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BACKGROUND & AIMS: Intratumor heterogeneity and diver-
gent clonal lineages within and among primary and recurrent
hepatocellular carcinomas (HCCs) produce challenges to pa-
tient management. We investigated genetic and epigenetic
variations within liver tumors, among hepatic lesions, and be-
tween primary and relapsing tumors. METHODS: Tumor and
matched nontumor liver specimens were collected from 113
patients who underwent partial hepatectomy for primary or
recurrent HCC at 2 hospitals in Hong Kong. We performed
whole-genome, whole-exome, or targeted capture sequencing
analyses of 356 HCC specimens collected from multiple tumor
regions and matched initial and recurrent tumors. We per-
formed parallel DNA methylation profiling analyses of 95
specimens. Genomes and epigenomes of nontumor tissues that
contained areas of cirrhosis or fibrosis were analyzed. We
developed liver cancer cell lines that endogenously expressed a
mutant form of TP53 (R249S) or overexpressed mutant forms
of STAT3 (D170Y, K348E, and Y640F) or JAK1 (S703I and
L910P) and tested the abilities of pharmacologic agents to
reduce activity. Cells were analyzed by immunoblotting and
chromatin immunoprecipitation with quantitative polymerase
chain reaction. RESULTS: We determined the monoclonal ori-
gins of individual tumors using a single sample collection
approach that captured more than 90% of mutations that are
detected in all regions of tumors. Phylogenetic and phylo-
epigenetic analyses revealed interactions and codependence
between the genomic and epigenomic features of HCCs.
Methylation analysis revealed a field effect in cirrhotic liver
tissues that predisposes them to tumor development. Com-
parisons of genetic features revealed that 52% of recurrent
HCCs derive from the clonal lineage of the initial tumor. The
clonal origin if recurrent HCCs allowed construction of a tem-
poral map of genetic alterations that associated with tumor
recurrence. Activation of JAK signaling to STAT was a charac-
teristic of HCC progression via mutations that associate with
response to drug sensitivity. The combination of a mutation
that increases the function of TP53 and the 17p chromosome
deletion might provide liver cancer cells with a replicative
advantage. Chromatin immunoprecipitation analysis of TP53
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

We analyzed hepatocellular carcinomas (HCCs) and
surrounding non-tumor tissues to identify genetic and
epigenetic variations within liver tumors, among hepatic
lesions, and between primary and relapsing tumors.

NEW FINDINGS

We identified DNA methylation patterns associated with
risk of HCC recurrence after surgery. We identified
chromatin regulators that are upregulated by mutant
TP53 in HCC cells and inhibitors that reduce
proliferation of these cells.

LIMITATIONS

This was a retrospective analysis of liver tissues obtained
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with the R249S substitution revealed its interaction with genes
that encode chromatin regulators (MLL1 and MLL2). We vali-
dated MLL1 and MLL2 as direct targets of TP53R249S and
affirmed their association in the Cancer Genome Atlas dataset.
The MLL-complex antagonists MI-2-2 (inhibitor of protein
interaction) and OICR-9492 (inhibitor of activity) specifically
inhibited proliferation of HCC cells that express TP53R249S at
nanomolar concentrations. CONCLUSIONS: We performed a
systematic evaluation of intra- and intertumor genetic hetero-
geneity in HCC samples and identified genetic and epigenetic
changes that associate with tumor progression and recurrence.
We identified chromatin regulators that are upregulated by
mutant TP53 in HCC cells and inhibitors that reduce prolifer-
ation of these cells. DNA methylation patterns in cirrhotic or
fibrotic liver tissues might be used to identify those at risk of
HCC development.
from patients undergoing surgery at 2 hospitals. Analyses
of larger numbers of samples and prospective studies are
needed.

IMPACT

Genetic and DNA methylation patterns of HCCs can be
used to identify patients at high risk for recurrence after
surgery. DNA methylation patterns in cirrhotic or fibrotic
Keywords: Hepatic Carcinogenesis; Tumorigenesis; Tumor Pro-
gression; Treatment.

epatocellular carcinoma (HCC) is a major cause of
1

liver tissues might be used to identify those at risk of
HCC development and recurrence after surgery.

* Authors share co-first authorship.

Abbreviations used in this paper: CGI, CpG island; CNA, copy number
alteration; GOF, gain-of-function; HBV, hepatitis B virus; HCC, hepato-
cellular carcinoma; HGV, high genetic variation; NLs, normal livers; WES,
whole-exome sequencing; WGS, whole-genome sequencing.

Most current article

© 2019 by the AGA Institute. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
0016-5085

https://doi.org/10.1053/j.gastro.2019.09.005

BA
SI
C
AN

D
TR

AN
SL
AT

IO
NA

L
LI
VE

R

Hcancer-related deaths worldwide. Surgical resec-
tion remains the mainstay of treatment for early localized
HCC, but hepatic recurrence occurs in >70% of patients
within 5-years postsurgery that reduces survival.2 Early
recurrent tumors, typically within 2-years postsurgery, are
believed to share the same clonal origin as initial HCC,
whereas late recurrences (>2 years) are considered to
represent de novo development of second primary tumors
bearing a different clonal lineage.3,4 Although these hy-
potheses have yet to be fully validated, because the clinical
management of progressive or secondary tumor differs
substantially, it is important to build a practical approach to
discriminate genetic clonality between initial and recurrent
HCCs to distinguish between these 2 possibilities.

For advanced stage patients, sorafenib is the first-line
therapy but offers minimal survival benefit.5 It is believed
that intratumor heterogeneity has limited the development
of targeted therapies in HCC and determination of the
spatial distribution of topographically distinct areas of ge-
netic alterations remains a challenge. In addition, the
frequent presence of multinodular HCC at diagnosis poses
the question of whether these lesions represent synchro-
nous multifocal tumors of different clonality, or intrahepatic
metastases with a shared clonal relationship, and has
further complicated development of systemic targeted
therapies. The characteristics of tumor heterogeneity and
the extent of genomic diversity in HCC tumors are therefore
of potential importance for the clinical management of pa-
tients, underscoring the need to better understand the
genomic architecture within a bulk tumor, clonal expansion
and subclonal diversification in tumor dissemination, and
temporal dynamics during recurrence.

Like many cancer types, HCC evolves through a
sequential order of clonal expansion and selection of
genomic and epigenomic alterations.6 However, unlike most
cancers, HCC usually arises from an organ that has been
damaged by chronic inflammation and persistent hepatic
injury from etiologies such as hepatitis viruses, alcohol, and
fatty liver.7,8 More than 90% of HCCs develop on a back-
ground of liver cirrhosis or fibrosis,7 which has long been
regarded to prime cancer development, but there is a lack of
concrete evidence to support their premalignant state. It is
plausible that initial “gatekeeper” alterations in premalig-
nant stages provide a selective growth advantage to normal
epithelial cells that are insufficient for tumor onset.9 Later
deleterious ‘‘driver” events unleash malignant trans-
formation and allow clonal expansion of tumor cell growth.9

We hypothesize that “gatekeeper” and “driver” events in
HCC, whether genetic or epigenetic, are trunk alterations
that are clonally dominant, given that tumors arise from a
single cell and trunk alterations are initiating pro-oncogenic
events in cancer evolution.

