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Abstract
Twin-field quantumkey distribution (TF-QKD) can beat the linear bound of repeaterless QKD
systems. After the proposal of the original protocol,multiple papers have extended the protocol to
prove its security. However, theseworks are limited to the casewhere the two channels have equal
amount of loss (i.e. are symmetric). In a practical network setting, it is very likely that the channels are
asymmetric due to e.g. geographical locations. In this paper we extend the ‘simple TF-QKD’ protocol
to the scenariowith asymmetric channels.We show that by simply adjusting the two signal states of
the two users (and not the decoy states) they can effectively compensate for channel asymmetry and
consistently obtain an order ofmagnitude higher key rate than previous symmetric protocol. It also
can provide 2–3 times higher key rate than the strategy of deliberately adding fibre to the shorter
channel until channels have equal loss (and ismore convenient as users only need to optimize their
laser intensities and do not need to physicallymodify the channels).We also perform simulation for a
practical case with three decoy states andfinite data size, and show that ourmethodworks well and has
a clear advantage over prior artmethodswith realistic parameters.

1. Background

Quantumkey distribution (QKD) is proven to provide information-theoretic security to two communicating
parties.Without efficient quantum repeaters, however, QKD is limited in themaximumdistance over which it
can generate secure keys. The linear bound [1, 2] is a theoretical upper bound formaximumkey rate-distance
relation for repeaterlessQKD. Interestingly, the twin-field (TF)QKDprotocol proposed in 2018 [3] uses a clever
technique to surpass the linear bound: it uses a setupwhere two parties, Alice and Bob, communicate with an
untrusted third party, Charles. Instead of using two-photon interference like inmeasurement-device-
independent (MDI)QKD [4], TF-QKDmakes use of single-photon interference to generate keys, and on
average only one photon passes through either Alice’s or Bob’s channel—which allows to key rate to scale with
transmittance over only half the distance betweenAlice and Bob.Not only does TF-QKD surpass the
repeaterless bound, it also provides security against attacks onmeasurement devices [5] similar toMDI-QKD.
Because of these advantages, TF-QKDhas attractedmuch attentionworldwide since its proposal. Since a
rigorous security proof is not provided in the original proposal, several papers have improved the protocol and
provided security proof [6–10]. Also, recently there have beenmultiple reports of TF-QKDdemonstrated
experimentally [11–14].

However, all the above security proofs and experimental demonstrations only consider the symmetric case
where Alice’s and Bob’s channels have the same amount of loss. In reality, though, in a network setting, due to
e.g. geographical locations, or Alice and Bob being situated onmoving free-space platforms (such as ships or
satellites), it is very likely that Alice’s and Bob’s channels are not symmetric. In the future, if a quantumnetwork
is build around the protocol—e.g. a star-shaped networkwhere numerous users (senders) are connected to one
central nodewithmeasurement devices, asymmetry will be an evenmore severe problem since it is difficult to
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maintain the same channel loss for all users (and usersmight join/leave a network at arbitrary locations). If
channels are asymmetric, for prior art protocols, users would either have to suffer frommuch higher quantum-
bit-error-rate (QBER) and hence lower key rate, or would have to deliberately addfibre to the shorter channel to
compensate for channel asymmetry, which is inconvenient (since it requires physicallymodifying the channels)
and also provides sub-optimal key rate.

Similar limitation to symmetric channels have been observed inMDI-QKD. In [15], we have proposed a
method to overcome this limitation, by allowing Alice and Bob to adjust their intensities (and use different
optimization strategies for two decoupled bases) to compensate for channel loss, without having to physically
adjust the channels. Themethod has also been successfully experimentally verified for asymmetricMDI-QKD
in [16].

In this work, wewill apply ourmethod to TF-QKDand show that it is possible to obtain good key rate
through asymmetric channels by adjustingAlice’s and Bob’s intensities—in fact, wewill show that, Alice and
Bob only need to adjust their signal intensities to obtain optimal performance.We show that the security of the
protocol is not affected, and that an order ofmagnitude higher (than symmetric protocol) or 2-3 times higher
(than adding fibre) key rate can be achievedwith the newmethod. Furthermore, we showwith numerical
simulation results that ourmethodworkswell for bothfinite-decoy and finite-data case with practical
parameters,making it a convenient and powerfulmethod to improve the performance of TF-QKD through
asymmetric channels in reality.

While we use the samemain idea of allowing Alice and Bob to use asymmetric intensities to compensate for
asymmetric channel losses as in [15], there are some key differences that need to be addressed for asymmetric
TF-QKD. Firstly, the security proof need to be discussed, to show that the introduction of asymmetric channels
and intensities do not affect security. Secondly, as wewill later show in section 4, there is an interesting
distinction between theMDI-QKDprotocol in [15] and the TF-QKDprotocol in [9] in how the two basesX and
Z respectively react to asymmetric incoming intensities, whichmakes the optimal strategies for asymmetric-
intensityMDI-QKD andTF-QKDdifferent.Wewill discuss this inmore detail in section 4.

The idea of TF-QKDprotocol through asymmetric channels has also been discussed in a recent paper [17].
Ourwork is different from [17] in several aspects. First, [17] starts with a different protocol—‘sending or not
sending protocol’. Second, [17] ismostly numerical. In contrast, we start with the ‘simple TF-QKD’ protocol in
[9] and consider its asymmetric-intensity version.We include both analytical and numerical reasoning.We also
provide a detailed discussion about the physics behind the security of our asymmetric-intensity protocol.

