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Abstract

Twin-field quantum key distribution (TF-QKD) can beat the linear bound of repeaterless QKD
systems. After the proposal of the original protocol, multiple papers have extended the protocol to
prove its security. However, these works are limited to the case where the two channels have equal
amount of loss (i.e. are symmetric). In a practical network setting, it is very likely that the channels are
asymmetric due to e.g. geographical locations. In this paper we extend the ‘simple TF-QKD’ protocol
to the scenario with asymmetric channels. We show that by simply adjusting the two signal states of
the two users (and not the decoy states) they can effectively compensate for channel asymmetry and
consistently obtain an order of magnitude higher key rate than previous symmetric protocol. It also
can provide 2—3 times higher key rate than the strategy of deliberately adding fibre to the shorter
channel until channels have equal loss (and is more convenient as users only need to optimize their
laser intensities and do not need to physically modify the channels). We also perform simulation for a
practical case with three decoy states and finite data size, and show that our method works well and has
a clear advantage over prior art methods with realistic parameters.

1. Background

Quantum key distribution (QKD) is proven to provide information-theoretic security to two communicating
parties. Without efficient quantum repeaters, however, QKD is limited in the maximum distance over which it
can generate secure keys. The linear bound [1, 2] is a theoretical upper bound for maximum key rate-distance
relation for repeaterless QKD. Interestingly, the twin-field (TF) QKD protocol proposed in 2018 [3] uses a clever
technique to surpass the linear bound: it uses a setup where two parties, Alice and Bob, communicate with an
untrusted third party, Charles. Instead of using two-photon interference like in measurement-device-
independent (MDI) QKD [4], TF-QKD makes use of single-photon interference to generate keys, and on
average only one photon passes through either Alice’s or Bob’s channel—which allows to key rate to scale with
transmittance over only half the distance between Alice and Bob. Not only does TF-QKD surpass the
repeaterless bound, it also provides security against attacks on measurement devices [5] similar to MDI-QKD.
Because of these advantages, TF-QKD has attracted much attention worldwide since its proposal. Since a
rigorous security proof is not provided in the original proposal, several papers have improved the protocol and
provided security proof [6—10]. Also, recently there have been multiple reports of TF-QKD demonstrated
experimentally [11-14].

However, all the above security proofs and experimental demonstrations only consider the symmetric case
where Alice’s and Bob’s channels have the same amount of loss. In reality, though, in a network setting, due to
e.g. geographical locations, or Alice and Bob being situated on moving free-space platforms (such as ships or
satellites), it is very likely that Alice’s and Bob’s channels are not symmetric. In the future, if a quantum network
is build around the protocol—e.g. a star-shaped network where numerous users (senders) are connected to one
central node with measurement devices, asymmetry will be an even more severe problem since it is difficult to
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maintain the same channel loss for all users (and users might join/leave a network at arbitrary locations). If
channels are asymmetric, for prior art protocols, users would either have to suffer from much higher quantum-
bit-error-rate (QBER) and hence lower key rate, or would have to deliberately add fibre to the shorter channel to
compensate for channel asymmetry, which is inconvenient (since it requires physically modifying the channels)
and also provides sub-optimal key rate.

Similar limitation to symmetric channels have been observed in MDI-QKD. In [15], we have proposed a
method to overcome this limitation, by allowing Alice and Bob to adjust their intensities (and use different
optimization strategies for two decoupled bases) to compensate for channel loss, without having to physically
adjust the channels. The method has also been successfully experimentally verified for asymmetric MDI-QKD
in[16].

In this work, we will apply our method to TF-QKD and show that it is possible to obtain good key rate
through asymmetric channels by adjusting Alice’s and Bob’s intensities—in fact, we will show that, Alice and
Bob only need to adjust their signal intensities to obtain optimal performance. We show that the security of the
protocol is not affected, and that an order of magnitude higher (than symmetric protocol) or 2-3 times higher
(than adding fibre) key rate can be achieved with the new method. Furthermore, we show with numerical
simulation results that our method works well for both finite-decoy and finite-data case with practical
parameters, making it a convenient and powerful method to improve the performance of TF-QKD through
asymmetric channels in reality.

While we use the same main idea of allowing Alice and Bob to use asymmetric intensities to compensate for
asymmetric channel losses as in [15], there are some key differences that need to be addressed for asymmetric
TF-QKD. Firstly, the security proof need to be discussed, to show that the introduction of asymmetric channels
and intensities do not affect security. Secondly, as we will later show in section 4, there is an interesting
distinction between the MDI-QKD protocol in [15] and the TF-QKD protocol in [9] in how the two bases X and
Z respectively react to asymmetric incoming intensities, which makes the optimal strategies for asymmetric-
intensity MDI-QKD and TF-QKD different. We will discuss this in more detail in section 4.

The idea of TF-QKD protocol through asymmetric channels has also been discussed in a recent paper [17].
Our work is different from [17] in several aspects. First, [ 17] starts with a different protocol—‘sending or not
sending protocol’. Second, [17] is mostly numerical. In contrast, we start with the ‘simple TF-QKD’ protocol in
[9] and consider its asymmetric-intensity version. We include both analytical and numerical reasoning. We also
provide a detailed discussion about the physics behind the security of our asymmetric-intensity protocol.

The layout of the paper is as follows: in section 2, we define the setup and the protocol we use. In section 3 we
will extend the security proofin [9] to the case with asymmetric intensities and channels. In section 4, we discuss
the how the performance of TF-QKD is affected by channel asymmetry and asymmetric intensities (and for the
latter, what are the best strategies for choosing the intensities). We show the effectiveness of our method with
simulation results in section 5.

2. Protocol

Here we consider a similar TF-QKD setup as in [9] ‘Protocol 3°. Alice and Bob choose two bases X and Z
randomly. When X basis is chosen, Alice (Bob) sends states |a), (o)) forbitb, = 0(bg = 0) or states |— ),
(|—a)p) forbitb, = 1(bg = 1). When Zbasis is chosen, Alice and Bob send phase-randomized coherent states
Pa,, (Pp,5,)» where the decoy state intensities are { 34, 3p}. Note that here Alice and Bob have a common phase
reference for X basis signals. After the signals are sent to Charles, the detector events are denoted as k., k; (0
denotes no click, and 1 denotes a click).