To characterize spatial and temporal tumor heteroge-
neity, and determine the truncal “gatekeepers” and
“drivers” in the clonal evolution leading to HCC, we
investigated heterogeneity at 3 levels: (1) analysis of
intratumor heterogeneity by whole-exome sequencing
(WES) and DNA methylation to quantify the variability
among different sectors from multiregion sampling within
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the same tumor; (2) analysis of intertumor heterogeneity
among hepatic lesions to accurately distinguish the
genomic and epigenomic lineages of HCC tumors; and (3)
analysis of the heterogeneity between initial and relapse
tumors. We also scored the tumor-neighboring liver
cirrhosis and fibrosis nodules for genomic and epigenomic
changes, and identified HCC-specific “gatekeeper” events.
In addition, focusing on clinically and therapeutically
relevant aspects of tumor heterogeneity, we explored gain-
of-function (GOF) TP53 mutation and STAT3 for possible
therapeutic interventions.
Methods
Patient Samples

Tumors and matching adjacent nontumoral liver samples
were collected from 113 patients who underwent partial hep-
atectomy for primary or recurrent HCC at Prince of Wales
Hospital and Queen Mary Hospital, Hong Kong. Six tumors were
subjected to extensive multiple region sampling as demon-
strated in Supplementary Figure 1. Informed consent was ob-
tained from the recruited patients and the study protocol was
approved by the Clinical Research Ethics Committee of the
Chinese University of Hong Kong and Human Research Ethics
Committee of the University of Hong Kong. Clinical information
of the patient cohort is provided in Supplementary Table 1.
Tumor samples were either snap frozen or formalin fixed and
paraffin embedded. The diagnosis of HCC was confirmed in all
cases by 2 experienced pathologists through histology
examination.
Whole-Genome Sequencing, WES, Targeted
Capture Sequencing, and DNA Methylation
Profiling

Thirty-six samples from 9 patients were analyzed by
whole-genome sequencing (WGS); 86 samples from 6 patients
by WES, and 234 samples from 98 patients by targeted next
generation sequencing that covered 824 HCC-associated vital
genes (Supplementary Tables 1–4). For WGS, Illumina
sequencing libraries were prepared from genomic DNA pass-
ing quality control, and paired-end 100 base pair sequencing
was performed on HiSeq 2500. Raw genome coverage of 100x
for tumor samples at first surgery and 60x at relapse within
the initial-relapse dataset were obtained, giving a high po-
tential for the detection of events that could persist in relapse
tumors. For samples studied for intratumor heterogeneity,
Agilent (Santa Clara, CA) SureSelect Human All Exons v6 kit
was used for whole-exome capture of genomic DNA and the
captured DNA was sequenced by HiSeq 2500. One case ITH-
15, both the T1 and T2 tumors were subjected to WGS.
Genomic DNA from 95 samples was analyzed on Infinium
HumanMethylationEPIC BeadChip (Illumina, San Diego, CA)
arrays to obtain genome-wide DNA methylation profiles. We
also included one reported case, HCC-15,10 which is the sole
published case with extensive multiregion sampling, for
intratumor heterogeneity analysis. To explore an association
between public and nonpublic mutations with tumor size, we
also included mutations called in 9 patients with HCC from the
study by Zhai et al.11
Accession Code
Sequencing and methylation data are accessible in the EBI

database, no. EGAS00001002094.

Results
Spatial Genomic Heterogeneity

In 96 multiregion samples from 6 HCC tumors, we per-
formed WGS on 12 samples from a case of bifocal HCC (ITH-
15) and the remaining by WES (Supplementary Figure 1A–G
and Supplementary Tables 1 and 2). According to their
spatial organization, somatic aberrations including muta-
tions, indels, and copy number alterations (CNAs) in
different sectors were classified into 3 groups: public
(ubiquitous in all regions), regional (found in 2 or more
regions), and private (found in only 1 region). The phylo-
genetic trees varied between cases but marked public mu-
tations were prominent in all tumor sectors (average
59.9%) highlighting the monoclonal origin of individual
HCCs (Figure 1Ai). On average, we found 110 nonsilent
public mutations per tumor sector (Supplementary
Table 3A). Cancer-related drivers, including TP53, CTNNB1,
and TERT, shared many public mutations (Figure 1Aii).
Their presence in a clonal manner reinforces their early
carcinogenetic role. Notably, the number of public muta-
tions did not correlate with abundance of nonpublic muta-
tions, nor with tumor size (Supplementary Figure 1H). We
next analyzed CNA profiles for patterns of intratumor het-
erogeneity (Figure 1B and C, and Supplementary Figure 1I–
L). Besides public CNAs in all tumor sectors, we also found a
progressive increase in CNA level from one tumor sector to
another (eg, increasing allelic magnitude of gain[7] in ITH-
15T1). Also, copy neutral loss of heterozygosity was more
common than expected and could be pervasive in all sectors
(eg, copy neutral loss of heterozygosity [3p] in ITH-15T2)
(Figure 1C). The only driver CNA found to be highly ubiq-
uitous was del(17p), which encompasses TP53.

To address the extent of genetic variation, we generated
2 indices to estimate distribution of genetic variability
within a tumor: the number of unique private mutations and
Nei’s score.12,13 Both methods concurred in highlighting
high genetic variation (HGV) of substantial divergence be-
tween regions in ITH-625T1, HCC-15, and ITH-15T1,
whereas the rest showed low genetic variation, especially
ITH-15T2 was uniformly conferred by common drivers
(Figure 1D and E and Supplementary Figure 1M). To explore
factors associated with HGV, we formulated a spatial model
to simulate 3-dimensional tumor growth.14 Based on
observed data, we simulated multiregion sequencing data
on virtual tumors and used Approximate Bayesian Compu-
tation to infer tumor characteristics, including mutation rate
(m) and selection (s). Interestingly, instead of being driven
by selection, genetic variation strongly correlated with
inferred mutation rates (Figure 1F and Supplementary
Figure 2A–D). Meanwhile, these results were supported by
2 intrinsic public mutations in the DNA mismatch repair
pathway in HGV-HCCs, ITH-625 (ATRX), and HCC-15
(MSH2), which likely elevated the acquired mutations
along with tumor growth. The development of new



Figure 1. Patterns of intratumor heterogeneity in HCC. (A) Distribution of somatic events. (i) Left panel displays public (orange),
regional (green), and private (blue) mutations in each tumor. (ii) Right panel shows driver genes identified in each tumor. Symbol
(*) represents differing mutations in the same gene identified in the same patient ITH15. Symbol (#) HCC-15 represents a
published case (Supplementary Methods). (B) Circos plots showing CNA profiles from ITH-539, -555, -566, and -625. Each
track represents CNA determined from 1 tumor sample. (C) Representative CNAs from ITH-15T1 and ITH-15T2. Progressive
increment of BAF magnitude from sector T1B>T1D>T1C>T1A suggested an increasing level of gain chr.7 in clonal trajectory
between tumor sectors. Pervasive copy neutral loss of heterozygosity of chr.3p in T2A, T2B, T2C, and T2D was suggested
from the simultaneous balanced logR ratios and imbalanced BAF values. (D) Mutational profiles of ITH-15, -539, -555, -566,
and -625. Grid colors indicate the presence (blue) or absence (gray) of aberrations in each sample. Mutations were grouped
into 3 classes: public (orange bar), regional (green bar), and private (blue bar). Columns of each mutation profiles were ranked in
orders obtained from hierarchical clustering. (E) Violin plot illustrating the distribution of ITH levels, with y-axis representing the
distribution of private mutation number after pairwise comparison across all regions in each tumor. (F) Inferred mutation rates
based on Approximate Bayesian Computation (ABC) and spatial simulation. The y-axis stands for inferred mutation rates
(mutations per cell cycle per site) within coding regions. (G) Mutation saturation curves. Relationship between tumor sampling
number and proportion of mutations detected, with the x-axis representing sampling number and y-axis representing number
of mutations.
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simulation models has allowed identification of pertinent
factors associated with HCC.

To evaluate links between sampling number and the
number of mutations uncovered, we calculated the number
of identifiable nonsilent mutations with stepwise increase in
profiled sampling count (Figure 1G and Supplementary
Figure 2E). The saturation curves of all cases showed
variances in shape but, on average, a single sample could
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achieve a 0.67 detection of all somatic mutations. For the
single-sampling approach, our results suggested that the
distribution of clonal fraction was always higher for public
mutations than nonpublic mutations (Supplementary
Figure 2F). To increase the relative proportion of public
mutations in the single-sample study, we grouped mutations
into clonal (�0.9) and subclonal (<0.9) fractions and
found average 90.65% clonal mutations to be public
(Supplementary Figure 2G).
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Genome and Epigenome Codependency in
Evolutionary Trajectory

To decipher intratumor heterogeneity at the epigenome
level and the potential relationship with genomic alter-
ations, we profiled the DNA methylome of all tumor sectors
that corresponded to samples that were sequenced by WGS
and WES. Together with 3 normal livers (NLs), these
multiregional tumor sectors were array profiled using Illu-
mina Infinium MethylationEPIC (Supplementary Table 1A).
We identified CpG probes that showed significant methyl-
ation differences from NLs, and accordingly classified them
into public and nonpublic changes. Differential CpG probes
suggestive of hyper- or hypomethylated loci were assigned
to their regulatory categories, including CpG islands (CGIs),
CGI shores, promoters, enhancers and gene body
(Supplementary Figure 3A). On average, both public and
nonpublic CpG probes showed enrichment of hyper-
methylated probes in CGI and promoter regions. This would
imply that nonpublic CpG probes could also have a role in
subclonal diversification. Gene ontology analysis supported
our view, where nonpublic hypermethylated genes showed
significant enrichment in cancer-related processes,
including regulation of cell proliferation, adhesion, and
transcription (Supplementary Figure 3B). Our observations
underlined the likely involvement of methylation in the
intratumor heterogeneity of HCC evolutionary biology.