The layout of the paper is as follows: in section 2, we define the setup and the protocol we use. In section 3we
will extend the security proof in [9] to the case with asymmetric intensities and channels. In section 4, we discuss
the how the performance of TF-QKD is affected by channel asymmetry and asymmetric intensities (and for the
latter, what are the best strategies for choosing the intensities).We show the effectiveness of ourmethodwith
simulation results in section 5.

2. Protocol

Herewe consider a similar TF-QKD setup as in [9] ‘Protocol 3’. Alice andBob choose two basesX andZ
randomly.WhenX basis is chosen, Alice (Bob) sends states aña∣ (añb∣ ) for bit bA=0 (bB=0) or states a- ña∣
( a- ñb∣ ) for bit bA=1 (bB=1).WhenZ basis is chosen, Alice and Bob send phase-randomized coherent states
r ba, A

(r bb, B
), where the decoy state intensities are b b,A B{ }. Note that here Alice and Bob have a commonphase

reference forX basis signals. After the signals are sent toCharles, the detector events are denoted as kc, kd (0
denotes no click, and 1 denotes a click).

The papers [3, 9] consider only the case where the channels betweenAlice (Bob) andCharles have equal
transmittances. In reality, it is possible that the channelsmight have different levels of loss, due to e.g.
geographical locations ormoving platformsHere we are interested in three questions for TF-QKDwith
asymmetric channels:

1. Does channel asymmetry affect security?

2.Howdoes channel asymmetry affect theQBER and hence key rate?2

3. Canwe improve the performance of the protocol under channel asymmetry?

2
In the supplementarymaterials of [16], we and our collaborators presented a preliminary study on this point, and showed that asymmetry

decreases single-photon interference visibility—whichwill in turn increase observableQBER for TF-QKD.

2
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Wewill use ourmethod from [15] and apply it to Protocol 3 in [9], tomake an ‘asymmetric-intensity’TF-
QKDprotocol that workswell evenwhen channels are highly asymmetric. Similar toMDI-QKD, the protocol in
[9] has decoupledX andZ bases. Herewe allowAlice and Bob to have different intensities in theX and theZ
bases respectively, such that inX basis Alice (Bob)now send states a ñA a∣ (a ñB b∣ ) for bit bA=0 (bB=0) or states
a- ñA a∣ ( a- ñB b∣ ) for bit bA=1 (bB=1).We can denote the signal intensities as a a= =s s,A A B B

2 2 . In theZ basis,
the amplitudes for the phase-randomized coherent states, {βA,βB}, can be different for Alice andBob too (we
can denote the intensities as b b,A B

2 2{ }, and for the three-decoy case, the sets of intensities can be specifically
written as m n w, ,A A A{ }and m n w, ,A A A{ }). An example setup can be found infigure 1.

Wewill answer the above three questions by showing in the following text threemain pieces of results:

(1) neither asymmetric channels nor asymmetric intensities betweenAlice and Bob affect security;

(2) theX basis (signal state)QBERwill increase with channel asymmetry, and greatly reduce the key rate of TF-
QKD if no compensation is performed—on the other hand, theZ basis gain (as well as the upper bound to
the yield and phase-error rate derived from the observable data in theZ basis) is little affected by channel
asymmetry;

(3) we can use different intensities between Alice and Bob to compensate for channel asymmetry and get good
key rate—in fact, using only different signal states betweenAlice and Bob (and keeping all decoy states and
probabilities identical for Alice andBob) can already effectively compensate for channel asymmetry and
allow good key rate for asymmetric TF-QKD.

3. Security

In this sectionwewill show that neither asymmetric channels nor asymmetric intensities betweenAlice and Bob
affect security. Following the discussion in [9], the key is generated from events in theX basis, and the secure key
rate is bounded using the bit-error rate and the phase-error rate. TheX basis bit-error rate is directly obtained as
an observable, hence the key part of the security proof lies in the estimation ofX basis phase-error rate
(equivalent to theZ basis bit-error rate) based on theZ basis observables—which, sinceZ basis signals are phase-
randomized, is not directly obtainable.

In the security proof in [9], the phase-error rate is obtained by upper-bounding the phase-error rate using
the estimated yields of given photon numbers {m, n} (which can be upper-bounded by using decoy-state
analysis, based on observed count rates, i.e. the gains, in theZ basis).

The keymessage we’d like to point out is that, this entire estimation process of the phase error rate does not
rely on the fact that Alice and Bob use the same amplitudeα for their signal states, or that the channels have the
same transmittance. Therefore, herewewill follow the proof in [9] step-by-step, butwith asymmetric intensities
and channel transmittances, to show that the security proof can be easily extended to the asymmetric case.

Figure 1.An example setup for a twin-fieldQKD system. Alice and Bob send signals inX andZ bases randomly. InX basis, Alice and
Bob send coherent states with amplitudesαA,αB (with intensities a a= =s s,A A B B

2 2—in the asymmetric case, we allow sA to be
different from sB), phase-modulated by {0,π}depending on the encoded bit. InZ basis, Alice andBob send signals in phase-
randomized coherent states, with intensities chosen from {μA, νA,ωA} and {μA, νA,ωA}, respectively. Charles performs a swap test on
the incoming signals and reports the click events in his two detectorsDc,Dd (denoted by kc, kd). By choosing different intensities
betweenAlice and Bob (and using the decoupledX andZ bases), the protocol can have high key rate even if Alice and Bob’s channels
have different transmittances, ηA, ηB.