The papers [3, 9] consider only the case where the channels between Alice (Bob) and Charles have equal
transmittances. In reality, it is possible that the channels might have different levels of loss, due to e.g.
geographical locations or moving platforms Here we are interested in three questions for TE-QKD with
asymmetric channels:

1. Does channel asymmetry affect security?
2. How does channel asymmetry affect the QBER and hence key rate?”

3. Can we improve the performance of the protocol under channel asymmetry?

% Inthe supplementary materials of [16], we and our collaborators presented a preliminary study on this point, and showed that asymmetry
decreases single-photon interference visibility—which will in turn increase observable QBER for TF-QKD.
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Figure 1. An example setup for a twin-field QKD system. Alice and Bob send signals in X and Z bases randomly. In X basis, Alice and
Bob send coherent states with amplitudes a4, ap (with intensities s4 = aﬁ, g = oz%;—in the asymmetric case, we allow s, to be
different from sp), phase-modulated by {0, 77} depending on the encoded bit. In Z basis, Alice and Bob send signals in phase-
randomized coherent states, with intensities chosen from { 114, V4, wa } and { p14, V4, wa }, respectively. Charles performs a swap test on
the incoming signals and reports the click events in his two detectors D,, D, (denoted by k,, k;). By choosing different intensities
between Alice and Bob (and using the decoupled X and Zbases), the protocol can have high key rate even if Alice and Bob’s channels
have different transmittances, 774, 7.

We will use our method from [15] and apply it to Protocol 3 in [9], to make an ‘asymmetric-intensity’ TF-
QKD protocol that works well even when channels are highly asymmetric. Similar to MDI-QKD, the protocol in
[9] has decoupled X and Zbases. Here we allow Alice and Bob to have different intensities in the X and the Z
bases respectively, such that in X basis Alice (Bob) now send states | ), (o)) for bitby, = 0(bg = 0) or states
|—au)s (—ag)y) forbitb, = 1(bp = 1). We can denote the signal intensities as s4 = o, s3 = ok.Inthe Zbasis,
the amplitudes for the phase-randomized coherent states, { 34, O}, can be different for Alice and Bob too (we
can denote the intensities as { 3%, (33}, and for the three-decoy case, the sets of intensities can be specifically
writtenas {ft,, Va, wa}and {p,, va, wp}). An example setup can be found in figure 1.

We will answer the above three questions by showing in the following text three main pieces of results:

(1) neither asymmetric channels nor asymmetric intensities between Alice and Bob affect security;

(2) the X basis (signal state) QBER will increase with channel asymmetry, and greatly reduce the key rate of TF-
QKD if no compensation is performed—on the other hand, the Zbasis gain (as well as the upper bound to
the yield and phase-error rate derived from the observable data in the Z basis) is little affected by channel

asymmetry;

(3) we can use different intensities between Alice and Bob to compensate for channel asymmetry and get good
key rate—in fact, using only different signal states between Alice and Bob (and keeping all decoy states and
probabilities identical for Alice and Bob) can already effectively compensate for channel asymmetry and
allow good key rate for asymmetric TF-QKD.

3. Security

In this section we will show that neither asymmetric channels nor asymmetric intensities between Alice and Bob
affect security. Following the discussion in [9], the key is generated from events in the X basis, and the secure key
rate is bounded using the bit-error rate and the phase-error rate. The X basis bit-error rate is directly obtained as
an observable, hence the key part of the security prooflies in the estimation of X basis phase-error rate
(equivalent to the Zbasis bit-error rate) based on the Zbasis observables—which, since Z basis signals are phase-
randomized, is not directly obtainable.

In the security proofin [9], the phase-error rate is obtained by upper-bounding the phase-error rate using
the estimated yields of given photon numbers {1, n} (which can be upper-bounded by using decoy-state
analysis, based on observed count rates, i.e. the gains, in the Zbasis).

The key message we’d like to point out is that, this entire estimation process of the phase error rate does not
rely on the fact that Alice and Bob use the same amplitude « for their signal states, or that the channels have the
same transmittance. Therefore, here we will follow the proofin [9] step-by-step, but with asymmetric intensities
and channel transmittances, to show that the security proof can be easily extended to the asymmetric case.
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A small note is that, the formulation of the original security proofin [9] appears to assume a single Kraus
operator for the channel (i.e. a pure state after the measurement, which could involve measurements from
Charles and/or Eve), but the proof can, in fact, be extended to cover the general case where the state could be a
mixed state after passing through the channel and potentially being disturbed by Eve’. We have discussed with
the original authors of [9], and we thank Koji Azuma for pointing out this fact [ 18] and the details of
incorporating multiple Kraus operators to represent a mixed state after the measurement (and applying
Cauchy—Schwarz inequality to the mixed state to obtain the bounds on the phase error rate). In the following
text we will use the formulation of multiple Kraus operators and density matrices as in Koji Azuma’s clarification
of the original proof.

