl-1,3-hexane 451 

diol (EHD), with a hydrophobic chain, can effectively facilitate the transport of MPD 452 

to the organic phase, leading to the improved membrane selectivity [318]. 453 

Furthermore, the hydroxyl groups of EHD can form hydrogen bonds with MPD to 454 

improve membrane water flux [318]. On the other hand, the incorporation of organic 455 

solvent into the aqueous phase could significantly increase the miscibility of the 456 

aqueous phase and organic phase to enhance the MPD diffusion rate. For example, the 457 

incorporation of DMSO could lead to the TFC membrane with significantly enhanced 458 

water flux (i.e., nearly 5 times with the concentration of 3 wt.% in the aqueous phase) 459 

and slightly reduced NaCl rejection [330].  460 

 461 

Other additives, such as oxidants (e.g., NaClO), can be added into the aqueous phase 462 

to oxidize the amine monomer in situ during the IP reaction. Xu et al. incorporated 463 

NaClO [49] into PIP aqueous solution, which oxidized PIP into 464 

1,1′-carbonylbis-piperazine. The oxidized monomer was then reacted with TMC to 465 

generate polyamide nanofiltration membrane with both enhanced water permeance 466 

and salt rejection.  467 

 468 



30 

 

Table 3 Main types of additives used for interfacial polymerization reaction and their effects 469 
on membrane performance. 470 

 Type of 

additives 

Examples Purpose Membrane performance 

Aqueous 

phase 

H+ acceptor NaOH [173, 390], 

NaHCO3 [19], 

Na2CO3 [178] and 

triethylamine 

(TEA) [333]  

Removal of hydrogen 

chloride of IP reaction; 

acting as a reaction 

accelerator  

Resulting in enhanced 

crosslinked polyamide 

layer and ↑ salt rejection; 

overdosage could lead to 

hydrolysis of TMC, 

water permeance ↑ and 

salt rejection ↓ 

Acid Camphor sulfonic 

acid CSA [329, 

333]  

Relatively strong acid, 

acting as pH regulator  

Less crosslinked 

polyamide layer; water 

permeance ↑ and salt 

rejection ↓; Membrane 

hydrophilicity ↑ due to 

the increased -COOH 

groups 

3,5-diaminobenzo

ic acid [324] 

Amine and carboxylic 

groups reacting with TMC 

Water permeance ↑, 

NaCl rejection ↓; 

enhanced surface charge: 

NaSO4 rejection ↑ 

Surfactants Sodium dodecyl 

sulfate (SDS) 

[329, 393, 394]  

Decreasing surface tension 

between the aqueous and 

organic phase 

No major change in 

membrane separation 

performance; often 

couple with TEA  

Hydrophilic 

additives/salt 

o-aminobenzoic 

acid-triethylamine 

salt; 

m-aminobenzoic 

acid-triethylamine 

salt, CaCl2 [359], 

2-(2-hydroxyethyl

) pyridine; 

4-(2-hydroxyethyl

) morpholine and 

taurine [40, 115, 

Enhancing hydrophilicity 

and charge repulsion; 

improving water transport; 

neutralized surface charge 

for enhanced antifouling 

properties 

Water permeance ↑ and 

salt rejection ↑; creating 

more free volume in the 

polyamide rejection 

layer, allowing both 

water and salt pass 

through; overloading 

could cause ↓↓ NaCl 

rejection [357] 
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209, 335, 357] 

 Organic 

solvent 

DMSO  [329, 

330] 

Increased miscibility of 

aqueous and the organic 

phase; enhanced MPD 

diffusion rate 

Water permeance ↑ and 

NaCl rejection ↓; higher 

concentration (>1 wt.%) 

may cause NaCl 

rejection significant 

reduction  

Co-solvent 

(e.g., 

alcohols) 

Isopropyl alcohol 

(IPA) [327, 335] 

Reduce surface tension of 

the aqueous solution; form 

ester bond when reacting 

with TMC 

When IPA concentration 

is between 5-20 wt.%, 

water permeance ↑ and 

NaCl rejection 

unchanged; when IPC 

concentration is greater 

than 20%, water 

permeance ↓ and NaCl 

rejection ↓; Increase 

polyamide surface 

roughness;  

 Ethanol [326] Ethanol can dissolve in 

both water and organic 

phase, which can form a 

miscible zone; facilitate 

MPD diffusion; reduce 

surface tension; help MPD 

solution penetrate 

substrate; formation of 

ester bond when reacting 

with TMC 

Water permeance ↑ and 

salt rejection ↓ ; higher 

crosslinking degree 

 2-ethyl-1,3-hexan

e diol (EHD) 