We next sought to determine the spatial distribution of
genomic and epigenomic alterations in multisector regions
and map their trajectory path in tumor expansion. The extent
of trunk and branch variables from WGS and WES allowed
determination of the clonal relationship between individual
lesions (Figure 2A–E). For DNA methylation, we first defined
those epigenetic driver events (Epidrivers) that were
=
Figure 2. Evolutionary history of tumor growth based on geno
phyloepigenetic trees constructed on hypermethylated CpG site
based on nonsilent mutations. The branch length correlated w
inferred growth model of each tumor. Red star in the center repre
trajectories and gray arrows link the inferred branch and sampli
public mutations in TP53, RB1, and ATRX that propagated into 2
slice 3. The 2B branched into subclones on slice 1. The branch o
3I, and another cluster of 2E, 2F, and 3C that finally evolved into
1I, 2H, and 3A. In contrast, both ITH-566T1 and ITH-539T1 we
including a set of tumor sectors with few genetic and epigenetic
ancestor that already existed in the region of 4D. Both genetic an
and T2 was quite early before the clonal expansion of ITH-55
ancestral tumor cells and displayed distinct ITH patterns, with
mogeneity in ITH-15T2. Nonetheless, phyloepigenetic tree of IT
from a common set of CpG probes.
pertinent to HCC using 2 independent HCC methylation
studies as training cohorts, The Cancer Genome Atlas15 (n ¼
380) and the study by Villanueva et al16 (n ¼ 243)
(Supplementary Figure 3C and D). Similar to genetic aberra-
tions, both hyper- and hypo methylation Epidrivers exhibited
extensive intratumoral heterogeneity, with an average
40.95% and 29.09% changes defined as nonpublic, respec-
tively. As expected, the levels of intratumor heterogeneity
reflected throughmethylation changes were also significantly
associated with those of genetic changes, including somatic
mutations and CNAs (Supplementary Figure 3E and F).

We next constructed a phyloepigenetic tree for each
patient based on the level of variability across CpG sites.
Meanwhile, we also inferred phylogenetic sample trees and
clone trees based on somatic mutations of each case
(Figure 2 and Supplementary Figures 4–6). Interestingly,
both phylogenetic and phyloepigenetic trees displayed
strong spatial overlap in all cases (Supplementary Figure 5,
Pearson’s r ranging from 0.80 to 0.92, permutation test P <
.01). We next attempted to reconstruct the trajectory path of
tumor development. The phylogenetic tree of all cases
revealed a progressive pattern of mutational accumulation
that could be mapped according to our spatial sampling
locations (Figure 2), depicting a picture of evolutionary
history in both spatial and temporal dimensions. In most
cases, the initiating clone originated from the spatial center,
except for ITH-555 and ITH-15T1 from the edge, but all
showed continual evolution into distant branches containing
divergent subclones. The phyloepigenetic trees also dis-
played an evolutionary pattern highly similar to phyloge-
netic trees in relative distance among samples (Pearson’s r
ranging from 0.80 to 0.92). Contrary to the spatial variation
of the Big Bang model in colorectal cancer growth,17 our
results suggested that HCC followed an evolutionary path in
which tumor grew as a spatially continuous single clone
expansion with sequential accumulation of mutations. Tak-
ing ITH-625 as an example, the phylogenetic tree suggested
highly localized confinement of subclones and most regions
in fact carried subclones from a single phylogenetic branch.
The combined phylogenetic and phyloepigenetic analyses
further suggested that the initiator cells for ITH-625 were
from the spatial center, and the ancestral cells further
divided into 2 spatially separated clusters of accumulated
genetic and epigenetic aberrations.
me and epigenome profiles. (A–E) (i) Left panel shows the
s, and middle panel shows the phylogenetic trees constructed
ith identified mutation number. (ii) Right panel presents the
sents initiating cells. Bold arrows show the major evolutionary
ng locations. ITH-625T1 initiated from the spatial center with
directions: one close to 2B and the other between slice 2 and
n slices 2 and 3 further spread into one cluster of 3E, 3G, and
the most distant branch containing divergent subclones: 1G,
re spatially separated into 2 big branches with each cluster
heterogeneity. ITH-566T2 and T3 originated from a common
d epigenetic data supported the divergent time for ITH-555T1
5T1. ITH-15T1 and T2, however, were seeded from different
high heterogeneity found in ITH-15T1 and high genetic ho-
H-15 showed T1 and T2 shared a truncal branch that arose
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Clonal Status of Multifocal HCC and Field Effect
Multiple hepatic lesions at presentation are common in

patients with HCC. To address the clonal relationship among
multifocal tumors, we assessed the intertumor heterogene-
ity in 5 patients with synchronous tumors; of these, 3 pa-
tients had also been analyzed for intratumor heterogeneity.
In this way, we were able to map the route of tumor
dissemination as well as clonal assessment. Both phyloge-
netic and phyloepigenetic trees concurred in highlighting
common clonal ancestry among intrahepatic tumors ITH-
566, -555, -547, and -564 (Figure 2 and Supplementary
Figure 5). The genetic similarity of ITH-566T2 and T3 sat-
ellites with T1 could be directly traced to one of T1’s spe-
cific sectors, 4D, where the route of spread likely initiated
(Figure 2B). Similarly, ITH-555T2 likely diverged from
sector T1C and before growth expansion of T1 (Figure 2D).
In addition to the monoclonal origin of multifocal tumors
arising from a single ancestor, we also observed tumors of
independent origins in patient ITH-15. Despite ITH-15T1
being localized in close proximity to ITH-15T2 (3 cm
apart), WGS showed their clonal origins to differ distinc-
tively from each other. There was complete absence of
shared somatic variants and CNAs (Figure 1D and
Supplementary Figure 1J). Their pattern of hepatitis B virus
(HBV) integration also showed no common viral insertion
sites (Supplementary Figure 5D and Supplementary
Table 3B). Together, WGS fully illustrated and strongly
suggested that ITH-15T1 and T2 originated from 2 different
clones. Surprisingly, contrary to the genomic findings, the
phyloepigenetic tree of ITH-15 showed branches of T1 and
T2 arising from a common set of tumor-specific probes that
arose from their neighboring cirrhotic liver (Figure 2E). The
aberrant hyper- and hypomethylation patterns maintained
from cirrhosis to both T1 and T2 tumors suggested that
epigenetic alterations already existed in the early preneo-
plastic liver tissue of this patient, and convergent evolution
underlined the development of these tumors.

Little is known about the extent of DNA methylation
changes in premalignant cirrhotic/fibrotic lesions, which
has limited our knowledge on how they participate in HCC
development. To address these questions, we performed
WGS, WES, and methylation profiling on single or multiple
regenerative nodules of neighboring cirrhotic or fibrotic
liver from all cases studied (Supplementary Table 1A). We
also filtered out the organ-related methylation pattern using
3 healthy NLs as reference. Analysis of cirrhotic or fibrotic
nodules showed consistent absence of Indel or CNA ab-
normalities, except for occasional single nucleotide variants
(SNVs) that were undetectable in the corresponding tumor.
We next explored field effect at the epigenetic level.
Focusing on epigenetic probes that could demonstrate a
=
Figure 3. Precancerous epigenetic changes. (A–F) Precancer
sectors of tumor-neighboring liver cirrhosis/fibrosis from ITH-1
loepigenetic trees (left) and heatmap (right) illustrate precanc
maintained in tumor lesions. Phyloepigenetic trees are const
constructed based on hypomethylation changes. (G, H) Validat
dataset, The Cancer Genome Atlas (left) and in-house data (rig
adjacent nonmalignant tissues; T, tumor tissues.
progressive change in sequential order from normal to
cirrhosis/fibrosis to HCC liver states, we defined a subset of
the most variable CpGs (Figure 3A–F, Supplementary
Figures 6 and 7). We found all liver cirrhosis/fibrosis sec-
tors were epigenetically divergent from NLs, except for ITH-
625, which was a case of mild fibrosis and closely resembled
healthy controls. Notably, individual cirrhotic/fibrotic livers
showed distinct clusters of aberrant methylation charac-
teristic of their corresponding HCC. A linear progression of
specific cluster nodes linking liver disease to HCC under-
scored epigenetic changes within cirrhotic/fibrotic nodules
as truncal gatekeepers of tumorigenic potential. We found
many of the early hyper- and hypomethylation changes
targeted genes involved in cancer pathways, implying that
they are functionally relevant.18–21 For instance, SOCS2
hypermethylation correlated with repressed expression,
which has been implicated in augmenting liver inflammation
and fibrosis leading to HCC,19 whereas UBD hypo-
methylation (also FAT10) is an important mediator that
promotes chronic inflammation-associated tumorigenesis
when upregulated20 (Figure 3G and H and Supplementary
Figure 6D–F). Our results illustrated a prominent field ef-
fect from methylation abnormalities in the early preneo-
plastic phases of HCC even when the genome is stable.
Temporal Mutational Profiles and Mutational
Signatures in Tumor Progression