3
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A small note is that, the formulation of the original security proof in [9] appears to assume a single Kraus
operator for the channel (i.e. a pure state after themeasurement, which could involvemeasurements from
Charles and/or Eve), but the proof can, in fact, be extended to cover the general case where the state could be a
mixed state after passing through the channel and potentially being disturbed by Eve3.We have discussedwith
the original authors of [9], andwe thankKoji Azuma for pointing out this fact [18] and the details of
incorporatingmultiple Kraus operators to represent amixed state after themeasurement (and applying
Cauchy–Schwarz inequality to themixed state to obtain the bounds on the phase error rate). In the following
text wewill use the formulation ofmultiple Kraus operators and densitymatrices as inKoji Azuma’s clarification
of the original proof.

We can start by imagining a virtual scenario where Alice (Bob)prepares entangled states between a local
qubitA (B) and a signal a (b) to be sent toCharles. After Charles performs ameasurement on the signals, theX
basis phase-error rate (orZ basis bit-error rate) can be obtained byAlice (Bob)measuring their local qubits in the
Z basis. The initial states can bewritten as:

y a a

y a a

ñ = +ñ ñ + -ñ - ñ

ñ = +ñ ñ + -ñ - ñ

1

2
1

2
1

X
A

Aa A A a A A a

X
B

Bb B B b B B b

∣ (∣ ∣ ∣ ∣ )

∣ (∣ ∣ ∣ ∣ ) ( )

here ñ = ñ  ñ0 11

2
∣ (∣ ∣ ) are theX basis states. Here in the asymmetric-intensity case, we allow a=sA A

2 to be

different from a=sB B
2 . For convenience, here let us write y y yñ = ñ ñX AaBb X

A
Aa X

B
Bb∣ ∣ ∣ .We can thenwrite the

densitymatrix of the initial state as

r y y= ñ á . 2AaBb X AaBb AaBb X∣ ∣ ( )

Now, the process of signals a and b going through their respective channels andCharlesmaking a

measurement can be represented by a set of Kraus operators Mk k e
ab

,c d
{ ˆ }, where kc, kd areCharles’ detector events,

and e is the (implicit)measurement results of a potential eavesdropper Eve. The superscript ab represents that
this operator only acts on the systems a, b (pulses sent toCharles) and not onA,B (local qubits in Alice’s and
Bob’s labs). From the perspective of Alice and Bob, as e is not announced, the state they obtain is equivalent to
Eve having discarded allmeasurement results e. After signals pass through the channels andCharles announces
themeasurement result kc, kd, the conditional state becomes:

å
r

r
¢ =

M M

p k k,
3AaBb

e k k e
ab

AaBb k k e
ab

XX c d

, ,c d c d
ˆ ˆ

( )
( )

†

here p k k,XX c d( ) is theX basis Gain for detection events kc, kd (which can be 0,1 or 1,0 for a detection event to be

considered successful). Note that, this set of operator Mk k i
ab

,c d
{ ˆ } includes all information of the channels, detectors

(and the eavesdropper) and is a general representation of their joint effects, and, importantly, it does not require
that the channels are symmetric at all.

Bymeasuring their local qubits in theZ basis, Alice and Bob can obtain theZ basis bit-error rate eZZ k k, c d
(i.e.

theX basis phase-error rate):

å r= á ¢ ñ
=

e jj jj , 4ZZ k k
j

AB AB AB,
0,1

c d ∣ ∣ ( )

where r¢AB, the state of the local qubitsA,B, can be obtained by performing a partial trace over the systems a, b

r r¢ = ¢tr . 5AB ab AaBb( ) ( )

Now, the key observation in the proof of [9] is that, Alice and Bobmaking ameasurement on the local qubits
A andB after sending signals a and b andCharlesmaking ameasurement should be equivalent to the time-
reversed scenario where Alice andBobfirstmake localZ basismeasurements on the initial pure states
y yñ ñ,X

A
Aa X

B
Bb∣ ∣ , and then send the signal systems a and b to Charles. After Alice and Bobmake the local

measurements, the states become

3
The explicit discussion about using a single Kraus operator for each announcement outcomewas also previouslymade in [10] in a different

security proof. So, this is a known result.

4
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here the even (odd) cat states only contain nonzero amplitudes for even (odd) photon numbers. Nonetheless we
can still write the amplitudes as c c,n

A
n
B, 0 , 0( ) ( ) (c c,n

A
n
B, 1 , 1( ) ( )) for all photon number states, where the coefficients

are zero for odd (even) photon number states in an even (odd) cat state.
Note that here in the asymmetric-intensity case, Alice and Bob’s cat states are not the same, because they use

different signal intensities (hence different amplitudesαA,αB), but as wewill showbelow, the derivation of the
upper bound for the phase error rate does not depend on the fact that Alice andBob have the same cat states.
Therefore, the security is not compromised by using asymmetric signal intensities4.

For Alice and Bob’s localZ basismeasurement results i, jä {0,1} and for detection events kc, kd:
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whichmeans that, the probabilities for localZ basismeasurement results Îi j, 0, 1{ } (which determine the
phase-error rate) can be acquired by observing the gain if Alice and Bob sent cat states. However, Alice and Bob
are not really sending cat states—whenZ basis is chosen, they are sending phase-randomized coherent states.
Using decoy-state analysis, what Alice andBob acquire are the yields for phase-randomized photon number

states, = á á å ñ ñp k k n n n n M M n n, ,ZZ c d A B a A b B e k k e
ab

k k e
ab

A a B b, ,c d c d
( ∣ ) ∣ ∣ ˆ ˆ ∣ ∣†

. The yields for photon number states are
linked to equation (8)using theCauchy–Schwarz inequality that upper-bounds the gains for cat states (and
subsequently the phase-error rate):

4
The performance, however, does depend on signal intensities, as wewill show in section 4. The protocol favors smallerαA,αB for lower

phase error rate, which become one of the factors—but not the only factor—that affect the optimal choice of signal intensities.