We can start by imagining a virtual scenario where Alice (Bob) prepares entangled states between a local
qubit A (B) and a signal a (b) to be sent to Charles. After Charles performs a measurement on the signals, the X
basis phase-error rate (or Z basis bit-error rate) can be obtained by Alice (Bob) measuring their local qubits in the
Zbasis. The initial states can be written as:

1
A
a=—=(+)alaa)s + [— — QA )
VX ﬁ(l Jalaa)s + 1=)al—aa)a)
1
|58 = f(|+>3|043>b + =)l — ag) ey
here|+) = —=(|0) = |1)) are the X basis states. Here in the asymmetric-intensity case, we allow 54 = c? to be

2
different from s = a. For convenience, here let us write [x)aaBy = |z/1?() Aa |1/J§>Bb. We can then write the
density matrix of the initial state as

Paasy = 1¥x)aaBb Aasb(Px]- ®)

Now, the process of signals a and b going through their respective channels and Charles making a
measurement can be represented by a set of Kraus operators { M, kacbk e} wherek,, kyare Charles’ detector events,
and e is the (implicit) measurement results of a potential eavesdropper Eve. The superscript ab represents that
this operator only acts on the systems a, b (pulses sent to Charles) and not on A, B (local qubits in Alice’s and
Bob’s labs). From the perspective of Alice and Bob, as e is not announced, the state they obtain is equivalent to
Eve having discarded all measurement results e. After signals pass through the channels and Charles announces
the measurement result k., k4, the conditional state becomes:

A~ ab ~ abt
> M ke Paasy M e

PXX (kf) kd)

3

/ _
PaaBy =

here py (k., kg) is the X basis Gain for detection events k,, k,; (which canbe 0,1 or 1,0 for a detection event to be

considered successful). Note that, this set of operator { M kaf;( i} includes all information of the channels, detectors
(and the eavesdropper) and is a general representation of their joint effects, and, importantly, it does not require
that the channels are symmetric at all.

By measuring their local qubits in the Zbasis, Alice and Bob can obtain the Z basis bit-error rate ez 1 i, (i.e.
the X basis phase-error rate):

ez kg = as{iilpplii)as 4
=01

where p'A B the state of the local qubits A, B, can be obtained by performing a partial trace over the systems a, b

piqB = trab(p:anb)~ (5

Now, the key observation in the proof of [9] is that, Alice and Bob making a measurement on the local qubits
A and B after sending signals a and b and Charles making a measurement should be equivalent to the time-
reversed scenario where Alice and Bob first make local Z basis measurements on the initial pure states
[¥%)4a> 115 )8y, and then send the signal systems a and b to Charles. After Alice and Bob make the local
measurements, the states become

The explicit discussion about using a single Kraus operator for each announcement outcome was also previously made in [10] in a different
security proof. So, this is a known result.
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A{0llYx)aa =1Ci')a
A(UYx0a0 =1CM)a
(0l1Yx)ss = Co e
s(UYx)s =1CPY (6)

which are cat states:

A 00 a(ZL\n+1 00 A

ICMa=e 2 Y ———2n+ 1), = > c;""|n)

v nZ::o van + 1 ’ nZ::o ’ ’
oo

Co=e 30 oy = 37 PO
o)h=¢€ 2 2n), = c n)p
n=0 2n n=0
B b X o — Bl
IC ) = 6772 Tﬂﬂ” + 1) = Z e ln, 7)
n=0 n=0

here the even (odd) cat states only contain nonzero amplitudes for even (odd) photon numbers. Nonetheless we
can still write the amplitudes as ¢,*©, ¢*© (4M, ¢5M) for all photon number states, where the coefficients
are zero for odd (even) photon number states in an even (odd) cat state.

Note that here in the asymmetric-intensity case, Alice and Bob’s cat states are not the same, because they use
different signal intensities (hence different amplitudes a4, arg), but as we will show below, the derivation of the
upper bound for the phase error rate does not depend on the fact that Alice and Bob have the same cat states.
Therefore, the security is not compromised by using asymmetric signal intensities”.

For Alice and Bob’s local Zbasis measurement results i, j € {0,1} and for detection events k,, k:

a{ij10)plias = aB(iltrap(p’y 5) 1i7)a5

= trap( AB<ij|pitub|ij>AB)

1 . ~ ab ~ abi ..
= ————trap( aB(i1> Mic ke Paans M kpel )aB)
Pyx (ks ka) .

1 ~ ab .. .. ~ abt
=—> trub(Mka[kd,g AB<1]|PAaBb|l]>ABMlikd,g)
pxx(km kd) e
~ abt

1 ~ ab
= m S (Mg, | CalCPYo o(CHT 5(CPIM )
XX \O e

1 ~abt A ab
= mz «(CH h<cf|Mkafkd,eMlikd,e|CiA>u|CJB>b
xx Ke> Rd)

1 ~oabt o~ ab
= m u<CiA| h<C]B|Z Mk:kd,eMk[kd,e|C1A>a|C]B>b )
XX cr B

which means that, the probabilities for local Z basis measurement results i, j € {0, 1} (which determine the
phase-error rate) can be acquired by observing the gain if Alice and Bob sent cat states. However, Alice and Bob
are not really sending cat states—when Z basis is chosen, they are sending phase-randomized coherent states.

Using decoy-state analysis, what Alice and Bob acquire are the yields for phase-randomized photon number
states, p,, (ke kalna, ng) = o(nal v(nsl>, M, kié,’c:)el\;[,i l;c elma)alnp)p. The yields for photon number states are

linked to equation (8) using the Cauchy—Schwarz inequality that upper-bounds the gains for cat states (and
subsequently the phase-error rate):

The performance, however, does depend on signal intensities, as we will show in section 4. The protocol favors smaller o4, ovg for lower
phase error rate, which become one of the factors—but not the only factor—that affect the optimal choice of signal intensities.
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A B abt A B
ACH1 b(C; |Z My, My kdelci )alCi )b
s abt ab
AG) . B(j) - A By o
= Z CmA(l)cmB(J)CnA (l)cﬂg(]) X Z mAl b<mB|Mk kd eMk kd, |nA> |nB>
my,mp,np,np=0 e
o0
AG) .By(j) A B
< S AOBDAD B
ma,mp,na,np=0
abt A ab abt A ab
X S almal oIS VIS dnadalig)o | o(mal o (NS N mabalms)s ©)
e
. . . ~_ab ~ ab
where we have applied Cauchy—Schwarz inequality to the two vectors M, ka kpela)almp)p and M, kac kel 114)a |10
We can then write:
o0
AG) B,(j) . AG) B,
S AOBGD A

ma,mp, s, np=0

" ~ bt~ ab
X Z\/ (mal nBle ko eMk kdelnA> |18)p \/ a{mma b(mBIMkikz,eMk’ikd,elmA%|m3>b

oo
A,(i) .B,(j) ~A,(i) .B,(j
< S AOBDADBD

ma,mp,nu,np=0

FPTERE bt ~ab
X \/ {1l b<ﬂB|E Mkakd, Mkuk,,, [114)a |11B)p \/ a{mal h<mB|Z Mkukd, Mkukd, [ma)a|mp)y