The supposition that early <2-year recurrences share
clonal lineage with initial HCC has gained attention as it may
allow the development of predictive biomarkers. To verify
this, we performed targeted resequencing of 824 key HCC-
associated genes (including the TERT promoter) in 154 tu-
mors and matched nontumoral liver from 106 patients,
including 41 matched initial-recurrent tumor pairs, 5 cases
with 3 longitudinal tumors from more than 1 relapse, 29
primary HCCs with no recurrence in a median follow-up of
12.4 years, and 26 relapse tumors alone (Supplementary
Tables 1–4 and Figure 4A). Direct genetic comparisons
showed 2 idiosyncratic types of recurrence: progressive-HCC
(52.2%) that shared extensive mutational changes with
initial tumor, and multicentric-HCC (47.8%) that arose from
an independent tumor lineage (Supplementary Figures 8A
and 9). Intriguingly, mutation burden in progressive-HCCs
was significantly higher than multicentric-HCCs (P < .05)
(Figure 4B). Although a general trend for multicentric-HCC to
relapse after >2 years was observed (Supplementary
Figure 8B), 36.4% of these tumors (mean 44.1 months)
shared the same clonal origin as their initial HCC. Note-
worthy, 33.3% of early recurrent tumors (mean 10.3
months) were in fact multicentric-HCC. Evidently, these
ous DNA methylation changes are identified in nontumoral
5, ITH-539, ITH-555, ITH-547, ITH-564, and ITH-566. Phy-
erous epigenetic changes that diverged from NLs but are
ructed based on hypermethylation changes. Heatmaps are
ion of precancerous methylation changes using independent
ht) on both methylation (i) and expression level (ii). NT, tumor



1638 Ding et al Gastroenterology Vol. 157, No. 6

BASIC
AND

TRANSLATIONAL
LIVER
multicentric-HCC tumors commonly arose from liver
cirrhosis, which again emphasizes a “field effect” in pro-
moting multiple de novo tumors (Figure 4C). Conversely, the
genetic resemblance of progressive-HCC showed strong as-
sociation with microvascular invasion and overall less
favorable survival prognosis (Figure 4D and E).
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To evaluate the timing of evolutionary branching in
progressive-HCC and determine whether early subclonal
diversification occurred in multicentric-HCC, a full genomic
landscape was determined on 8 HBV-associated cases by
WGS (patients 1–8) (Supplementary Tables 1B and 3D).
Overall, the distribution of mutational changes, and the
spectrum of CNA and HBV integration sites, all concurred in
supporting the same ancestral origins in all initial-relapse
pairs (progressive-HCC), except patient 5 and patient 8
(multicentric-HCC), which showed complete genetic dis-
similarities (Figure 4F–H, Supplementary Figures 10 and
11A and B, Supplementary Table 3E). Two-dimensional
clustering of estimated clonal fraction further suggested
that progressive-HCCs exhibited 2 types of evolutionary
branching: early (patients 1–3, patient 6) and late (patient 4,
patient 7). Their inferred clonal fractions also revealed the
majority of shared mutations were clonal in both initial-
relapse tumors of progressive-HCC, although subclonal
mutations in the initial tumors (mean 24.95%) were mostly
lost at recurrence. Our WGS data showed that most
progressive-HCC recurrences arose mainly from the diver-
gence of a dominant driver clone rather than by subclonal
evolution.

We next examined the temporal order of driver acqui-
sitions in the evolution of HCC. Based on computed clonal
fraction, we classified driver events as clonal or subclonal in
154 initial and relapse tumors. A high incidence of clonal
dominance of TP53 mutations, del(17p), amp(1q), and
amp(8q) in both initial and relapse tumors underlined their
importance in tumor initiation (Figure 4I). To further
explore the relationship between drivers, we constructed a
temporal trajectory of genetic variations by integrating both
clonal fraction and co-occurrence information. For each
driver, we calculated their relative enrichment to infer their
emergence timepoint as early, intermediate or late. The
temporal network showed that the ancestor clone was
initialized by few events, mainly mutations in TP53,
CTNNB1, and CNAs of del(17p) and amp(1q), which were
ubiquitously shared across time (Figure 4J and K and
Supplementary Figure 11D and E). Other intermediate-stage
drivers include TERT promoter mutations, chromatin
=
Figure 4. Temporal genetic heterogeneity. (A) Mutational profiles
the number of clonal and subclonal mutations for each sample
Right stacked bar chart shows the distribution of clonal and sub
(B) Mutation burden in progressive-HCC (pHCC) and multicen
groups based on the comparison of mutation burden between re
P < .05). (C, D) The distribution of cirrhosis (C), microvascular inv
(mHCC; n ¼ 22) and initial tumors with recurrence of progressive
(E) Kaplan-Meier curves (Log-rank test: P ¼ .0195). (F–H) Gen
dimensional density plot (upper-right panel) based on clusterin
relapse (y-axis). Clouds with shared mutations are in red; the ot
gain; blue, CN loss; green, copy neutral loss of heterozygosity
tations. One scale unit represents 20 mutations. Genes labeled w
the same individual. Mos, months. (I) Cancer Cell Fraction (CCF)
Fisher’s exact test, and compared with the rest of the drivers (*
Dashed line, evidenced by 2 samples; black line, evidenced by m
to the number of supporting samples. (K) Clonal fraction chang
CCF maintained; blue, CCF increased; gray, CCF decreased.
remodeling genes, and mammalian target of rapamycin,
NOTCH and JAK/STAT signaling pathways.

To elucidate mutational signature in HCC progression,
we analyzed clonal and subclonal mutational spectra in WGS
primary-relapse pairs and ITH-15 (Supplementary
Figures 11C, 12, and 13). In general, we found 2 features
of maintained and evolved mutational signatures. We note
maintenance of age-related signature 5 and transcriptional
coupled damage-related mutational signature 16 in both
clonal and subclonal mutational spectra (Supplementary
Figure 12). Conversely, signatures that evolved substan-
tially between clonal and subclonal mutations include a
decrease of tobacco-related signature 4 and aflatoxin B1-
related signature 24 (Supplementary Figure 12), enforcing
activities of these 2 carcinogens in the early stages of tumor
evolution. More excitingly, we found cases of multicentric-
HCC occurrences. Although they showed divergent genetic
makeup between lesions, the distribution of mutational
signatures was similar, that is, between initial and relapse
tumors (patients 5 and 8) and between T1 and T2 of ITH-15
(Supplementary Figure 13). Compared with previous WES
study,22 our WGS analysis provided a comprehensive
overview on both genome-wide mutational spectra and
signatures, and direct observation of progression-related
pattern of mutational signatures within each patient.
Convergent Evolution Sourced Parallel Seeding
We next analyzed patients with 2 sequential recurrences