5
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Thismeans that, the phase-error rate can be upper-bounded by the yields for photon number states
p k k n n, ,ZZ c d A B( ∣ ):
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this phase error rate, combinedwith the bit error rate in theX basis, can be used to performprivacy amplification
on the error-corrected raw keys and obtain the secure key.

The key point is that, the above proof that upper bounds the phase error rate does not require the fact that
αA=αB at all. The different signal intensities will cause Alice and Bob to have different cat states, but these states
are independently used to obtain inner product with áiA ∣and á jB ∣respectively.With theCauchy–Schwarz
inequality, the joint cat states are reduced to amixture of photon number states, and there are no cross-terms
between the two cat states.

Thismeans that, using asymmetric intensities betweenAlice and Bobwill not affect the estimation of phase

error rate.Moreover, as we described in equation (3), Mk k e
ab

,c d
{ ˆ } is a general representation of the channels and

detection, and does not require that ηA=ηB either, i.e. asymmetric channels do not affect the security proof
either.

Additionally, the decoy intensities b b,A B
2 2{ }might be different for Alice and Bob too, but these states are

only used to estimate the yields of photon number states p k k n n, ,ZZ c d A B( ∣ ) using decoy-state analysis, which is
exactly the same process as inMDI-QKD. As long as Eve cannot distinguish pulses fromdifferent intensity
settings, this decoy-state analysis is secure, even in the asymmetric setting—since the sending of a given photon

number n given the Poisson distribution m = mm-P n e
n

n

( ∣ )
! is aMarkov process, i.e.memoryless process, Eve has

noway of tellingwhich intensity setting the photon number state came from, therefore using asymmetric
intensities does not affect the estimation of yields for photon number states p k k n n, ,ZZ c d A B( ∣ ).

Therefore, overall, we conclude that neither asymmetric channel losses, nor asymmetric intensities Alice and
Bob use (for signal states or decoy states), will affect the security of the protocol. Asymmetrywill only affect the
performance of the protocol (whichwill be the subject of discussion in the next section)—asymmetric channels
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will result in higherQBER and subsequently lower key rate, and asymmetric intensities can compensate for
channel asymmetry and enable high key rate for the protocol evenwhen channels are highly asymmetric.

4. Performance

In this sectionwewill discuss how channel asymmetry, and asymmetric intensities, can affect the performance
of TF-QKD.

4.1. Channelmodel
Wewillfirst discuss the channelmodel in the asymmetric case. Again, we extend the expressions in the appendix
of [9], and consider asymmetric intensities and channel transmittances.

To obtain the secure key rate, three sets of observables are needed: theX basis gain pXX(kc, kd), theX basis bit-
error rate eXX(kc, kd), and theZ basis gain b bp k k, ,ZZ c d A B( ∣ ) (for all combinations of {βA,βB}).

Now, let us suppose Alice and Bob send signals with intensities sA, sB, and channels betweenAlice/Bob and
Charles have transmittances ηA, ηB. For simplicity we canwrite:

g h
g h

=
=

s

s 13
A A A

B B B ( )

for signal states, and

g m h

g m h

¢ =

¢ = 14

A A
i

A

B B
j

B ( )

for decoy states, where mA
i and mB

j are selected from the set of decoy intensities.
The other imperfections in the channel include the dark count rate pd, the polarizationmisalignment

betweenAlice and Bob θ, and the phasemismatchf betweenAlice and Bob. If wefirst do not consider dark
counts and phasemismatch, the intensities arriving at the detectorsC andD at Charles can bewritten as (similar
to the discussions in [19]):

g g g g q

g g g g q

= + -

= + +

D

D

1

2
2 cos

1

2
2 cos 15

c A B A B

d A B A B

( )

( ) ( )

the probability that one detector clicks and the other does not (e.g.C clicks andD does not) can bewritten as

- = - = -g g g g q g g- - - - + - + + - +1 e e e e e e . 16D D D D D 1
2

2 cosc d d c d A B A B A B( ) ( )( ) [ ] ( )

Including the phasemismatch and dark counts, we canwrite theX basis gain andQBER in a similar form as
[9]:

= - +

´ - -

g g f q g g f q

g g g g

-

- + - +

p k k p

p

,
1

2
1 e e

e 1 e 17
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A B A B

A B A B

( ) ( )( )

( ) ( )( ) ( )

=
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p
,

e 1 e

e e 2 1 e
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cos cos

cos cos cos cos
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1
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1
2

( )
( )

( )
( )

( )

( )

and theZ basis gain is the integral over all possible (random) relative phases:

b b g g q= - ¢ ¢ - + -g g g g g g- ¢ + ¢ - ¢ + ¢ - ¢ + ¢p k k p I p p, , 1 e cos e 1 e , 19ZZ c d A B d A B d d

1
2 0A B A B A B( ∣ ) ( )[ ( ) ] ( ) ( )( ) ( ) ( )

where I0(x) is amodified Bessel function of thefirst kind.
TheZ basis gain can be used in decoy-state analysis to obtainm, n photon yields p k k n n, ,ZZ c d A B( ∣ ). Here for

simplicity wefirst consider the infinite-decoy case, where p k k n n, ,ZZ c d A B( ∣ ) can be assumed to be perfectly
known (similar to supplementary information equations (18), (19) in [9] butwith asymmetric channel
transmittances):

h h= - + - - -p k k n n p q k k n n p p, , 1 , , 1 1 1 , 20ZZ c d A B d ZZ c d A B d d A
n

B
nA B( ∣ ) ( ) ( ∣ ) ( ) ( ) ( ) ( )
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In the case withfinite decoys (e.g. 3 decoy states for each of Alice and Bob), we can use linear programming to
upper-bound the yields, which is described inmore detail in appendix.