2

o0
= X enen "z kes kalna, ns) | (10)

1p,np=0

where we again use Cauchy—Schwarz inequality by considering two vectors i, ¥ whose eth components are

A abt _~ ab
Ue :\/ a{aly (BIM e, e Mic iy el A )a |81

—\/ (maly (ms NI M el sy 1D

respectively,and apply i - v < Vil - iV - V.
This means that, the phase-error rate can be upper-bounded by the yields for photon number states
pZZ (kw kdlnA: nB):
PXX (kc: kd) €zz (kw kd) - PXX (kw kd) Z AB(jjlp:QBljj>AB
j=0,1
2

00
< Z Z C;ﬁ:)(])crﬁg(])wpzz(km kdlnA) ng) (12)

j=0,1| na,np=0

this phase error rate, combined with the bit error rate in the X basis, can be used to perform privacy amplification
on the error-corrected raw keys and obtain the secure key.

The key point is that, the above proof that upper bounds the phase error rate does not require the fact that
a4 = agatall. The different signal intensities will cause Alice and Bob to have different cat states, but these states
are independently used to obtain inner product with 4 (ijand p(j| respectively. With the Cauchy—Schwarz
inequality, the joint cat states are reduced to a mixture of photon number states, and there are no cross-terms
between the two cat states.

This means that, using asymmetric intensities between Alice and Bob will not affect the estimation of phase
error rate. Moreover, as we described in equation (3), { M kaf;( .o} isa general representation of the channels and
detection, and does not require that 4 = ) either, i.e. asymmetric channels do not affect the security proof
either.

Additionally, the decoy intensities {33, 3%} might be different for Alice and Bob too, but these states are
only used to estimate the yields of photon number states p,,, (k., k4|14, #15) using decoy-state analysis, which is
exactly the same process as in MDI-QKD. As long as Eve cannot distinguish pulses from different intensity
settings, this decoy-state analysis is secure, even in the asymmetric setting—since the sending of a given photon
number 7 given the Poisson distribution P (n|u) = e‘“’;—? is a Markov process, i.e. memoryless process, Eve has
no way of telling which intensity setting the photon number state came from, therefore using asymmetric
intensities does not affect the estimation of yields for photon number states p,,, (k., k4|14, 1p).

Therefore, overall, we conclude that neither asymmetric channel losses, nor asymmetric intensities Alice and
Bob use (for signal states or decoy states), will affect the security of the protocol. Asymmetry will only affect the
performance of the protocol (which will be the subject of discussion in the next section)—asymmetric channels
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will result in higher QBER and subsequently lower key rate, and asymmetric intensities can compensate for
channel asymmetry and enable high key rate for the protocol even when channels are highly asymmetric.

4, Performance

In this section we will discuss how channel asymmetry, and asymmetric intensities, can affect the performance
of TF-QKD.

4.1. Channel model
We will first discuss the channel model in the asymmetric case. Again, we extend the expressions in the appendix
of [9], and consider asymmetric intensities and channel transmittances.

To obtain the secure key rate, three sets of observables are needed: the X basis gain pxx(k,, k,), the X basis bit-
error rate exx(k, k), and the Zbasis gain p,, (k., k4|34, Op) (for all combinations of { 34, B5}).

Now, let us suppose Alice and Bob send signals with intensities s4, s3, and channels between Alice/Bob and
Charles have transmittances 14, 775. For simplicity we can write:

YA = SATp

B = SB1p (13)
for signal states, and

Vi =ty

V5 = Hhg (14)

for decoy states, where u"A and ug are selected from the set of decoy intensities.

The other imperfections in the channel include the dark count rate p 4, the polarization misalignment
between Alice and Bob 6, and the phase mismatch ¢ between Alice and Bob. If we first do not consider dark
counts and phase mismatch, the intensities arriving at the detectors Cand D at Charles can be written as (similar
to the discussions in [19]):

1
D. = E(’YA + v — 27478 cos )

1
Da =~ + 7 + 24747 cosf) (15)
the probability that one detector clicks and the other does not (e.g. C clicks and D does not) can be written as
(1 — e D)eDi = g Pi — = DtDi) — e*%hﬁ%ﬁ%/vm osfl _ o—(yu+p), (16)

Including the phase mismatch and dark counts, we can write the X basis gain and QBER in a similar form as

[9]:
P ki) = (1 = py) (e [Tt 4 sty

1
> efz(%ﬁvg) -1 - pd)Ze*(”mLWB) (17)

e e0s0e0s) _ (1 p e HOut )

exx (ke, ka) = (18)

e /a7 cospcosd +e a7 cospcost 2(1_pd)eflg(v,\+"(,;)

and the Z basis gain is the integral over all possible (random) relative phases:

| N ’ ’ ’ ’
Prz(kes kalBas Bs) = (1 — pple 204 WIo((vy 7 cosf) — e~ 0atI] + p (1 — pe~Catw), (19

where I(x) is a modified Bessel function of the first kind.