[318] 

The hydrophobic alkyl 

group of EHD help 

transport MPD to TMC; 

hydroxyl group of EHD 

can form hydrogen bond 

with MPD  

Water permeance ↑ and 

salt rejection ↑          

Oxidation 

agents 

NaClO [49] PIP could be oxidized to 

1,1′-carbonylbis-piperazine 

to react with TMC;  

Water permeance ↑ and 

salt rejection ↑ 

Organic Surfactants SDS, Increased free volume in Water permeance ↑ and 
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phase Cetyltrimethylam

monium bromide 

(CTAB) and 

Non-ionic (Triton 

X-100) [320] 

the PA layer NaCl and Na2SO4 

rejection unchanged and 

MgCl2 rejection ↑; higher 

concentration may 

deteriorate of the PA 

layer  

Co-solvents Acetone [319] Decreasing interfacial 

tension and solubility 

between two phases; 

formation of thin dense PA 

layer  

Formation of thin dense 

PA layer; water 

permeance ↑ by 4-fold 

with slightly ↓ NaCl 

rejection  

 Ethyl acetate, 

diethyl ether and 

toluene [317] 

Resulting in a multilayered 

polyamide structure 

No major change in 

membrane separation 

performance  

 IPA and dimethyl 

formamide 

(DMF) [317] 

Creating holes in 

polyamide rejection layer 

by adding IPA in the 

organic phase; DMF may 

dissolve the PSF substrate; 

Water permeance 

significantly ↑ with NaCl 

rejection significantly ↓ 

 Tetraethyl 

orthosilicate 

(TEOS) [322] 

Increased MPD diffusion 

that terminates the IP 

reaction earlier  

Water permeance ↑ by 

4-fold with slightly ↓ 

NaCl rejection 

Amine 

monomer 

inhibitor 

1,3-propanesulton

e [323] 

Attracting amine groups to 

the polyamide rejection 

layer; resulting in a 

multilayered polyamide 

structure that increases the 

membrane surface area 

Water permeance ↑ by 

40% with unchanged 

NaCl rejection 

Phosphate 

additives 

Tributyl 

phosphate (TBP) 

and triphenyl 

phosphate (TPP) 

[318] 

The phosphate group can 

form complex with acryl 

chloride groups of TMC 

via dipole-dipole 

interaction 

 

The addition of TBP 

resulted in water 

permeance ↑ , and NaCl 

rejection decreased; 

The addition of TPP 

resulted in water 

permeance ↓ and NaCl 

rejection unchanged; 
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 471 

 472 

 473 

Fig. 7. The effect of additives in aqueous phase on membrane separation performance: (a) 474 
proton acceptor and acid; (b) hydrophilic salts; (c) co-solvent and organic solvent. Blue dash 475 
lines correspond to the NaCl rejection of 99% and 90%, respectively, at a flux of 20 Lm-2h-1. 476 
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4.2.2. Additives in organic solution 478 

The incorporation of additives in the organic phase can also significantly affect the IP 479 

reaction and membrane performance by influencing the miscibility between water and 480 

organic phases and/or monomer diffusion rate (Table 3 and S3). In this section, 481 

various organic phase additives (e.g., co-solvents and surfactants) are summarized 482 

(see Fig. 8). 483 

 484 

The effect of organic phase co-solvents is shown in Fig. 8a. Kamada et al. [317] 485 

reported the incorporation of different types of co-solvents into the organic phase. For 486 

example, the addition of acetone in the organic phase can effectively reduce the 487 

monomers solubility difference in the two phases and simultaneously enhance the 488 

monomer diffusion rate. The resulting membrane had much rougher surface together 489 

with a multi-layered polyamide structure as well as increased water permeance. The 490 

incorporation of another co-solvent, dimethylformamide (DMF), can significantly 491 

enhance membrane water flux by approximately an order of magnitude but at the 492 

expense of severely decreased salt rejection [317]. The added DMF might have 493 

dissolved the polysulfone support layer during the IP reaction, which significantly 494 

reduced membrane mass transfer resistance [317].  495 

 496 

Surfactants, such as cationic cetyltrimethylammonium bromide (CTAB), non-ionic 497 

(Triton X-100) and anionic sodium dodecyl sulfate (SDS), can be added into the 498 
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organic phase to affect the interfacial polymerization reaction (Table 3 and Fig. 8b). 499 