Afterwards, the phase-error rate can be upper-bounded using these yields:

å å
= =

¥

p k k e k k c c p k k n n, , , , . 22XX c d ZZ c d
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With the theX basis gain pXX(kc, kd), theX basis bit-error rate eXX(kc, kd), and the phase-error rate eZZ(kc, kd),
we can obtain thefinal secure key rate:

= ´ - -R p k k h e k k h e k k, 1 , , , 23k k XX c d XX c d ZZ c d2 2c d ( ) [ ( ( )) ( ( ))] ( )

where = - - - -h x x x x xlog 1 log 12 2 2( ) ( ) ( ) ( ) is the binary entropy function.

4.2. Effect of channel and intensity asymmetry on gain andQBER
In the estimation of key rate, only three sets of observables are used: theX basis gain pXX(kc, kd), theX basis bit-
error rate eXX(kc, kd), and the set ofZ basis gain for each combination of decoy intensities b bp k k, ,ZZ c d A B( ∣ ).
Herewe note that, theX basis gain andZ basis gain do not explicitly depend on the symmetry of incoming signal
strengths γA/γB, and only theX basisQBER is affected by γA/γB.

For simplicity, here let us consider the second-order approximation for the Bessel function and exponential
function, and for now ignore the phasemismatch and dark count rate:

= + +

= + + +

I x x O x

e x x O x

1
1

4

1
1

2
. 24x
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2 4

2 3

( ) ( )
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Wecan then rewrite theX basis gain as:
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and theZ basis gain as:
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where the terms higher than second order are omitted, and θ is the total polarizationmisalignment angle
betweenAlice and Bob satisfying q = - e2 sin d

1( )) (suppose Alice–Charles and Bob–Charles each has
misalignment error ed, but withmisalignment angles in different directions).We can see that, the gain in bothX
andZ basis is dominated by the term g g h h+ = +s sA B A A B B

1

2

1

2
( ) ( ) or g g m h m h¢ + ¢ = +A B A

i
A B

j
B

1

2

1

2
( ) ( ), i.e.

taking first-order approximation:

g g

b b g g

» +

» ¢ + ¢

p k k

p k k

,
1

2
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27
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whichmeans that the gain scales with the average of arriving intensities throughAlice’s and Bob’s channels—this
is different fromMDI-QKD,where the gain only contains the second-order terms g g g g, ,A B A B

2 2 .We can also see
that the gain does not depend on the asymmetry of arriving intensities, e.g. γA/γB.
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On the other hand, theQBER inX basis depends on the balance of arriving intensities:
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which, in thefirst-order approximation5, can be simplified as:
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Wecan see that here theX basisQBERdoes depend on asymmetry—more precisely, it depends on how
much the arriving intensities at Charles, g h= sA A A and g h= sB B B are balanced. This is understandable
physically, since theX basis key generation depends on single-photon interference and relies on the
indistinguishability of incoming signals. Thismeans that, in the case that channels are not symmetric,
compensating for the channel asymmetrywith different signal intensities for Alice and Bob and aiming for
h h=s sA A B B can helpminimize theX basis QBER.

On the other hand, in theZ basis, the bit-error rate (i.e. theX basis phase-error rate) cannot be directly
measured, but is instead upper-bounded using the observable gain data from the decoy states. Aswementioned
above, theZ basis gain (in the first-order approximation) scales with g g m h m h¢ + ¢ = +A B A

i
A B

j
B

1

2

1

2
( ) ( ) and does

not depend on the symmetry between incoming intensities.Moreover, the yields p k k n n, ,ZZ c d A B( ∣ ) are
estimated using linear programming. For instance, for three decoyswhere Alice and Bob respectively use
m n w m n w, , , , ,A A A B B B{ } { }as their decoy states, there are nine sets of observable gains,

mm mn mw nm nn nw wm wn wwQ Q Q Q Q Q Q Q Q, , , , , , , ,{ }, each of which constitutes a constraint for the linear program
that helps bound the yields p k k n n, ,ZZ c d A B( ∣ ). Such a structuremakes the linear program relatively robust
against asymmetry in the decoy states, and the linear program can fairly accurately upper-bound the yields as
long as the intensities are of reasonable values (i.e. m n m n¹ ¹,A A B B, and none of the intensities are too
large e.g.> 1).

The phase error rate, as shown in equation (17), is based on a linear combination of the square root of the
yields. It is therefore also very little affected by asymmetry, and almost always reaches a good value (at least in the
infinite-data case) so long as the intensities are within reasonable range, regardless of the asymmetries in channel
transmittances or decoy intensities.