(R1 and R2) to determine the longitudinal progression of
relapse tumors from initial HCC (Figure 5A–E). The phylo-
genetic trees indicated that 2 patients (patients 29 and 59)
showed progressive-HCC recurrences where both R1 and R2
shared clonal similarities to the first tumor. Of interest,
patient 59’s R1 and R2 tumors branched off early from the
initial HCC, probably existing as micrometastases before
first surgery. In patient 5, patient 20, and patient 35,
multicentric-HCC arose from independent clones in each
initial, R1, and R2 tumor. We carefully examined the
mutational profiles of these multicentric-HCCs and, strik-
ingly, found many shared driver genes but mutated at
in targeted resequencing data. Stacked bar chart (top) shows
. Grid plot represents clinical elements, mutations and CNAs.
clonal status for mutations identified in representative drivers.
tric-HCC (mHCC) recurrences. Cases are separated into 2
current tumor and matched primary tumor (Fisher’s exact test:
asion (D) in initial tumors with recurrence of multicentric-HCC
-HCC (pHCC; n ¼ 24) (Fisher’s exact test: *P < .05, **P < .01).
etic divergence between initial and recurrent tumors. Two-
g of CCFs of all mutations identified at initial (x-axis) and at
hers in gray. CNAs were illustrated on the left panel (red, CN
). Phylogenetic trees (bottom) are inferred from somatic mu-
ith an asterisk (*) represent different mutations identified from
distributions. The CCF distribution of each driver tested using
P < .05, ** P < .01, *** P < .001). (J) Inferred temporal order.
ore than 2 samples, with line thickness proportionally related
es as determined by CCF between initial-relapse pairs. Red,
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different positions. For instance, different TP53 GOF muta-
tions within the DNA-binding domain were found in patient
5’s initial, R1, and R2 tumors, and between R1 and R2 tu-
mors of patient 35 (Figure 5C and E). Likewise, 3 distinct
inactivating mutations of ATRX were found in the initial, R1,
and R2 tumors of patient 20 (Figure 5D). We further
asserted such mutation switching was prevalent between
initial-relapse pairs (Supplementary Table 5), although
more common in multicentric-HCC (63.64%) than
progressive-HCC (25.0%) (Fisher’s exact test P ¼ .016;
Figure 5F). More so, such convergent mutations were
frequent among HCC driver genes (Fisher’s exact test P <
.0001, Figure 5G). Notably, in addition to TP53, other
convergent drivers included activating mutations of
CTNNB1 and TERT promoter (also convergent HBV inte-
gration sites in the TERT promoter seen in patient 8)
(Supplementary Figure 11A) and inactivating frameshift,
splicing or stop gain mutations in RB1, AXIN1 and RPS6KA3
(Supplementary Table 5). Overall, the dysfunction of genes
from convergent evolution reflects their importance in
carcinogenesis,23,24 and infers an environmental selection
that allows parallel seeding of ancestor clones before first
surgery.
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Exploring Truncal Mutations for Potentials as
Actionable Targets

GOF TP53 mutations were detected in 41.3% of cases, in
which co-occurring del(17p) underscored a dominant effect
in >25%. Missense mutations of TP53 clustered within the
core DNA-binding domain, where R249S was most common
(Figure 6A). To explore the transcriptional effect of mutant
p53R249S, we performed chromatin immunoprecipitation-
sequencing in the HCC cell line HKCI-11, which has a
p53R249S mutation, and the human hepatocyte line MIHA,
which is p53WT (Supplementary Table 2D). Our analysis
showed high disparity in overall number and distribution of
transcription start site–proximal peaks between R249S and
WT (Figure 6B–D and Supplementary Table 6). Notably,
R249S peaks were enriched in the promoter proximal re-
gions that colocalized with active histone mark H3K27ac
signals, which supports their direct participation in active
transcription. Based on gene ontology analysis, we were
intrigued to find significant enrichment of genes related to
histone methylation activities (Figure 6E). Strong promoter
occupancy for selected chromatin regulators was confirmed
=
Figure 5. Evolution patterns in sequential recurrences. (A–E) Ge
the proportion of ubiquitous mutations (blue) and indels (dark re
(R1 and R2). The right bar represents aberrations private to IP or
(ii) The timeline of surgical histories for each patient. (iii) Phylo
mutations. One scale unit represents 5 nonsynonymous mutatio
and underlined. (iv) Panel shows the distribution of Cancer Cell
initial primary; y-axis, first recurrence; right x-axis, second recur
each patient. Patient 29 displays a typical progressive pattern
counterpart. In contrast, phylogenetic tree of patient 59 indicat
lighting an early divergence of initiators from initial tumor. Mult
Distribution of convergent mutations between recurrent types an
for HCC include TP53, TERT, CTNNB1, TSC2, JAK1, NOTCH1
for R249S and another GOF mutant Y220C by chromatin
immunoprecipitation–quantitative polymerase chain reac-
tion. In contrast, MIHA TP53WT did not appear to bind any
of these genes, although as expected it bound to the pro-
moter region of canonical target CDKN1A (Figure 6F–I and
Supplementary Figure 14A and B). We validated MLL1 and
MLL2 as direct functional targets of p53R249S and affirmed
their association in the Cancer Genome Atlas dataset
(Figure 6J and Supplementary Figure 14C). Because target-
ing chromatin regulators by small molecules has emerged as
a promising avenue for cancer therapy, we proceeded to test
the pharmacological effects of 2 MLL-complex antagonists,
MI-2-2 (inhibitor of protein interaction) and OICR-9492
(inhibitor of activity). Both MI-2-2 and OICR-9492 showed
potent inhibition of R249S cell growth at nanomolar con-
centrations, but had a negligible effect on p53WT cells
(Figure 6K and L). These results provide the first evidence in
HCC of the growth inhibitory effect of pharmacological
compounds that intervene MLL functionality downstream of
GOF p53.

Given that activating STAT3 mutations are found in 20%
of patients with progressive-HCC, we next attempted to
target GOF mutants using a STAT3 inhibitor, S3I-201. Stably
expressed mutants in 3 wild-type cell lines consistently
showed elevated pSTAT3-Y705 and potent reporter activity
in the absence of interleukin-6 induction, suggesting a
strong oncogenic effect of common somatic variants
(D170Y, K348E, and Y640F) (Supplementary Figure 14D
and E). When treated with S3I-201, constitutive activation
caused by STAT3 oncogenic mutants showed marked dimi-
nution in all cell lines (Figure 6M and N). Beyond STAT3
mutants, persistent pSTAT3-Y705 also could be induced by
JAK1 activating mutations (S703I and L910P)
(Supplementary Figure 14F and G). Our results provide an
approach to interfere with progressive-HCC recurrence.
Discussion
Here, we systemically examined tumor heterogeneity in

HCC, focusing on the clonal aspects of intra- and intertumor
heterogeneities, and tumor recurrence. Based on trajec-
tories derived from genetic and epigenetic aberrations, we
reconstructed the evolutionary history and course of clonal
development of HCC (Figure 7). We identified founder
drivers, including double hits on TP53, and GOF mutations
in CTNNB1 and the TERT promoter, and more importantly a
netic profiles on patients with 2 recurrences. (i) Panel shows
d) across initial primary (IP) and their matched 2 recurrences
shared by 2 recurrences (light blue), or ubiquitously identified.
genetic trees constructed based on the number of identified
ns. Convergent mutations are highlighted with both asterisk (*)
Fraction (CCF) values for each mutation in drivers (left x-axis,
rence). (v) Schematic representation of progressive pattern in
with R2 derived from ancestor cells that existed in its R1

es the 2 recurrences branched off at similar time point, high-
icentric-HCCs are suggested in patients 5, 20, and 35. (F, G)
d between passenger and driver genes. Recurrent key drivers
, FGFR3, ATRX, and RPS6KA3.
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common scenario of convergent mutations that favor each
ancestor clone to experience a parallel series of expansions.
While dysfunctional genes involved in convergent evolution
have been described for other cancer types,23,24 they have
been minimally discussed in HCC. We defined in this study
convergent key drivers of HCC, including TP53, TERT,
CTNNB1, TSC2, JAK1, NOTCH1, FGFR3, ATRX, and RPS6KA3.
Furthermore, our integrated phylogenetic and phyloepige-
netic analysis provide new insight into a co-evolutionary
relationship between the genome and epigenome in HCC.
Notably, such genomic-epigenomic codependency has also
been reported in other cancer types, such as brain tumors,25

prostate,26 and esophageal cancers.27 Together, this high-
lights that close interplay between the genome and



Figure 7. An example of tumor evolutionary trajectories and types of recurrence in HCC.
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epigenome is a general phenomenon during malignant
progressions of human cancers.