Mansourpanah et al. [320] incorporated SDS in the organic phase of TMC that was 500 

used to react with PIP. The modified membrane had more free volume in its rejection 501 

layer due to the strong repulsion force between polyamide chains and the SDS 502 

molecules, resulting in enhanced membrane water permeance. The incorporation of 503 

CTAB (positive charge) and Triton X-100 (through H-bonding) could further 504 

significantly enhance the absorbed amount of PIP, leading to a denser polyamide 505 

rejection layer [320]. Incorporating other additives, such as phosphate additive [318] 506 

or 1,3-propanesultone (PS) could enhance membrane separation performance through 507 

dipole-dipole interaction with TMC or H-bonding ([323] and Fig. 8c). 508 

 509 
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 510 
Fig. 8. Effect of additives in organic phase on membrane separation performance: (a) 511 
co-solvent; (b) surfactant; (c) amine monomer inhibitor. Blue dash lines correspond to the 512 
NaCl rejection of 99% and 90%, respectively, at a flux of 20 Lm-2h-1. 513 
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4.3. Substrate 515 

The traditional wisdom believes that the substrate of a TFC membrane has little effect 516 

on its overall transport properties since the transport resistance to both water and 517 

solutes should be dominated by that of the polyamide layer according to the 518 

resistance-in-series model. Nevertheless, recent studies show increasing evidence that 519 

membrane substrate can play a critical role in the separation properties of TFC 520 

membranes [127, 131, 355, 395, 396]. 521 

 522 

Several studies have investigated the role of substrate pore size and porosity. For 523 

example, Ramon et al. [397] modeled the transport properties of TFC membranes and 524 

concluded that greater pore density is preferred to maximize the overall membrane 525 

permeance by reducing overall transport distance of water molecules. While Ramon’s 526 

model implicitly assumes that the transport properties of the polyamide rejection film 527 

are not affected by the substrate properties, recent experimental studies revealed great 528 

influence of the substrate on the morphology and properties of the polyamide film 529 

[120, 355, 395]. Several experimental studies [61, 83, 355] show improved water 530 

permeance by using substrates with larger pores, although oversized pores (e.g., 531 

approximately 450 nm [131]) could lead to defects formation in the rejection layer 532 

with significantly decreased membrane selectivity. In a more recent study, Li et al. 533 

[355] reported that membrane permeance and selectivity both improved due to the 534 

increased pore number density, despite the reduction of substrate surface pore size 535 
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from 50.7 to 24.7 nm. Existing literature seems to suggest that there exists a 536 

competing effect between pore size and pore number density on affecting membrane 537 

performance. Therefore, more mechanistic studies are still needed to better understand 538 

the underlining mechanisms and to guide the further optimization of substrates. 539 

 540 

  541 
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4.4. Membrane modification 542 

4.4.1. Surface coating 543 

Table 4 summaries the major types of membrane surface coatings and their impact on 544 

membrane performances, with the more detailed information provided in Table B4 in 545 

the Supporting Information. These coatings are generally adopted to achieve one or a 546 

combination of the following functions: 547 

 548 

1. Enhancing anti-adhesion and anti-fouling properties. TFC PA membranes are 549 

known to have high fouling propensity due to (a) their ridge-and-valley surface 550 

roughness that traps colloids and macromolecules [398], (b) their relatively 551 

hydrophobic surfaces that attracts hydrophobic foulants through hydrophobic 552 

interactions [399], and (c) the abundance of negatively charged carboxylic groups 553 

on its surface that are prone to bridging with foulants through divalent metal ions 554 

such as Ca2+ as well as attachment by cationic foulants [271]. In commercial 555 

practice, a neutral hydrophilic coating such as polyvinyl alcohol (PVA) [222] is 556 

often applied to enhance membrane antifouling properties by neutralizing its 557 

surface charge, improving membrane surface hydrophilicity, and/or reducing 558 

surface roughness. Other hydrophilic coatings, such as polydopamine (PDA) [29, 559 

400, 401], zwitterionic polymers [228], and tannic acid (TA)/Fe3+ complex [360], 560 

can also significantly enhance membrane anti-adhesion and anti-fouling 561 

properties.  562 
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 563 

2. Imparting antimicrobial and antibiofouling surface properties. Chemicals and 564 

materials with antimicrobial/biocidal effects, such as quaternary amines [402], 565 

chitosan [238], AgNPs [219, 403] and CuNPs [404], have widely reported in the 566 

literature. In addition, carbon-based materials such as carbon nanotubes [405] and 567 

graphene oxide [235, 406] sheets have also been applied to improve membrane 568 

anti-biofouling performance. 569 

 570 

3. Improving the rejection of solutes. In recent years, the surface coating has also 571 

been applied to improve the rejection of specific solutes (e.g., small molecular 572 

weight organic micropollutants). For example, Guo et al. [220] reported that a 573 

hydrophilic PDA coating can significantly enhance the rejection of hydrophobic 574 

endocrine disrupting chemicals (EDCs) due to the reduced hydrophobic 575 

interaction between these solutes with the hydrophilic membrane surface. Zhou et 576 

al. [407] studied TiO2 coating by atomic layer deposition (ALD) on TFC RO 577 

membrane of 10-100 cycles (one cycles could deposit approximately 0.1 nm thick 578 