We plot theQBER in theX and theZ bases versus asymmetry in arriving intensities (e.g. h hs sA A B B or
μAηA/μBηB) infigure 2. As can be seen, the X basisQBERdepends heavily on asymmetry and isminimal when
h h =s s 1A A B B , while the upper-bounded Z basisQBER (i.e. phase-error rate) is hardly affected by asymmetry.
Therefore, a viable strategy for TF-QKD in asymmetric channels is to compensate for the channel

asymmetrywith signal intensities {sA, sB} only, while the decoy intensities {μA, νA,ωA}, {μB, νB,ωB} can be still
kept symmetric. However, note that the signal intensities not only determines (1)X basisQBER, it also affects (2)
X basis gain (which determines the raw key generation rate, and favors large sA, sB), as well as (3)upper-bound of
phase error rate (since the cat states are determined by signal intensities, and the estimation favors small sA,
sB—typically< 0.1—for a tighter upper bound on phase error rate). Criteria (1)–(3) cannot be simultaneously
satisfied, therefore an optimization for {sA, sB} is required for highest key rate.

Interestingly, we can compare this with the case ofMDI-QKD.As described in [15], the 4-intensity protocol
(and 7-intensity protocol in the extended asymmetric case) has decoupledX andZ bases, whereZ basis is used
for key generation andX basis uses decoy states to estimation phase-error rate. InMDI-QKD, theX basis data
depends on two-photon interference and requires balanced arriving intensities (or else theX basisQBERwill
increase dramatically), while theZ basis does not require indistinguishability of the signals, and is therefore
insensitive to channel asymmetry. InMDI-QKD, all theX basis decoy states should satisfy e.g. m h m h=A A B B,
while the signal states sA, sB can be chosen to simply optimize key generation rate. (Due tomisalignment, there is
a slight dependence ofZ basisQBER to asymmetry too, hence optimal sA, sB are still not equal, but this is amuch
weaker dependence on symmetry than in theX basis, and optimal sA/sB ismuch closer to 1 than ηB/ηA in
MDI-QKD.)

5
Thefirst order approximation for eXX(kd, kd) assumes that γA, γB aremuch smaller than 1—which is reasonable, since to get a good phase-

error rate estimation, usually sA, sB are smaller or equal to 0.1, and for positions of interest where TF-QKDbeats PLOBbound, the loss in
each channel is usually larger than 10dB,whichmeans that ηA and ηB aremuch smaller than 1 too—for instance 10dB channel loss
corresponds to 0.1 transmittance.
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While our approachworks both forMDI-QKDandTF-QKD, a key difference is that states that compensate
for channel asymmetry are the signal states in TF-QKD (while this responsibility lies on decoy states inMDI-
QKD), which are also involved in key generation and phase error estimation. Thismeans that in TF-QKD, it is
more difficult to simultaneously keep a lowX basis QBER and a good key generation rate and low phase error
rate. Perhaps due to this reason, the advantage of asymmetric-intensity protocols is somewhat less pronounced
in TF-QKD—nonetheless, it still provides about an order ofmagnitude higher key rate than completely
symmetric protocols and still 2–3 times higher key rate than adding fibre—whichmeans that it still is the
strategy that provides highest key ratewhen channels are asymmetric.

5.Numerical results

In this sectionwe use the technique described above—to compensate for channel asymmetry simplywith
different sA, sB for Alice andBob.Wefirst compare ourmethodwith prior art techniques and study the
numerically optimized intensities for the asymptotic (infinite-decoy, infinite-data) case. Then, we also show that
ourmethodworkswithfinite decoys and alsofinite data size.

We plot the simulation results for asymptotic TF-QKD infigure 3. As can be seen, for the two cases where
channelmismatch x=ηA/ηB=0.1 and ηA/ηB=0.01, ourmethod consistently havemuch higher key rate
thanTF-QKDwith symmetric intensities. Interestingly, we show that adding fibre can help users obtain higher
key rate, but it comeswith the additional inconvenience of having to physicallymodify the channel, and also it
still has lower key rate than ourmethod of simply adjusting signal intensities.

We also plot the ratio of optimal signal intensities infigure 4. Aswe have predicted, the optimal signal
intensities are rather close to the relation of h h=s sA A B B, in order tomaintain a lowerX basis QBER.However,
as we discussed, since signal states are also involved in key generation and phase error rate estimation (based on
the imaginary cat states), they prevent the signal states from taking the values thatminimizeQBER (but rather,
makes it choose the value thatmaximizes the overall key rate).

Additionally, we also plot our results for the practical case withfinite number of decoys (herewe use three
decoys each for Alice and Bob: {μA, νA,ωA}, {μB, νB,ωB}) andfinite data size. The upper-bounding of photon
number yields using linear programming, as well as thefinite-key analysis, are both described inmore detail in
appendix.We can see that similar result holds—ourmethod has an advantage over either using symmetric
intensities directly or adding fibre.More interestingly, we include both the case wherewe only allow sA, sB to be