The Zbasis gain can be used in decoy-state analysis to obtain 1, n photon yields p,, (k, k|n4, np). Here for
simplicity we first consider the infinite-decoy case, where p,, (k., k4|14, 115) can be assumed to be perfectly
known (similar to supplementary information equations (18), (19) in [9] but with asymmetric channel
transmittances):

Py (kes kalna, np) = (1 — p)q,, (ke, kalng, ng) + (1 — p)p, (1 — 0y )" (1 — )", (20)
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where

n n k1 na—k ng—1
o A na B np 77,4773(1 - 77A) A (1 - 773) B
a7 ke, kalna, np) = k}_:()( K )g( ] ) ST

k 1 min(k,m+p)
k l k l
)20 )
m=0\ p=0 p q=max(0,m+p—1I) q m+p—q
(m+ p)l(k + 1 — m — p)lcos™ 4(0,)cos™ P~ 9(0p)
sin®* "= 4(0)sin* "2 (0p) — (1 — )" (1 — )" 21
In the case with finite decoys (e.g. 3 decoy states for each of Alice and Bob), we can use linear programming to

upper-bound the yields, which is described in more detail in appendix.
Afterwards, the phase-error rate can be upper-bounded using these yields:

. 2
pXX(kca kd)eZZ(kD kd) < Z I: Z Crﬁ,(l)crﬁ;(l)ﬂpzz(km kdlnA) nB)] . (22)

i=0,1| ns,np=0

With the the X basis gain pxx(k,, k), the X basis bit-error rate exx(k., k;), and the phase-error rate e,,(k, k),
we can obtain the final secure key rate:

erkd = Pxx (km kd) X [1 - hZ(eXX(kw kd)) - hZ(eZZ(kcr kd))]r (23)

where b, (x) = —xlog,(x) — (1 — x)log,(1 — x) is the binary entropy function.

4.2, Effect of channel and intensity asymmetry on gain and QBER
In the estimation of key rate, only three sets of observables are used: the X basis gain pxx(k,, k;), the X basis bit-
error rate exx(k,, k4), and the set of Z basis gain for each combination of decoy intensities p,, (k, k4l3a, Op)-
Here we note that, the X basis gain and Z basis gain do not explicitly depend on the symmetry of incoming signal
strengths v, /75, and only the X basis QBER is affected by v, /3.

For simplicity, here let us consider the second-order approximation for the Bessel function and exponential
function, and for now ignore the phase mismatch and dark count rate:

Ii(x)=1+ ixz + O(xY
eX=1+x+ %xz + O(x?). (24)

We can then rewrite the X basis gain as:

Pyx (kc’ kd) _ l(eammse + emcos@‘cosﬁ) % e*%("//;+’h;) _ e*(W'A+’YB)
2
1 1
~ ~On ) = 21374+ 395 + @+ de) ] (25)
and the Zbasis gain as:

D SV [ Iyt
pzz(kw kdlﬁA’ ﬁB) =¢ 2(/A+WB)IO( VIA%a cos 9) - e_(’yA-’_’)B)

1 1
~ Em +vp) — g[sv’ﬁ + 395 4+ (4 + 2e)VivE), (26)

where the terms higher than second order are omitted, and 0 is the total polarization misalignment angle
between Alice and Bob satisfying 6 = 2 sin~!(\/e;)) (suppose Alice~Charles and Bob—Charles each has
misalignment error ez, but with misalignment angles in different directions). We can see that, the gain inboth X
and Z basis is dominated by the term %(fyA + ) = %(SA 1, + SpMy) Or %(MA + fy%) = %(M’A Ny + Wh1p),ie.
taking first-order approximation:

1
Pyx (ke kg) = > (va + 78)
1
Prz(kes kalBa, Bp) =~ 5(72 + ) 27)
which means that the gain scales with the average of arriving intensities through Alice’s and Bob’s channels—this

is different from MDI-QKD, where the gain only contains the second-order terms vi, 7123, Y4V We canalso see
that the gain does not depend on the asymmetry of arriving intensities, e.g. v4/vs.

8
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On the other hand, the QBER in X basis depends on the balance of arriving intensities:

e~ /Tavpcospcost _ (1_pd)e—%m+wﬁ)
67«/7A7/BC05¢C059 + e«WA’YBCOSbeOSG — 2(1_pd)e*%(’m+%s)

%('YA + v8) — JavBcost + %’VAVBCOSZQ - %('VA + 8)?

eXX(kca kd) =

A (28)
(Y4 + 7B) + YayBcos” O — i('}/A + 78)?
which, in the first-order approximation’, can be simplified as:
1 L 41y — 2 cosh
SO+ ) — s cost 30 Jﬁms
exx (ke, k) = 2 =10 LR 29)

YA + VB A4
B

We can see that here the X basis QBER does depend on asymmetry—more precisely, it depends on how
much the arriving intensities at Charles, v, = 1), 54 and ; = 7 sz are balanced. This is understandable
physically, since the X basis key generation depends on single-photon interference and relies on the
indistinguishability of incoming signals. This means that, in the case that channels are not symmetric,
compensating for the channel asymmetry with different signal intensities for Alice and Bob and aiming for
1454 = 7gsp can help minimize the X basis QBER.

On the other hand, in the Zbasis, the bit-error rate (i.e. the X basis phase-error rate) cannot be directly
measured, but is instead upper-bounded using the observable gain data from the decoy states. As we mentioned
above, the Zbasis gain (in the first-order approximation) scales with %(W’A + 7;3) = %(M’A My + /‘{; 1) and does
not depend on the symmetry between incoming intensities. Moreover, the yields p,,, (k., kaln, ng) are
estimated using linear programming. For instance, for three decoys where Alice and Bob respectively use
{1t> Va> wn}> {1p> VB, wp})astheir decoy states, there are nine sets of observable gains,

{Quw Quvs Quars Qs Quis Quus Quyis Qs Quis}» €ach of which constitutes a constraint for the linear program
that helps bound the yields p,, (k., kalna, ng). Such a structure makes the linear program relatively robust
against asymmetry in the decoy states, and the linear program can fairly accurately upper-bound the yields as
long as the intensities are of reasonable values (i.e. 1, = v, 115 # v, and none of the intensities are too
largee.g. > 1).

The phase error rate, as shown in equation (17), is based on a linear combination of the square root of the
yields. It is therefore also very little affected by asymmetry, and almost always reaches a good value (at least in the
infinite-data case) so long as the intensities are within reasonable range, regardless of the asymmetries in channel
transmittances or decoy intensities.

We plot the QBER in the X and the Zbases versus asymmetry in arriving intensities (e.g. 547, /sp75 Or
1ana/ tipnp) in figure 2. As can be seen, the X basis QBER depends heavily on asymmetry and is minimal when
saf, /sgny = 1, while the upper-bounded Z basis QBER (i.e. phase-error rate) is hardly affected by asymmetry.