TiO2 layer). These coated membranes showed enhanced rejection of 579 

pharmaceutical compounds thanks to the enhanced the tightened size exclusion 580 

effect. Often, surface coatings can also lead to enhanced NaCl rejection (e.g., 581 

PVA [7] and PDA [408]), though a relatively thick and loose coating can 582 
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potentially result in severe cake enhanced concentration polarization [409] and 583 

thus reduced solute rejection. 584 

 585 

4. Increasing chlorine resistance. Anti-chlorine coatings are often studied, such as 586 

spin coating graphene oxide (GO) layers onto the TFC membrane surface [235, 587 

406]. Some other examples include PDA-grafted-PEI [410] and terpolymer [411] 588 

coatings. 589 

 590 

Despite their various functions, Fig. 9 shows that surface coating generally reduces 591 

the membrane permeance due to the additional membrane hydraulic resistance of the 592 

coating layer. On the other hand, a well-designed (e.g., thin and highly-selective) 593 

coating can significantly enhance the A/B value of the coated membrane. 594 

 595 
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Fig. 9. Effect of surface coating on membrane separation performance. Blue dash lines 596 
correspond to the NaCl rejection of 99% and 90%, respectively, at a flux of 20 Lm-2h-1. 597 

 598 

Table 4. Membrane surface treatment 599 

Surface treatment Purpose  Examples 

 

Recipe and 

methods 

Membrane 

performance 

Surface coating Enhancing 

anti-adhesion 

and anti-fouling 

properties 

Polyvinyl 

alcohol (PVA) 

25% in (IPA/water 

of 3:7), dried at 130 

C [222] 

Surface charge, 

antifouling, and 

hydrophilicity ↑; 

water permeance ↓, 

NaCl rejection ↑; 

0.1 wt.% 

cross-linked by 

succinic acid 

(1:0.27% w/w) 

[231] 

Surface roughness ↓; 

Hydrophilicity and 

antifouling properties 

↑; water permeance ↓, 

NaCl rejection ↑ 

GA cross-linking 

[239] 

Hydrophilicity and 

antifouling properties 

↑; water permeance ↓, 

NaCl rejection ↑ 

Polycations:P

EI [271] 

0-2000 mg/L Water permeance ↓, 

NaCl ↑, hydrophilicity 

and antifouling 

properties against 

cationic foulants ↑ 

Polyelectrolyt

es via 

layer-by-layer 

assembly 

[224] 

Poly(sodium 

4-styrenesulfonate) 

and 

poly(allylamine 

hydrochloride); 0, 

6, 12 layers (6 

optimum) 

Antifouling properties 

↑; roughness ↓; water 

permeance ↓, NaCl 

rejection ↑ 

Polydopamine 

(PDA) 

2 g/L in Tris-HCl 

buffer for 1 or 42 h 

[400] 

Hydrophilicity ↑; 

water permeance ↓, 

NaCl rejection 

unchanged 
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0.1-8 g/L and 

coating time from 

0-120 mins [29] 

Hydrophilicity and 

antifouling properties 

↑; water permeance 

and NaCl rejection  

slightly ↓ 

PDA/zwitterionic 

polymer [228] 

 

Hydrophilicity, 

surface charge and 

antimicrobial 

properties ↑; transport 

properties no major 

change 

Polyamideoam

ine (PAMAM) 

dendrimers 

and 

PMMA-PEG 

[234] 

Coating time 30s Hydrophilicity ↑ 

water permeance ↓, 

NaCl rejection 

slightly ↓ 

Polyether-poly

amide 

copolymer 

[229] 

1 wt.%, dip-coating 

and dried at 60 C 

Hydrophilicity and 

antifouling ↑ 

roughness ↓; water 

permeance ↓, NaCl 

rejection ↑ 

 

Imparting 

antimicrobial 

and antifouling 

surface 

properties 

Silver 

nanoparticles 

(AgNPs) 