The inference that early recurrences within 2 years are
attributed to intrahepatic micrometastasis has been a con-
ventional classification. We found a concordant trend for
progressed recurrence to relapse at mean 14 months but it
is noteworthy that a third of these early recurrences were in
fact second primary tumors. Conversely, 36.4% of late re-
lapses were actually progressed recurrences suggesting
dormancy of disseminated tumor cells is also common in
HCC. From a clinical standpoint in patient management, it
may be necessary to re-biopsy recurrences regardless of
relapse time to establish clonal origin; although a single-
sampling approach may suffice capturing the clonality
because truncal events are ubiquitously distributed.
=
Figure 6.GOF mutations in TP53 and STAT3 can be actionab
tations in TP53. (B) Heatmap of p53 binding peaks in MIHA cells
on called peaks with a flanking region of 10 kb. (C) The proportio
wild-type p53 and mutant p53 (R249S) (Fisher’s exact test: ***P <
p53 (R249S) and H3K27ac in HKCI-11 across the identified bin
wild-type p53 and R249S p53; whereas, right y-axis was scaled
analysis of genes with transcription start site–proximal peaks in R
data. (F–H) ChIP-quantitative polymerase chain reaction of sele
and MIHA (WT). (I) ChIP-Sequencing signals for MLL1 and ML
MLL1 and MLL2 in HEK293FT cells overexpressed with wild-t
Growth curve of HKCI-8 and HKCI-11 on treatment with var
represent mean ± SEM from 3 independent experiments; Stud
measuring the phosphorylation levels of STAT3 in L02 cells a
STAT3, STAT3 mutants. All the tested mutants displayed mar
tein. (N) The increased STAT3 transcription activity by STAT3 mu
test: ***P < .001).
Our study also highlighted multicentric-HCC could arise
as early as 4 months following first surgery. The apparent
synchronous development of de novo clones exemplifies a
“field cancerization” effect from liver cirrhosis/fibrosis. The
presence of convergent mutations despite the lack of clonal
resemblance in more than half of multicentric-HCC cases
suggests these tumors underwent selection from the same
microenvironment. Despite tumor adjacent liver cirrhosis
and fibrosis has long been considered the putative prema-
lignant lesion of HCC, existing literature does not suggest
presence of recurrent somatic mutations in these alleged
precancerous states.11,28,29 Our data show that individual
cirrhotic/fibrotic nodules had acquired DNA methylation
changes characteristic of HCC, a mechanism that appeared
to predominate over genome alterations. These epigenetic
le targets. (A) Schematic diagram of identified missense mu-
and HKCI-10 cells. Each row shows binding intensity centered
n of regions defined as enhancers or core promoters bound by
.001). (D) Average binding intensity for wild-type p53, mutant

ding region of R249S. Left y-axis scaled for binding peaks of
for binding peaks of H3K27ac in HKCI-11. (E) Gene ontology
249S p53 chromatin immunoprecipitation (ChIP)-sequencing

cted chromatin regulators in HKCI-11 (R249S), Huh7 (Y220C)
L2. (J) Dual-luciferase assay showing promoter activities of
ype p53 and R249S p53 (Student t test: ***P < .001). (K, L)
ying dosages of MI-2-2 (K) and OICR-9492 (L). (Error bars
ent t test: *P < .05; **P < .01; ***P < .001). (M) Western blot
nd HKCI-9 cells stably expressing vector control, wild-type
kedly elevated phosphorylation level at Y705 of STAT3 pro-
tants is readily inhibited by STAT3 inhibitor S3I-201 (Student t
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changes include truncal aberrations such as UBD and SOCS2
that have reported functions in linking inflammation to
cancer.19,20 It is plausible that initial “gatekeeper” changes
in DNA methylation provide a selective growth advantage to
a normal hepatocyte, allowing it to outgrow surrounding
cells and become a microscopic clone when combined with
additional genetic “drivers.” Similar to molecular subtyping
in cancers, we hypothesize that assigning liver cirrhosis and
fibrosis to groups according to their DNA methylation pat-
terns could serve as a predictive marker to reflect the po-
tential risk of HCC development and de novo recurrence in
high-risk patients after surgery.

Therapeutic targeting of truncal events in HCC remains
a challenge. Out data show that GOF p53 mutation leads to
independent transcription activation in HCC that can
directly regulate a distinct set of chromatin regulators,
such as histone methylation (MLL1, MLL2), histone acety-
lation (BRPF1), chromatin remodeling complex (SMARCE1,
BRWD1, BAZ1B) and component of the Polycomb repres-
sive complex (MTF2). We provide first evidence on the
feasibility to target chromatin regulators activated by
mutant p53 in HCC using small molecule inhibitors, and
described a new area of genetic dependencies related to
mutant p53 that could be tested for effects of chromatin
drugs. In fact, 2 MI-2-2–derived lead compounds, MI-503
and MI-463, are currently being developed for human
trials. In summary, our work demonstrates the genomic
and epigenomic architectures of HCC tumors can inform
targeted therapeutic interventions and identify high-risk
patients.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2019.09.005.
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Supplementary Materials and Methods

Targeted Resequencing: Custom Panel Probe
Design

Custom capture probes targeting a 3.2 Mb genomic re-
gion was designed using SeqCap EZ design service (Roche,
Basel, Switzerland). Target regions were selected to include
the promoter region of TERT and coding exons of 823
selected genes, which included (1) mutated genes that might
play roles in carcinogenesis, (2) genes that were recurrently
mutated in our WGS cohort, and (3) genes that were re-
ported to be frequently mutated in HCC. These genes were
confirmed to have substantial detection power in 1129 HCCs
from the ICGC project, 12 among which 97.87% showed at
least one mutation within our selected regions.

Targeted Capture Sequencing
Extracted DNA samples were constructed into Illumina

pre-capture libraries using KAPA Hyper Prep Kit (KAPA
Biosystems, Roche Sequencing and Life Science, Wilmington,
MA). The pre-capture libraries passed QC were pooled and
enriched for target regions using NimbleGen SeqCap EZ
Choice Kit (Roche). Briefly, pooled pre-capture libraries were
hybridized in reaction mixture containing COT Human DNA,
Multiplex Hybridization Enhancing Oligo Pool, Hybridization
Buffer, Hybridization Component A, and SeqCap EZ custom
probes using SeqCap EZ Accessory Kit (Roche), SeqCap HE-
Oligo Kit A and B (Roche), and SeqCap EZ Hybridization
and Wash Kit (Roche). The hybridization mixture was then
incubated at 47�C for 72 hours. Enriched libraries were
captured by SeqCap EZ Pure Capture Beads (Roche) and
nonspecific sequences were washed away by Stringent Wash
Buffer, Wash Buffer I, II, and III using SeqCap EZ Hybridi-
zation and Wash Kit (Roche). The post-capture libraries were
then amplified by ligation-mediated polymerase chain reac-
tion (PCR) using SeqCap Accessory Kit (Roche). The effi-
ciencies of the capture reactions were evaluated by
performing quantitative PCR (qPCR)-based quality check on
built-in Nimblegen Sequence Capture controls using Power
SYBR Green PCR Master Mix (Applied Biosystems, Foster
City, CA). Post-capture libraries were quantified by Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham,
MA) and sequenced by Illumina (San Diego, CA) HiSeq 2000.
Library fragment sizes were resolved by BioAnalyzer High
Sensitivity DNA Analysis Kit (Agilent, Santa Clara, CA).

Sequence Alignment and Variant Calling
Genomic sequence data were initially processed with the

following steps:

(1) Raw readswere quality checkedwith Fastqc (v0.11.4)
and filtered by fastq-mcf (v1.04.636). The remaining
high-quality reads were aligned to a combined refer-
ence genome, including human genome hg19 and
consensus HBV genome, using BWA-MEM algorithm
with default parameters (version 0.7.12)1,2 and sorted
by samtools (version 0.1.19).3 Aligned reads were
tagged by Markduplicate in Picard (v1.115), locally

realigned (IndelRealigner) and recalibrated (Base-
Recalibrator) with GATK Analysis Toolkit (v3.1.1)
(Broad institute, Cambridge, MA).4

(2) Confident single nucleotide polymorphism (SNP)
callings were generated by Unifiedgenotyper. Somatic
SNVs were called by MuTect (v1.1.7) (Broad institute,
Cambridge, MA).5 Somatic Indels were detected by
Platypus (v1.0) (The Wellcome Centre for Human
Genetics, Roosevelt Drive, Oxford, UK),6 Strelka (v1.0)
(Illumina, San Diego, CA),7 and Scalpel (v0.5.2) (Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY).8

(3) Somatic SNV candidates were filtered when detected
in normal sample panel and dbSNP 1359 except when
they were recorded in COSMIC database (v71).10 So-
matic Indel candidates were only retained with one of
the following conditions satisfied: (1) Indels at least
called by 2 tools; (2) manually checked.

(4) The final variants were then combined and anno-
tated by SnpEff and SnpSift (v3.6a).11,12 Most non-
silent mutations were confirmed by extensive
manual inspection.