Figure 2.QBER versus asymmetry in arriving intensities at Charles, in theX andZ bases. Herewe consider =k k, 0, 1c d , while the
other case of kc, kd=1,0 has exactly the same values. Both plots use parameters ηA=ηB=1 (aswell as detector efficiency 100%) and
assumemisalignment of 2% fromAlice andBob each, andno dark counts or phasemismatch. (a)Weplot theX basis QBER (acquired
from full expression in equation (14)) as well as itsfirst-order approximation (acquired from equation (24)). Here we vary sAwhile
keeping sB=0.1 to test different levels of asymmetry. As can be seen, theX basis QBERheavily depends on the symmetry between
arriving intensities hsA A and hsB B. Physically, this is because key generation depends on single-photon interference and therefore
requires indistinguishability of incoming signals.When h h ¹ 1B A ,X basis QBERwill increase drastically if intensities are symmetric,
while one can adjust sA/sB such that h h=s sA B B A to obtainminimalX basis QBER (Note thatfirst-order deviation no longerworks
for sA? 1—in this case, themajority of the detection events are double counts and are discarded, despite that the actual exx is lower
among the single detections (approaching zero as sA increases)—but generally the phase error rate estimation requires low signal
intensities, and such high sAwill not return positive key rate anyway, so this regionwill not be of interest to us.). (b)Weplot theZ basis
bit-error rate (i.e.X basis phase-error rate) obtained from linear programming using data from3 decoy states. Herewe set
νA=νB=0.01,ωA=ωB=0, and signal states sA=sB=0.1.WefixμB=0.1 and vary sA to test asymmetry. As can be seen, the
upper-bounded phase error rate depends very little on the asymmetry between m hA A andμBηB, and the linear program can effectively
bound the error rate—in fact rather close to the theoretical value obtainedwith infinite-decoys—as long asμA,μB are of reasonable
values (With two exceptions: whenμA=νA, orμA? 1, the constraints fromobservable data containingμA cannot provide any useful
information, and the linear programhas to use the data fromone less decoy state, which is why the ezz is higher for these two extreme
cases.). The physical intuition is clear too: the yields are estimated by linear programming, which usually has redundant information
(in the 9 cross terms m mQ

i j
where Alice and Bob each uses one of their three decoys) and is insensitive to asymmetry, and the phase-

error rate (equation (17)) is a linear combination of the yields, whichmakes it insensitive to asymmetry just like the yields.
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asymmetric, versus the case where all intensities and probabilities can be optimized, and as shown in the plot, we
see that using asymmetric signal intensities alone is sufficient to compensate for channel asymmetry.

6. Conclusion

In this paper we present a simplemethod to obtain good performance for TF-QKD even if channels are
asymmetric.We present a theoretical understanding of why signal states (and not decoy states) should be
adjusted to compensate for asymmetry, andwe also show that themethod is still compatible with existing
security proofs.With ourmethod, there is no need to add additional fibre, andAlice and Bob can implement the
method in software-only. This provides great convenience for TF-QKD in practice—where realistic channels
might likely be asymmetric—and can also be used in quantumnetworks (where addingfibre for each pair of
users is impractical)where a central service-provider can easily optimize the intensities for each pair of users.
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Appendix. Numerically estimating photon-number yieldswith linear programs

In this sectionwe briefly describe the linear programming approachwe used to estimate the upper bounds for
the photon-number yields p k k n n, ,ZZ c d A B( ∣ )—which for simplicity herewewill denote asYnm—which is the
probability to obtain a set of detection events kc, kd given that Alice andBob respectively sent nA, nB (or, n,m)
photons. Such an approach has beenwidely discussed in literature as in [22–24], and is also described in the
simple TF-QKDproof paper [9].We also used a similar linear programming approach for some of the results in
[15] appendix E, but it was not described in detail in that paper.

For simplicity, in this sectionwe denote the observable gain inZ basis b bp k k, ,ZZ c d A B( ∣ ) as m mQ ,i j
where

m b=i A
2 and m b=j B

2 , and kc, kd are omitted (since the same expressions hold true for kc, kd=(0, 1) or kc,
kd=(1, 0), andwe can substitute the observable data for each kc, kd respectively to obtain the corresponding
p k k n n, ,ZZ c d A B( ∣ )). Also, asmentioned above, we denote the yields p k k n n, ,ZZ c d A B( ∣ ) asYnm.

A.1. Linear programmodel
Following [4], the yieldsYnmwhere Alice sends n photons andBob sendsmphotons, satisfy the constraints:

åå =m m
m mP P Y Q , A.1

n m
n m nm

Zi j

i j
( )

where the photon number distributions are Poissonian:

m

m

=

=

m m

m m

P
n

P
m

e

e . A.2

n
i
n

m
j
m

i i

j j

!

!
( )

Here, the right-hand-side constants m mQ Z
i j

are the ‘observables’, i.e. the gain and error-gain respectively for

the intensity combinationμi,μj (which can be any intensity among the set of decoy intensities). For the case of
3-decoys each for Alice and Bob, equation (A.1) corresponds to 9 sets of constraints. Using equation (A.1) as
linear constraints, and {Ynm} as variables, we can apply linear programming, tomaximize orminimize any
linear combination of any of the variables (called an objective function)—for instance, herewe can run the linear
programmultiple times, each time acquiring the upper bound for a givenYnmwhere (n,m) can be (0, 0), (2, 0),
(0, 2), (1, 1), (2, 2).

Note that, since there are infinitelymany photon number states, to solve the linear programon an actual
computer, we have to perform a cut-off and discard higher-order termswith large photon number. In practice
we choose Scut=10, such that a term is only discardedwhen both n�10 andm�10. For the discarded terms,
we can either set them to zero (for lower bounds) or 1 (for upper bounds).

åå å å

åå å å å å+ -

m m m m

m m m m m m

< <

< < < <





P P Y P P Y

P P Y P P Y P P1 . A.3

n m
n m nm

n m
n m nm

n m
n m nm

n m
n m nm

n m
n m

10 10

10 10 10 10

i j i j

i j i j i j
⎛
⎝⎜

⎞
⎠⎟ ( )

Therefore, in practice, the linear constraints can bewritten as:

å å å å- -m m
m m m m

m m
< < < <

 Q P P P P Y Q1 A.4Z

n m
n m

n m
n m nm

Z

10 10 10 10
i j

i j i j

i j

⎛
⎝⎜

⎞
⎠⎟ ( )
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with the additional constraint on variables:

 Y0 1. A.5nm ( )

The linear program is runmultiple times, each timemaximizing a givenYmn, where (n,m) can be (0, 0), (2,
0), (0, 2), (1, 1), (2, 2).