AgNO3/NaBH4 1, 2 

and 5 mM [219] 

Water permeance ↓, 

NaCl rejection ↑; 

hydrophilicity and 

antimicrobial 

properties ↑ 

Arc plasma 

deposition 0-100 

pulse shots [233] 

Hydrophilicity and 

antimicrobial ↑ 

water permeance ↑, 

NaCl rejection ↓ 

PDA in situ 

reduction; 2 g/L 

PDA with 4 g/L 

AgNO3 [221, 236] 

Hydrophilicity and 

antimicrobial 

properties ↑; water 

permeance ↓, NaCl 

rejection ↑ 

AgNO3/NaBH4 

+zwitterionic 

Hydrophilicity and 

antimicrobial 
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polymer [227] properties ↑; water 

permeance ↓, NaCl 

rejection ↑ 

CuNPs Carboxylated 

chitosan (CCTS) 

/CuCl2/GA [238] 

Hydrophilicity and 

anti(bio)fouling 

properties ↑ 

water permeance ↓, 

NaCl rejection ↑ 

CuSO4/NaBH4 (50 

mM) [404] 

Water permeance 

slightly ↑ and NaCl 

rejection slightly ↓ 

PEI-CuNPs-PAA; 

spray or spin 

coating for 4-16 

bilayers [230] 

Antimicrobial 

properties ↑; 

water permeance ↓, 

NaCl rejection ↑ 

Improving 

rejection of 

solutes 

Polydopamine 

(PDA)  

 

2 g/L PDA for 

0.5-4 hr [220] 

Hydrophilicity and 

antifouling properties 

↑; water permeance 

and NaCl rejection 

unchanged, 

hydrophobic 

micropollutants 

rejection ↑ 

Tannic 

acid-Fe3+ 

TA: 2.4 mM with 

TA-Fe molar ratio 

1:0.5-1:6 [360] 

Water permeance ↓,; 

NaCl, neutral and 

hydrophobic trace 

organics rejection  ↑ 

Atomic layer 

deposition 

(ALD) 

Al2O3 [232] or 

TiO2 [407] 10-100 

cycles 

Hydrophilicity and 

antifouling ↑ 

roughness ↓; water 

permeance ↓, NaCl 

and pharmaceutical 

solutes rejection ↑ 

Enhancing 

chlorine 

resistance 

Graphene 

oxide (GO) 

[235, 406] 

Spin coating; 0.075 

g/L; 1-5 layers 

Hydrophilicity and 

chlorine resistance ↑; 

water permeance ↓, 

NaCl rejection ↑ 

Other surface Ex situ PEG-NH2 0.1 wt.% EDC Water permeance ↓, 
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modification 

methods 

membrane 

surface bonding 

(modifying the 

fabricated or 

commercial 

TFC 

membrane) for 

enhancing 

membrane 

hydrophilicty 

grafting 

initiated by 

1-Ethy-3-(3-di

methyl 

amidopropyl) 

carbodiimide 

(EDC) [244] 

solution at 4 ℃ for 

3 h; then immersed 

in PEG-NH2 

solution at 4 ℃ for 

24 h 

hydrophilicity and 

antifouling properties 

↑ with nearly constant 

NaCl rejection 

Polyvinylamin

e (PVAm) 

grafting 

initiated by 

EDC/ 
N-hydroxysuc

cinimide 

(NHS) [265] 

0.05-0.25 w/v% 

PVAm aqueous 

solutions for 4 h 

Surface roughness ↓, 
antifouling , water 
permeance ↓ with no 
change of NaCl 
rejection and 
antifouling properties 
↑  

Imidazolidinyl 

urea (IU) 

[266] 

NHS/EDC/ethylene

diamine (EDA) 

assisted grafting 

Water permeance ↓, 
antibiofouling and 
chlorine resistance↑ 
with nearly constant 
NaCl rejection 

Jeffamine 

grafting 

initiated by 

EDC/NHS   

[30] 

1-15% (2% 

optimal) 

Hydrophilicity and 
antifouling properties 
↑` 

water permeance and 

NaCl rejection ↓ 

Acrylic acid  

grafting 

initiated by 

redox 

(K2S2O8) 

[242] 

Acrylic acid (1-50 

g/L); -NH- groups 

in polyamide was 

activated 

Hydrophilicity and 

antifouling ↑; Surface 

roughness ↓; water 

permeance and NaCl 

rejection ↑ 

In situ surface 

bonding (also 

called second IP 

reaction or 

quenching 

process) for 

enhancing 

membrane 

hydrophilicty 

and membrane 

PEI [260] 3 wt.% by 

quenching 

Hydrophilicity ↑; 