Therefore, a viable strategy for TF-QKD in asymmetric channels is to compensate for the channel
asymmetry with signal intensities {s,, sz} only, while the decoy intensities { 14, ¥4, wa}, { 15, VB, wp} can be still
kept symmetric. However, note that the signal intensities not only determines (1) X basis QBER, it also affects (2)
Xbasis gain (which determines the raw key generation rate, and favors large s4, sp), as well as (3) upper-bound of
phase error rate (since the cat states are determined by signal intensities, and the estimation favors small s,
sp—typically < 0.1—for a tighter upper bound on phase error rate). Criteria (1)—(3) cannot be simultaneously
satisfied, therefore an optimization for {s4, sp} is required for highest key rate.

Interestingly, we can compare this with the case of MDI-QKD. As described in [15], the 4-intensity protocol
(and 7-intensity protocol in the extended asymmetric case) has decoupled X and Z bases, where Zbasis is used
for key generation and X basis uses decoy states to estimation phase-error rate. In MDI-QKD, the X basis data
depends on two-photon interference and requires balanced arriving intensities (or else the X basis QBER will
increase dramatically), while the Z basis does not require indistinguishability of the signals, and is therefore
insensitive to channel asymmetry. In MDI-QKD, all the X basis decoy states should satisfy e.g. 11,1, = pgnp
while the signal states s, s can be chosen to simply optimize key generation rate. (Due to misalignment, there is
aslight dependence of Z basis QBER to asymmetry too, hence optimal s, sp are still not equal, but this is a much
weaker dependence on symmetry than in the X basis, and optimal s, /sp is much closer to 1 than 7z/14 in
MDI-QKD.)

> The first order approximation for eyx(k,, k) assumes that y,, yp are much smaller than 1—which is reasonable, since to get a good phase-
error rate estimation, usually s4, s are smaller or equal to 0.1, and for positions of interest where TF-QKD beats PLOB bound, the loss in
each channel is usually larger than 10 dB, which means that 774 and 75 are much smaller than 1 too—for instance 10 dB channelloss
corresponds to 0.1 transmittance.
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Figure 2. QBER versus asymmetry in arriving intensities at Charles, in the X and Zbases. Here we consider k., k; = 0, 1, while the
other case of k,, k; = 1,0 has exactly the same values. Both plots use parameters 7, = 73 = 1 (as well as detector efficiency 100%) and
assume misalignment of 2% from Alice and Bob each, and no dark counts or phase mismatch. (a) We plot the X basis QBER (acquired
from full expression in equation (14)) as well as its first-order approximation (acquired from equation (24)). Here we vary s, while
keeping sg = 0.1 to test different levels of asymmetry. As can be seen, the X basis QBER heavily depends on the symmetry between
arriving intensities s4 1), and sz7;. Physically, this is because key generation depends on single-photon interference and therefore
requires indistinguishability of incoming signals. When 7 /1, = 1, X basis QBER will increase drastically if intensities are symmetric,
while one can adjust s,/sg such that s, /s3 = 1 /1, to obtain minimal X basis QBER (Note that first-order deviation no longer works
for s, > 1—in this case, the majority of the detection events are double counts and are discarded, despite that the actual e, is lower
among the single detections (approaching zero as s, increases)—but generally the phase error rate estimation requires low signal
intensities, and such high s, will not return positive key rate anyway, so this region will not be of interest to us.). (b) We plot the Zbasis
bit-error rate (i.e. X basis phase-error rate) obtained from linear programming using data from 3 decoy states. Here we set

vy = v = 0.01,w,y = wp = 0,and signal states s, = sz = 0.1. We fix iz = 0.1 and vary s, to test asymmetry. As can be seen, the
upper-bounded phase error rate depends very little on the asymmetry between 11,7, and 1575, and the linear program can effectively
bound the error rate—in fact rather close to the theoretical value obtained with infinite-decoys—as long as y14, j15 are of reasonable
values (With two exceptions: when ji4 = v/, or f14 >> 1, the constraints from observable data containing 14 cannot provide any useful
information, and the linear program has to use the data from one less decoy state, which is why the e,, is higher for these two extreme
cases.). The physical intuition is clear too: the yields are estimated by linear programming, which usually has redundant information
(inthe 9 cross terms Q,,, 1 where Alice and Bob each uses one of their three decoys) and is insensitive to asymmetry, and the phase-

error rate (equation (17)) is a linear combination of the yields, which makes it insensitive to asymmetry just like the yields.

While our approach works both for MDI-QKD and TF-QKD, a key difference is that states that compensate
for channel asymmetry are the signal states in TF-QKD (while this responsibility lies on decoy states in MDI-
QKD), which are also involved in key generation and phase error estimation. This means that in TF-QKD, itis
more difficult to simultaneously keep a low X basis QBER and a good key generation rate and low phase error
rate. Perhaps due to this reason, the advantage of asymmetric-intensity protocols is somewhat less pronounced
in TF-QKD—nonetheless, it still provides about an order of magnitude higher key rate than completely
symmetric protocols and still 2-3 times higher key rate than adding fibre—which means that it still is the
strategy that provides highest key rate when channels are asymmetric.

5.Numerical results

In this section we use the technique described above—to compensate for channel asymmetry simply with
different s,, s for Alice and Bob. We first compare our method with prior art techniques and study the
numerically optimized intensities for the asymptotic (infinite-decoy, infinite-data) case. Then, we also show that
our method works with finite decoys and also finite data size.

We plot the simulation results for asymptotic TF-QKD in figure 3. As can be seen, for the two cases where
channel mismatch x = 7,/np = 0.1and 7,4/nz = 0.01, our method consistently have much higher key rate
than TF-QKD with symmetric intensities. Interestingly, we show that adding fibre can help users obtain higher
key rate, but it comes with the additional inconvenience of having to physically modify the channel, and also it
still has lower key rate than our method of simply adjusting signal intensities.