A.2. Finite-size effects
In this sectionwe consider finite-size effects for the privacy amplification process. Because of the statistical
fluctuations, the observables (gains)we obtain in theZ basismight deviate from their respective expected values,
whichwill lie within a certain ‘confidence interval’ around the observed values. Herewewill perform a standard
error analysis, similar to that in [15, 22, 25], which ismeant to be a straightforward estimation of the
performance of TF-QKDunder asymmetry andwith practical data size, but not as a rigorous proof for
composable security.

Consider a randomvariable, whose observed value is n, we can bound its expected value á ñn with the upper
and lower bounds

g g= - á ñ + = n n n n n n n A.6( )

with a confidence (success probability) of gerf 2( ), where γ is the number of standard deviations the
confidence interval lies above and below the observed value, and erfis the error function. In the simulationswe
consider a security failure probability of ò=10−7, whichmeanswe should set γ≈5.3.

In theZ basis, let us denote the observed counts for a given intensity setting {μi,μj} as m mn Z
,i j
, which satisfies

= ´m m m m m mn Q NP P , A.7Z Z
, ,i j i j i j

( ) ( )

whereN is the total number of signals sent and m mP P,
i j

are the probabilities for Alice and Bob to respectively

choose intensitiesμi andμj. By applying equation (A.6), we can acquire the upper and lower bounds to m mQ Z
,i j
:

g

g

= +

= -

m m m m
m m

m m

m m m m
m m

m m

Q Q
Q

NP P

Q Q
Q

NP P
. A.8

Z Z

Z

Z Z

Z

i j i j

i j

i j

i j i j

i j

i j

( )

Then, we can substitute them into the upper and lower bounds in the linear programwhen estimatingYnm:

å å å å- -m m
m m m m

m m
< < < <

 Q P P P P Y Q1 A.9Z

n m
n m

n m
n m nm

Z

10 10 10 10
i j

i j i j

i j

⎛
⎝⎜

⎞
⎠⎟ ( )

which loosens the bounds andwill result in a slightly higher upper bound forYnm (which is understandable,
sincewe expect lower key ratewith finite-size effect considered). Similar linear programs forfinite-size decoy-
state have also been considered in [23].

Note that, although herewe only consider a standard error analysis, in principle our results in this paper is
applicable to e.g. composable security usingChernoff’s bound [24]. The key point is, the dependence on channel
asymmetry, and the compensation for asymmetry using intensities, are only relevant in theX basis (signal states).
The asymptotic case (with infinite decoys, where only signal states are relevant) therefore defines the
fundamental scaling of key rate versus asymmetric channels, and all types offinite size analysis on the decoy
states (e.g. using standard error analysis, usingChernoff’s bound [24], or adding a ‘joint bounds’ analysis to
tighten the bounds on statisticalfluctuation and obtain a higher key rate [25], versus not considering finite-size
effects at all and assuming the asymptotic key rate [3, 7–10], i.e. assuming expected values of the gain andQBER
to be identical to observed values in experiment) can be viewed of as correction terms (imperfections) on the
yields and the key rate in the asymptotic limit. Ourmethod is only related to the signal states and their intensities
in theX basis, and is in principle always applicable regardless of the type of decoy state analysis (e.g. number of
decoys) and thefinite-size analysis used, as long as theZ basis is decoupled from theX basis.

Withfinite-size effect considered, the optimizable parameters for TF-QKDnow include

m n m nm n m ns P P P s P P P, , , , , , , , , , , , A.10A A A s B B B sA A A B B B[ ] ( )

where the implicit parameters areωA,ωB (which for simplicity we assume to be zero), and
= - - -w m nP P P P1 sA A A A

and similarly = - - -w m nP P P P1 sB B B B
, and the choice of signal states sA, sB versus

the decoy states automatically implies basis choice, too. The above parameters are optimized using the same
coordinate descent algorithm as described in [15]. Infigure A1, the dot-dash line (fully asymmetric) optimizes all
12 parameters, while the dashed line (signal-only asymmetric) optimizes only 7 parameters (where all
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parameters except sA, sB are identical for Alice and Bob):

m n m nm n m ns P P P s P P P, , , , , , , , , , , . A.11A s B s[ ] ( )

Performing coordinate descent on key rate versus parameters while estimating the yields with linear
programming is rather CPU-intensive.We have used a 40-core (80-thread)machine (a single compute node in
theNiagara supercomputer [26], each nodewith dual 20-core Intel SkylakeCPUs) to generate figure A1, where
theOpenMPmultithreading library is used to parallelize the coordinate descent algorithm (to accelerate the
search along each coordinate). The details of the algorithm can be found in [15, 22]. Also, we usedGurobi [27], a
commercial linear program solver, to solve the linear programmingmodels. Linear programs sometimes
introducemultiplemaxima, whichmeans a local search on parameters sometimesmight get trapped in a local
maximum. To alleviate this, we can start a local search frommultiple random starting points, and pick the
largest search result, which can be viewed of as a formof global search. (In principle, we can permutate the search
results and performmultiple iterations of random search using e.g. an evolution algorithm [28], but here using
one iterationwithmultiple random starting points is usually sufficient infinding a good key rate.)
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