FO/PRO: Jv and Js ↑; 

RO: water permeance 

↑; NaCl rejection ↓; 

antifouling property ↑ 

MPD, serinol 

(SRN), 

N-methyl-D-gl

ucamine 

(GCMN) and 

0.15 wt% solution 

of the 

corresponding 

amino alcohol 

(GCMN, APD, or 

For MPD: 

Hydrophilicity ↓ ; 

water permeance and 

NaCl rejection no 

change; boron 
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separation 

performance 

(±)-3-amino-1,

2-propanediol 

(APD) [31] 

SRN rejection ↑; For the 

others: Hydrophilicity 

↑  and water 

permeance ↑ ; NaCl 

and boron rejection 

↓  (For APD NaCl 

rejection ↑) 

Methanol, 

ethanol, 

isopropanol, 

ethylene 

glycol; 

ammonium 

hydroxide and 

MPD [264] 

Contacting time 

60s and 50 ℃ 

Water permeance ↑and 

NaCl rejection ↓ 

except quenching 

MPD (unchanged 

membrane 

performance) 

Post-treatment Study 

degradation 

mechanisms 

and membrane 

separation 

performance 

Chlorination 

(NaClO) 

10-100 ppm; pH 

4.7 to 10; 

immersion time 

0-54 h [208] 

pH < 7: water 
permeance and NaCl 
rejection ↓ 

pH > 7: water 

permeance and NaCl 

rejection ↗↘ 

10, 100 and 1000 

ppm [207] 

pH <= 7: water 
permeance ↓; NaCl 
and boron rejection 
↗↘  

pH > 7: water 
permeance ↑; NaCl 
rejection ↗↘; boron 
rejection ↓ 

300-3000 ppm [27] Water permeance and 
NaCl rejection 
slightly ↑; 

water permeance 

greatly ↑; NaCl 
rejection ↓ w/ NaOH 
immersion 

1250 mg/L; 30-60 

mins coating time; 

pH=11[212] 

Hydrophilicity and 
water permeance ↑and 
NaCl rejection ↓; 
surface roughness ↓ 

Improving 

membrane 

performance 

Acid treatment  HCl, nitric acid; 

sulfuric acid, 

phosphoric; 

concentration 

varied from 1-10 

Membrane water 
permeance ↑ 
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wt.% [206] 

5 wt.% sulfamic 

acid; 0.01 wt.% 

Na2CO3 and 0.025 

wt.% NaHSO3 

[215] 

5 wt.% 

hydrofluoric acid 

(HF); 1 wt.% 

fluosilicic acid 

(FSA) [210] 

Alkali 

treatment 

pH=9 and 13 using 

NaOH [260] 

Membrane water 
permeance ↑and NaCl 
rejection ↓ 

 

Solvents 

treatment 

Alcohol: IPA, 

glycerol, ethanol, 

benzyl alcohol 

[209, 211, 361]  

Membrane water 
permeance ↑ and 
NaCl rejection ↓ 

Organic solvent: 

DMF [361] 

  600 
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4.4.2. Other Surface modifications 601 

In addition to surface coating, other membrane surface modification techniques can 602 

also be applied to enhance membrane hydrophilicity and antifouling properties. 603 

Surface modification can be categorized into two groups: ex situ and in situ surface 604 

modification. Their differences and the corresponding examples are presented in 605 

Table 4, and more detailed information can be found in Table B4 in the Supporting 606 

Information.  607 

 608 

Ex situ surface modification is a “post-modifying” approach to chemically graft or 609 

modify a TFC membrane that has been fabricated beforehand, such as modifying a 610 

commercial TFC membrane. Since the membrane surface does not contain highly 611 

reactive functional groups such as acryl chloride groups, ex situ modification often 612 

requires the activation of groups in polyamide chains (e.g., -NH- or COOH) to further 613 

react with other chemicals. For example, Xu et al. grafted imidazolidinyl urea (IU) 614 

[266] on the surface of a TFC RO membrane with the aid of N-hydroxysuccinimide 615 

(NHS)/N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) to 616 

activate the carboxyl groups. The modified membrane showed enhanced 617 

hydrophilicity, excellent antibiofouling, and chlorine resistance properties. However, 618 

the modified membrane had decreased water permeance, probably due to the strong 619 