We also plot the ratio of optimal signal intensities in figure 4. As we have predicted, the optimal signal
intensities are rather close to the relation of s47, = sg7), in order to maintain a lower X basis QBER. However,
as we discussed, since signal states are also involved in key generation and phase error rate estimation (based on
the imaginary cat states), they prevent the signal states from taking the values that minimize QBER (but rather,
makes it choose the value that maximizes the overall key rate).

Additionally, we also plot our results for the practical case with finite number of decoys (here we use three
decoys each for Alice and Bob: { 14, 4, wa}, { s> V5, wp}) and finite data size. The upper-bounding of photon
number yields using linear programming, as well as the finite-key analysis, are both described in more detail in
appendix. We can see that similar result holds—our method has an advantage over either using symmetric
intensities directly or adding fibre. More interestingly, we include both the case where we only allow s, sz to be
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Figure 3. Key rate versus loss between Alice and Bob, for protocol with symmetric intensities (s4 = s3), symmetric intensities with
fibre added until channels are equal, and asymmetric intensities (s4, s fully optimized). The PLOB [2] linear bound is included for
comparison. The channel mismatch x is fixed at x = 1,/ = 0.1 (left) and 77,/75 = 0.01 (right), i.e. Alice—Charles always has 10 dB
(20 dB) higher loss than Bob—Charles. Note that the right plot starts from 20 dB of total distance (which is the case where Bob—Charles
loss is 0dB and Alice—Charles loss is 20 dB). The dark count rate is set to 105, misalignment is 2% for Alice and Bob each, and detector
efficiency is incorporated into channel loss. As can be seen, allowing the use of asymmetric intensities greatly improves key rate when
channels are asymmetric, and compared with a symmetric protocol, it can consistently provide approximately one order of magnitude
higher key rate when thereisa 10 dB channel mismatch, and two orders of magnitude when thereisa 20 dB mismatch, for most
distances. Interestingly, adding fibre can improve the key rate considerably too—but it still has lower key rate than the asymmetric-
intensity protocol (the latter has about 2—3 times higher key rate), and has the additional inconvenience of having to modify the
physical channel.
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Figure 4. Ratio of optimal intensities log, ,(s4 /s3) over loss between Alice and Bob. Here we test two cases where the channel mismatch
x =1, /M = 0.1and 1, /0, = 0.01. As can be seen, s/ is rather close to 115/n4 (here respectively 10" and 10%). However, due to
signal states being involved in key generation and phase-error rate estimation too, it slightly deviates from the value that minimizes X
basis QBER (and instead takes the value that maximizes key rate).

asymmetric, versus the case where all intensities and probabilities can be optimized, and as shown in the plot, we
see that using asymmetric signal intensities alone is sufficient to compensate for channel asymmetry.

6. Conclusion

In this paper we present a simple method to obtain good performance for TF-QKD even if channels are
asymmetric. We present a theoretical understanding of why signal states (and not decoy states) should be
adjusted to compensate for asymmetry, and we also show that the method is still compatible with existing
security proofs. With our method, there is no need to add additional fibre, and Alice and Bob can implement the
method in software-only. This provides great convenience for TF-QKD in practice—where realistic channels
might likely be asymmetric—and can also be used in quantum networks (where adding fibre for each pair of
users is impractical) where a central service-provider can easily optimize the intensities for each pair of users.
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Note added

We note that, during the preparation of the current manuscript, it came into our knowledge that another work
onasymmetric TF-QKD is under preparation [20], which is independently completed from this work. Our
works are posted simultaneously on the preprint server [20, 21].

Appendix. Numerically estimating photon-number yields with linear programs

In this section we briefly describe the linear programming approach we used to estimate the upper bounds for
the photon-number yields p,, (k., k4ln4, ng)—which for simplicity here we will denote as Y,,,,—which is the
probability to obtain a set of detection events k, k; given that Alice and Bob respectively sent n4, 1z (or, 1, m)
photons. Such an approach has been widely discussed in literature as in [22—24], and is also described in the
simple TF-QKD proof paper [9]. We also used a similar linear programming approach for some of the results in
[15] appendix E, but it was not described in detail in that paper.

For simplicity, in this section we denote the observable gain in Zbasis p,, (k., k4l Gs, Bp)as Q,, 1 where
W = (% and p; = (3%, and k,, k;are omitted (since the same expressions hold true for k., k; = (0, 1) or k,,

ks = (1,0), and we can substitute the observable data for each k., k; respectively to obtain the corresponding
P, (kes kalna, np)). Also, as mentioned above, we denote the yields p,,, (k., k4lna, t15) as Y.

A.1.Linear program model
Following [4], the yields Y,,,,, where Alice sends n photons and Bob sends m photons, satisfy the constraints:

SO PP Y = Qs (A1)
n m

where the photon number distributions are Poissonian:

n

PHi = eﬂ[ﬂ

" n!

m

I 1
Pyl = eti—L. (A.2)

m!

Here, the right-hand-side constants Q f "
it

the intensity combination j;, 1 (which can be any intensity among the set of decoy intensities). For the case of
3-decoys each for Alice and Bob, equation (A.1) corresponds to 9 sets of constraints. Using equation (A.1) as
linear constraints, and {Y,,,,} as variables, we can apply linear programming, to maximize or minimize any
linear combination of any of the variables (called an objective function)—for instance, here we can run the linear
program multiple times, each time acquiring the upper bound for a given Y,,,,, where (1, m) can be (0, 0), (2, 0),
(0,2),(1,1),(2,2).

Note that, since there are infinitely many photon number states, to solve the linear program on an actual
computer, we have to perform a cut-off and discard higher-order terms with large photon number. In practice
we choose S ¢ = 10, such thata term is only discarded when both n > 10and m > 10. For the discarded terms,
we can either set them to zero (for lower bounds) or 1 (for upper bounds).