HBV Integration Detection in Whole-Genome
Sequence Data

HBV integration in human genome would cause reads
spanned the integration site (human-virus chimeric reads).
Therefore, we focused on reads mapped to HBV genome,
chimeric reads as well as unmapped reads and realigned
them by BWA-SW algorithm (v0.7.12).2 Next, we extracted
all the unique soft-clipped reads with one end on the virus
genome and the other on the human genome. Based on
these integration sites, we defined a set of supporting reads
by including paired end of human-virus chimeric reads and
read pairs close to these sites. We selected only confident
HBV integration events with more than 3 supporting read
pairs and at least 1 chimeric read for analysis.

Copy Number Variation Analysis
ForWGS data, wefirst obtained allele frequencies of all the

germline SNPswith sequencedepthmore than30,whichwere
then used to yield phased haplotype with Impute213,14 in 5M
segments. We further divided the haplotype blocks into non-
overlapped neighboring windows and calculated their repre-
sentative B-allele frequency (BAFs) by averaging phased allele
frequencies. Meanwhile, Control-Freec (v6.8)15,16 was
exploited to get the log2 read ratios between samples and
control with 500 base pair (bp)window size, which were then
transferred into intensity values array platform. On the basis
of the normalized ratios and phased BAFs, we used ASCAT217

to generate ploidy, purity and CNAs within each sample.
For captured sequence data, we divided human genome

into 200k nonoverlapped consecutive windows and coun-
ted the reads within each region by the coverage module in
Bedtools (v2.17) (Quinlan Lab, University of Utah, Salt Lake
City, UT).18 We then selected regions with positive read
count and built a linear model to remove background noise.
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The corrected read counts in tumor samples and their
matched normal samples were next integrated to get the
log2 ratios, which were segmented by circular binary seg-
mentation algorithm.19 Copy number analysis was then
performed by ABSOLUTE (v1.0.6).20

To define CNA in intratumor heterogeneity, we sum-
marized the percentage of genomic regions with public CNA
and the percentage of genomic regions subjected to
nonpublic CNA.21 The proportion of public CNA was defined
as the percentage of genome subjected to public CNA
divided by the percentage of genome subjected to any CNA
in any region from the same tumor.

Estimation of Clonal Faction by Cancer Cell
Fraction (CCF) and 2-Dimensional Clustering of
CCF

We used the framework in ABSOLUTE (v1.0.6)20 to infer
the posterior probability distribution of CCF for each mu-
tation. Briefly, it consisted of 2 parts: inferring mutation
multiplicity (m) and calculating posterior probability of CCF
with estimated multiplicity. We used the estimated values
of purity (p), CNA (q), and CNA CCF (fcnv) from CNA analysis
to build a probabilistic model, where mutant allele fre-
quency was represented as f. We first calculate the expected
allele frequency for clonal mutations with m ¼ 1:

fs ¼ p
2ð1� pÞ þ pqfcnv

When both clonal and subclonal CNAs were identified
within the same genomic region, we consider only clonal
CNA here for simplicity. The possible multiplicities for
mutations was then:

mq ¼ f1;.; qg

The inferred allele frequency with different multiplicity
was as follows:

fm ¼ mfs

The total likelihood of observed allele frequency was
then the following:

where bfwas the observed allele frequency. The weights for
clonal events (wc) and subclonal events (ws) were both set
to 0.5. The probability of mutation with different multi-
plicities was then assessed and we select multiplicity with
highest probability for the next step. The posterior distri-
bution of CCF for mutations was then obtained by the
following:

Prðf jfm; n; bf Þ ¼ Betaðffmjnbf þ 1; nð1� bf Þ þ 1ÞZ 1

0
Betaðffmjnbf þ 1; nð1� bf Þ þ 1Þdf

Here we used an approximation approach by calculating
such distribution based on 100 equally spanned discrete
points from 0.01 to 1. We also tried another way to define
the probability distribution by integrating over all possible
multiplicities,22 and the results showed high concordance
with this simplified method. Clonal events were then
defined as aberrations with modal CCF greater than 0.9.

We also used a parametric Bayesian Dirichlet process to
model the mutation clusters in initial-relapse pairs as
described in Bolli’s study.22,23 Gibbs sampling was used to
estimate the posterior distribution of clonal fraction of each
cluster. The Markov chain was run for 2000 iterations, with
the first 1000 discarded.

Phylogenetic Tree and Phyloepigenetic Tree
We constructed a phylogenetic tree on the basis of

shared and private nonsilent aberrations. In each phyloge-
netic tree, branch length was linearly related to the muta-
tions it covered. To find the most representative subclones
from each region, we used only mutations with CCF>0.2 to
construct the phylogenetic tree for tumors with multire-
gional sampling.

Methylation data was processed by minfi package.24

Somatic methylation changes within individual samples
were defined as probes with methylation changes large
than 0.2 when compared with those in control samples. To
construct phyloepigenetic trees, we first defined epigenetic
drivers in HCC showing consistent changes in 2 indepen-
dent cohorts, The Cancer Genome Atlas (TCGA) (n ¼
380)25 and the study of Villanueva et al26 (n ¼ 243). Only
hypermethylated Epidrivers were selected to build phy-
loepigenetic trees. Genetic and epigenetic distance
matrices were calculated using the Euclidean distance
metric. Phylogenetic and phyloepigenetic trees were then
inferred by the neighbor-joining method in ape package.27

Bootstrapping with 1000 bootstrap replicates was applied

for each tree to assess strength of support for each clade.
Similarity was assessed by calculating the Pearson’s cor-
relation coefficient between the genetic and epigenetic
distance matrices. Permutation test was applied to
generate empirical P values by comparing correlation
values between these 2 kinds of distance matrices to a null
distribution generated through randomly permuting sam-
ple labels for 100,000 times. Hierarchical clustering also

Likðbf jp; q; n;wc;wsÞ ¼
X
m˛mq

½wcBetaðfmjnbf þ 1; nð1�bf Þþ 1Þ� þws

Zfs
0

Beta

�bf ����nbf þ1; nð1� bf Þþ1

��
1
fs
df
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was performed accordingly on the basis of hypo-
methylation Epidrivers with the greatest variations. To
confirm association between phyloepigenetic and phylo-
genetic trees, we then generated a cophylogenetic plot for
each case by the “cophylo” function from the phytools
package in R (http://www.phytools.org).

Inference of Mutation Order
Based on the assumption that clonal mutations were

earlier than subclonal mutations, we used the same
approach in Landau’s study to infer the relative temporal
order of driver mutations.22 First, we collected all the edges
that start with one clonal driver event d1 and end with one
subclonal driver event from the same sample. We defined
early, late, and intermediate events as events with signifi-
cantly higher number of out-degrees compared with that of
in-degrees, extremely lower number of out-degrees
compared with that of in-degrees, and balanced out-
degrees and in-degrees, respectively. The relative order of
drivers was then drawn on selected drivers with minimum
of 2 supporting evidence.

GOF p53 Data Analysis
All the chromatin immunoprecipitation sequencing

(ChIP-seq) data were aligned to human genome hg19
using Bowtie2.28 HOMER (v4.8.3)29 was exploited here to
generate and annotate regions with significant enrich-
ment of binding signals. Enhancer regions were defined
as regions with peaks identified within certain distance
(5 kb to 50 kb) from transcription start sites of protein-
coding transcripts and colocalized with H3K27ac binding
peaks in HKCI-11. All of binding intensities were
normalized by bamliquidator (v1.0) (https://github.com/
BradnerLab/pipeline/wiki/bamliquidator) to values in
unit of reads per million mapped reads per bp (rpm/bp).
Average binding profiles centered on GOF p53 binding
regions (±2 kb distance) were generated based on the
average binding values from neighboring windows sur-
rounding p53 binding centers. Heatmap of ChIP-seq oc-
cupancy for wild-type and GOF p53 were created for the
± 10 kb region flanking all identified peaks with each
row representing a specific binding region. Rows were
first ranked by average binding intensity in wild-type p53
and then ranked by average binding intensity in GOF p53.
For gene ontology analysis, we selected transcription
start site proximal peaks (within 5 kb of the transcription
start site) of GOF p53 with a focus density ratio greater
than 0.73 and processed their associated genes in DA-
VID.30,31 Gene ontology terms with fewer than 2 genes
also were discarded.

Mutation data and RNA expression data for public HCC
samples were directly downloaded from TCGA. We defined
GOF mutations in TP53 as those reported and missense
mutations found within the DNA binding domains of p53;
whereas, GOF mutations in STAT3 and JAK1 were those
known missense mutations. The original RNA expression
values (normalized read counts) from TCGA datasets were
used in our analysis.