H-bonding among these IU on the membrane surface [266] (Fig. 10a). 620 

  621 
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In situ surface modification, also called second interfacial polymerization or 622 

quenching [260, 264], is achieved by directly immersing a newly-fabricated TFC 623 

membrane (without removing or hydrolyzing TMC) into a grafting solution with 624 

desirable functional groups. In this case, the unreacted acryl chloride groups in the 625 

TMC react with the grafting chemicals to endow the modified membrane with the 626 

desired surface functional groups. Werber et al. [264] explored in situ surface 627 

modification by immersing (i.e., quenching) a freshly-fabricated TFC membrane into 628 

a set of alcohols or amine containing chemicals solutions, such as ethanol, ammonium 629 

hydroxide, and MPD. Membrane quenched by the alcohols showed a significantly 630 

enhanced water permeance and slightly decreased salt rejection compared to the 631 

control [264] (Fig. 10b). This can be due to the enhanced membrane hydrophilicity 632 

due to the grafted hydrophilic groups. In addition, membrane salt rejection decreased, 633 

probably due to the formation of polyester bonds when quenching in alcohol solutions. 634 

In contrast, quenching a 10 wt.% MPD solution could lead to a denser PA layer with 635 

reduced water permeance (Fig. 10b). 636 

 637 

 638 



50 

 

 639 

Fig. 10. Effect of surface modifications on membrane separation performance: (a) ex situ 640 
surface modification; (b) in situ surface modification. Blue dash lines correspond to the NaCl 641 
rejection of 99% and 90%, respectively, at a flux of 20 Lm-2h-1. 642 

 643 

4.4.3. Post-treatment 644 

Membrane post-treatment can significantly affect membrane separation performance. 645 

Table 4 summaries the major types of post-treatment, such as chlorine, acid or alkali 646 

and solvents (e.g., alcohols or organic solvents) treatment. This section mainly 647 

discusses the impact of post-treatment conditions on membrane separation 648 

performance, and more detailed information can be found in Table B4.  649 

 650 

Chlorination, often with the addition of NaClO, can significantly alter the polyamide 651 

structure, thus leading to significant changes in membrane separation performance. 652 

Important chlorination mechanisms include intermolecular rearrangement [412], 653 

aromatic ring chlorination (both direct ring attach and Orton arrangement [413, 414]), 654 
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and direct formation of N-chloramide [415-417]. Many researchers [27, 207, 208, 356, 655 

416] have studied membrane chlorination as well as its impact on the corresponding 656 

membrane physiochemical properties. For example, Do et al. [207] explored the effect 657 

of pH on the chlorination of a TFC NF membrane performance. When pH is below 7, 658 

the exposure to chlorine led to a more hydrophobic membrane surface, with reduced 659 

water permeance and enhanced salt rejection. This can be due to the chlorination 660 

induced additional bonds via azo compounds on membrane surface [356]. However, 661 

when pH is ≥7 [27, 207], membrane chlorination could induce hydrolysis of the 662 

crosslinked polyamide which enhances membrane hydrophilicity as well as its water 663 

permeance. A combination of high chlorine exposure and high pH often results in 664 

severely impaired NaCl rejection [27, 207, 208, 356]. Nevertheless, Do et al. [207] 665 

showed the possibility of achieving simultaneously enhanced permeance and 666 

selectivity by controlling the chlorine-induced hydrolysis under moderate chlorine 667 

concentrations (Fig. 11a). 668 

 669 

In addition to chlorine treatment, acid or alkali are often used as conventional 670 

post-treatment approaches to improve membrane separation performance [206, 210, 671 

211, 215, 260]. Shen et al. [260] reported a permeance and salt rejection decline of an 672 

acid (pH=1) or alkali (pH=13) post-treated TFC membrane (Fig. 11b), which can be 673 

due to the hydrolysis of the polyamide rejection layer. Likewise, Kulkarni et al. used 674 

hydrofluoric acid (HF) to post-treat the commercial TFC RO membrane. When HF 675 
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concentration was below 5 wt.%, the modified membrane showed both enhance water 676 

permeance and salt rejection (Fig. 11b), thanks to the enhanced membrane 677 

hydrophilicity. However, overdosage could severely deteriorate polyamide integrity 678 

with decreased NaCl rejection. Solvent-based post-treatments, such as alcohols [209, 679 

211, 361] or other organic solvents (e.g., DMF), can also result in membranes with 680 

enhanced water permeance and nearly unchanged or slightly decreased NaCl rejection, 681 

due to their swelling effect (Fig. 11c). In some cases, a solvent could also partially 682 

dissolve the substrate, leading to significant changes in membrane performance [361].  683 