S S PP Y = > Y PP Yo
m

n n<10 m<10

are the ‘observables’, i.e. the gain and error-gain respectively for

S PP Yau < 35 D7 PPl Y + (1 -3 3 pepnf (A3)
m

n n<10 m<10 n<10 m<10

Therefore, in practice, the linear constraints can be written as:

QZ, - (1 -r % P,%Péif] <Y Y PEPYM < QL (A4)

n<10 m<10 n<10 m<10

12
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with the additional constraint on variables:

0< Ym< L (A.5)

The linear program is run multiple times, each time maximizing a given Y,,,,,, where (1, m) can be (0, 0), (2,
0),(0,2),(1,1),(2,2).

A.2. Finite-size effects
In this section we consider finite-size effects for the privacy amplification process. Because of the statistical
fluctuations, the observables (gains) we obtain in the Zbasis might deviate from their respective expected values,
which will lie within a certain ‘confidence interval’ around the observed values. Here we will perform a standard
error analysis, similar to thatin [15, 22, 25], which is meant to be a straightforward estimation of the
performance of TF-QKD under asymmetry and with practical data size, but not as a rigorous proof for
composable security.

Consider a random variable, whose observed value is 11, we can bound its expected value (1) with the upper
and lower bounds

n=n—yJyn <(n) <n+yJn =i (A.6)

with a confidence (success probability) of erf(y,/+/2 ), where yis the number of standard deviations the
confidence interval lies above and below the observed value, and erf is the error function. In the simulations we
consider a security failure probability of e = 10~7, which means we should set y ~ 5.3.

In the Zbasis, let us denote the observed counts for a given intensity setting { 1;, 14} as n /f o which satisfies

z z
Wi, = Qi X (N B, (A7)

where N'is the total number of signals sentand F,, F, are the probabilities for Alice and Bob to respectively

zZ .

choose intensities 1;and y;. By applying equation (A.6), we can acquire the upper and lower bounds to Q7 i

(A.8)

Then, we can substitute them into the upper and lower bounds in the linear program when estimating Y,,,,.:

Qi —1- 2 X P,é‘fPﬁf) <Y Y PEPYa < QF, (A.9)

n<10 m<10 n<10 m<10

which loosens the bounds and will result in a slightly higher upper bound for Y,,,,, (which is understandable,
since we expect lower key rate with finite-size effect considered). Similar linear programs for finite-size decoy-
state have also been considered in [23].

Note that, although here we only consider a standard error analysis, in principle our results in this paper is
applicable to e.g. composable security using Chernoff’s bound [24]. The key point is, the dependence on channel
asymmetry, and the compensation for asymmetry using intensities, are only relevant in the X basis (signal states).
The asymptotic case (with infinite decoys, where only signal states are relevant) therefore defines the
fundamental scaling of key rate versus asymmetric channels, and all types of finite size analysis on the decoy
states (e.g. using standard error analysis, using Chernoff’s bound [24], or adding a ‘joint bounds’ analysis to
tighten the bounds on statistical fluctuation and obtain a higher key rate [25], versus not considering finite-size
effects at all and assuming the asymptotic key rate [3, 7-10], i.e. assuming expected values of the gain and QBER
to be identical to observed values in experiment) can be viewed of as correction terms (imperfections) on the
yields and the key rate in the asymptotic limit. Our method is only related to the signal states and their intensities
in the X basis, and is in principle always applicable regardless of the type of decoy state analysis (e.g. number of
decoys) and the finite-size analysis used, as long as the Z basis is decoupled from the X basis.

With finite-size effect considered, the optimizable parameters for TF-QKD now include

[SA) Has VAs PSA) PNA’ PI/A) SB> Hp> VB> Psm P;LB: PVB]) (AIO)

where the implicit parameters are w, wg (Which for simplicity we assume to be zero), and
PR,=1-PR,— B, — B,andsimilarly P,, = 1 — R, — B, — B, and the choice of signal states s4, s3 versus
the decoy states automatically implies basis choice, too. The above parameters are optimized using the same
coordinate descent algorithm as described in [15]. In figure A1, the dot-dash line (fully asymmetric) optimizes all

12 parameters, while the dashed line (signal-only asymmetric) optimizes only 7 parameters (where all
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Figure A1. Key rate versus loss between Alice and Bob, for protocol with symmetric intensities and probabilities, with symmetric
intensities and fibre added until channels are equal, with only asymmetric signal intensities (while all other parameters are symmetric
between Alice and Bob), and with fully optimized parameters (all intensities and probabilities are freely optimized). The PLOB [2]
linear bound is included for comparison. Here we consider 108 dark count rate, a 2% misalignment for Alice and Bob each, N = 10"
total pulses sent, and channel mismatch of x = 7,/1p = 0.1. Again, detector efficiency is incorporated into channel loss. As we can
see, similar to the asymptotic case, using asymmetric intensities can greatly improve the key rate. Perhaps more interestingly, we can
see that allowing asymmetry in signal intensities alone is sufficient in obtaining a good key rate through asymmetric channels (its key
rate almost entirely overlaps with the fully optimized case).

parameters except s4, sg are identical for Alice and Bob):
[SA) Hs Vs R) P;m PI/) B> W U, Ps> Bn Pl/] (All)

Performing coordinate descent on key rate versus parameters while estimating the yields with linear
programming is rather CPU-intensive. We have used a 40-core (80-thread) machine (a single compute node in
the Niagara supercomputer [26], each node with dual 20-core Intel Skylake CPUs) to generate figure A1, where
the OpenMP multithreading library is used to parallelize the coordinate descent algorithm (to accelerate the
search along each coordinate). The details of the algorithm can be found in [15, 22]. Also, we used Gurobi [27], a
commercial linear program solver, to solve the linear programming models. Linear programs sometimes
introduce multiple maxima, which means alocal search on parameters sometimes might get trapped in a local
maximum. To alleviate this, we can start alocal search from multiple random starting points, and pick the
largest search result, which can be viewed of as a form of global search. (In principle, we can permutate the search
results and perform multiple iterations of random search using e.g. an evolution algorithm [28], but here using
one iteration with multiple random starting points is usually sufficient in finding a good key rate.)
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