Simulation Model
Similar to the described computational frameworks,32

we built a 3-dimensional tumor growth model with tumor
cells occupying sites of a regular 3-dimensional square
lattice and proliferating according to certain rules.33 Each
cell in this model owned a set of genetic aberrations (pas-
senger or driver), which determined both its growth rate
and survival rate. The mutation rate for passengers, drivers
were initially set per each simulated tumor together with
cell size and growth advantage. After 5000 simulations, we
sliced each virtual tumor according to our in-house sam-
pling strategy. We next exploited Approximated Bayesian
computation to obtain posterior distributions of each
parameter by fitting properties of simulated tumors to
those of our ITH samples. Here, these summary properties
including statistics of subclonal mutations, such as number
and frequency distribution, and intratumoral genetic
indices.34 The ITH indices were calculated based on average
values of all pairwise comparison values for private muta-
tion numbers and Nei’s genetic distances within a single
tumor. Nei’s genetic distance was defined as follows35:

Dnei ¼ � log

Pðxiyi þ ð1� xiÞð1� yiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P
x2i þ ð1� xiÞ2

��P
y2i þ ð1� yiÞ2

�q

where xiand yirepresented the CCF values in sample x and y
for mutation i and all mutations from sample x and y were
calculated in this genetic distance. By including these 2
metrices here, we were able to perform inference analysis
to obtain estimated parameters for each tumor. Meanwhile,
despite a varied number of regions in our HCC cases, dis-
tributions of these 2 metrices also could be used directly to
compare relatively intratumoral genetic heterogeneity for
cases with multiregional sampling.

Clone Tree Construction
To construct clone tree for cases with progressive re-

currences, we applied both CITUP36 and PyClone (v
0.13.1).37 We first used PyClone to perform clustering
analysis of cancer cell fractions from each mutation with
default settings. The mutation clusters were then used to
construct phylogenetic trees through CITUP, the outputs of
which were also manually checked to ensure no violation of
evolutionary conflicts mentioned previously.

Mutational Signature Analysis
Mutational signatures analysis was performed by the

MutationalPatterns package38 in R. Mutational signatures
described in liver cancers39–41 and other signatures with
marked contributions were considered, including signa-
tures 3, 4, 5, 6, 8, 12, 16, 17, 18, 22, 24, and 29. Mutational
signatures analysis was applied for samples with whole-
genome sequence data.

Cell Culture
Huh7, PLC/RPF/5, and HEK293FT were obtained from

the American Type Culture Collection (Manassas, VA) and
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maintained in Dulbecco’s modified Eagle’s complete me-
dium. The in-housed established human HCC cell lines
HKCI-8, HKCI-9, HKCI-10, and HKCI-11 were cultured in
AIM-V medium (Invitrogen, Carlsbad, CA) supplemented
with 10% fetal bovine serum. Immortalized hepatocyte cell
lines, MIHA and L02, were propagated in Dulbecco’s
modified Eagle’s complete medium. Stable cell lines, stably
expressing wild-type (WT) and mutant forms of STAT3 and
JAK1, were created42 and maintained in complete medium
containing 1 mg/mL puromycin. In brief, cells were trans-
duced with lentivirus, which was generated by transfection
of HEK293FT cells with pLenti-STAT3 (WT or mutants),
pLenti-JAK1 (WT or mutants) or pLenti-puro empty vector.
After incubation for 24 hours, cells were selected using 2
mg/mL puromycin (Sigma Merck KGaA, Darmstadt, Hesse,
Germany) for at least 10 days. Transduction efficiency was
checked by Western and quantitative reverse-transcribed
PCR (RT-PCR).

RT-PCR, ChIP-qPCR, and ChIP-sequencing
RNA was isolated by RNeasy Mini Kit (Qiagen, Hilden,

Germany). Purified RNA was subjected to DNase I treatment
and reverse transcribed into complementary DNA (Thermo
Fisher Scientific). Real-time PCR was conducted using
standard procedures on StepOnePlus Real-Time PCR Sys-
tem (ABI). ChIP was performed following the study of Zhu
et al43 with adjustments. Briefly, cells were crosslinked in
1% formaldehyde (Thermo Fisher Scientific) for 10 minutes
at room temperature. After neutralizing by glycine, cells
were harvested and lysed in Farnham lysis buffer (5mM
HEPES, pH 8.0, 85mM KCl, 0.5% NP-40) with 1X Protease
Inhibitor (Thermo), and then sheared by sonication. The
supernatant from lysates was subjected to immunoprecip-
itation with corresponding antibodies at 4 �C overnight and
pulled down using magnetic beads. Immunoprecipitates
were washed and reverse-crosslinked by incubation at
65 �C overnight. DNA was further purified by QIAquick PCR
Purification Kit (Qiagen). Following ChIP, qPCR was con-
ducted by SYBR green–based detection method using equal
amounts of ChIP DNA. For ChIP-sequencing, libraries were
prepared with KAPA Hyper Library Prep Kit (Kapa Bio-
systems), and then sequenced on Illumina HiSeq 2000.

BrdU Cell Proliferation Assay
Cell replication was measured using a Cell Proliferation

ELISA kit (Roche). Briefly, 1000 cells were seeded in a
96-well plate with presence or absence of MI-2-2 or OICR-
9429 drug treatment. For every 2 days, cells were
incubated with 10 mM BrdU for 2 hours at 37 �C and fixed
by FixDenat buffer. Newly synthesized cellular DNA was
detected using an anti-BrdU peroxidase-conjugated mono-
clonal antibody and visualized by the subsequent substrate
reaction. Optical density was quantified by measuring the
absorbance at 450 nm using a scanning multiwall
spectrophotometer.

Cloning
Full-length TP53, STAT3, and JAK1 ORFs were amplified

from MIHA cells and cloned into pcDNA3.1 or pLenti-puro
vectors, respectively. For promoter luciferase constructs,
up to 3 kb upstream of MLL1 and MLL2 were cloned into
pGL3-basic vector. Mutants of TP53, STAT3, and JAK1 were
generated from WT constructs by QuikChange II Site-
Directed Mutagenesis Kit (Agilent Technologies). All se-
quences were verified by Sanger sequencing. Primers are
listed in Supplementary Table 7.

Western Blot
After protein quantitation, 20-mg protein lysates were

resolved on 10% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and electrophoretically transferred onto
nitrocellulosemembranes. Specific primary antibodies used in
this study were as follows: p53 (DO-1, Santa Cruz Biotech-
nology, Dallas, TX), H3K27ac (Abcam, Cambridge, MA), JAK1
(Cell Signaling, Danvers, MA), STAT3 (Cell Signaling), p-JAK1
(Tyr1022/1023) (Cell Signaling), p-STAT3 (Tyr705) (Cell
Signaling), and GAPDH (Millipore, Bedford, MA).

Luciferase
STAT3 luciferase reporter, a luciferase construct under

the control of multiple STAT3 consensus binding sites, was
purchased from Qiagen. For luciferase assay, L02 and HKCI-
9 were co-transfected with STAT3 luciferase reporter and
STAT3 or JAK1 (WT or mutants) expression vectors. Two
days after transfection, cells were treated or untreated with
interleukin-6 for 3 hours. Then cells were lysed and the
activities of firefly and Renilla luciferases were determined
using Dual-Luciferase Reporter Assay System (Promega,
Madison, WI). For STAT3 inhibitor, cells were treated with
250 mM S3I-201 or dimethyl sulfoxide for 24 hours before
measuring luciferase activities. To determine the transcrip-
tion activity of p53, MLL1 or MLL2 promoter constructs
were co-transfected with expression plasmid for WT or
mutant p53 in HEK293FT cells. Relative luciferase activities
were calculated by normalizing firefly luciferase activities to
the Renilla luciferase activities in each cell lysate.

Statistical Analysis
Statistical analysis was performed in R (v3.0.2) and

GraphPad (La Jolla, CA) Prism (v6.05). Categorical data
were compared with Fisher Exact test or c2 test and
continuous data were compared with Student t test or
Mann-Whitney U test when appropriate. Survival analysis
was performed by the Kaplan-Meier method and compared
by the log-rank test. Cox regression model was then
applied to obtain hazard ratios together with their corre-
sponding 95% confidence intervals. Odds ratio for recur-
rence was calculated based on the occurrence of mutated
drivers across initial tumors with progressive-HCC (pHCC)
recurrence and their occurrence across initial tumors
without recurrence.
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