 684 

 685 
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Fig. 11. Effect of post-treatment on membrane separation performance: (a) membrane 686 
chlorination. The dashed black line represents the prediction of membrane permeance and 687 
selectivity of a highly degraded TFC membrane [207]; (b) acid and alkali treatment; (c) 688 
solvent treatment. Blue dash lines correspond to the NaCl rejection of 99% and 90%, 689 
respectively, at a flux of 20 Lm-2h-1. 690 
 691 

 692 

 693 
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5. Implications 694 

The current study establishes an upper bound relationship for water permeance and 695 

water to NaCl selectivity for TFC polyamide membranes, which provides a useful 696 

tool for benchmarking future membrane development. While the effect of 697 

concentration polarization is not included in Fig. 2 due to general limitation of 698 

literature data, additional analysis in Fig. A1 (Supporting Information Appendix A) 699 

shows that both A and A/B could be underestimated by assuming fcp = 1. Therefore, 700 

future studies need to explicitly include fcp (e.g., Equation 13) in their calculation of 701 

membrane separation properties.  702 

 703 

In developing strategies to achieve enhanced membrane performance, one needs to 704 

pay attention to the crosslinking degree of the polyamide rejection layer, its effective 705 

surface area for filtration, and the free volume and nanovoids contained in the 706 

rejection layer. Increased rejection can be generally obtained with improved 707 

crosslinking degree, e.g., with the use of H+ acceptor such as TEA. Increasing 708 

membrane surface roughness can lead to improved water permeance due to the 709 

creation of additional effective filtration area. In a recent study, Ma et al. [19, 20] 710 

reported the use of NaHCO3 for the simultaneous enhancement of NaCl rejection and 711 

water permeability, where HCO3
- served the dual function of H+ acceptor and 712 

roughness promoter. Another effective strategy to break the permselectivity upper 713 

bound is to increase the free volume within the polyamide network [418-421]. For 714 
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instance, the addition of DMSO [330] into the aqueous phase during interfacial 715 

polymerization could effectively increase the aggregate pores size of polyamide 716 

network due to the enhanced miscibility of the aqueous and the organic phase. The 717 

optimum loading of DMSO could result in significantly enhanced water flux without 718 

severe impact on the crosslinking degree. In parallel to enhancing free volume, the 719 

incorporation of porous nanomaterials in the polyamide rejection layer can 720 

significantly enhance membrane separation performance thanks to the additional 721 

selective water pathways in these nanofillers [422, 423]. A recent work further shows 722 

the creation of additional selective nanochannels along the surface of hydrophilic 723 

nanofillers [358]. Several studies have also demonstrated the effective use of an 724 

interlayer (e.g., polydopamine [347], tannic acid-Fe3+ complex [349], or carbon 725 

nanotubes [424, 425]) to simultaneously enhance flux and rejection, thanks to the 726 

optimized membrane structure and reduced defects.  727 

 728 

In the membrane community, there have been overwhelming interests in 729 

“next-generation” desalination membranes prepared from carbon nanotube, 730 

nanoporous graphene, graphene oxide and aquaporin. Nevertheless, it is worthwhile 731 

to highlight the general inadequacy of their NaCl rejection [3]. Ritt et al. [426] further 732 

reveal that, even under ideal conditions, the separation performance of 2-D 733 

materials-based membranes still cannot surpass the performance of TFC desalination 734 

membranes due to their inherent defects. The failure of “next-generation” desalination 735 
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membranes in addressing the permselectivity underpins the great value of the TFC 736 

polyamide membranes for delivering product water of highly reliable quality. 737 

Therefore, future developments on novel materials and membranes for desalination 738 

need to benchmark directly against the state-of-the-art upper bound. 739 

  740 
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6. Conclusion 741 

This study analyzed the separation properties of TFC polyamide membranes gathered 742 

from more than 300 technical papers published in the last three decades. The analysis 743 

showed a clear permeance-selectivity tradeoff between the membrane water 744 

permeance (A) and water/NaCl selectivity (A/B) for polyamide-based desalination 745 

membranes so that membranes with higher water permeance tend to have lower 746 

water/NaCl selectivity. This study further reviews the effect of various synthesis 747 

conditions (monomer types and concentration, additives, etc.) and modification 748 

methods on these important separation properties. An upper bound was identified for 749 

the state-of-the-art TFC polyamide membranes, which is given in the form of A/B = 750 

16000A-3.2 (with A/B in bar-1 and A in Lm-2h-1bar-1). This upper bound relationship can 751 

serve as a useful benchmark for evaluating future membrane development works.    752 
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