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ABSTRACT Traffic accidents have been one of the most important global public problems. It has caused
a severe loss of human lives and property every year. Studying the influential factors of accidents can help
find the reasons behind. This can facilitate the design of effective measures and policies to reduce the traffic
fatality rate and improve road safety. However, most of the existing research either adopted methods based
on linear assumption or neglected to further evaluate the spatial relationships. In this paper, we proposed
a methodology framework based on XGBoost and grid analysis to spatially analyze the leading factors on
traffic fatality in Los Angeles County. Characteristics of the collision, time and location, and environmental
factors are considered. Results show that the proposed method has the best modeling performance compared
with other commonly seen machine learning algorithms. Eight factors are found to have the leading impact
on traffic fatality. Spatial relationships between the eight factors and the fatality rates within the Los Angeles
County are further studied using the grid-based analysis in GIS. Specific suggestions on how to reduce the
fatality rate and improve road safety are provided accordingly.

INDEX TERMS XGBoost, factors analysis, GIS, grid-based analysis, non-linear machine learning, traffic

fatality.

I. INTRODUCTION

Traffic accidents are considered as one of the most critical
and dangerous problems all around the world. According
to World Health Organization (WHO), about 1.3 million
people die each year due to traffic accidents. An additional
20-50 million are injured or disabled [1]. In the United States,
traffic fatalities increased by 15.3 percent from 2011 to 2016
(29,867 to 37,461) [2]. How to reduce the occurrence of
fatal traffic accidents and improve road safety has been a
significant problem for both governments and research insti-
tutions. To this end, many scholars have conducted different
kinds of research to study traffic accidents. Some focused
on the road safety management and education [3], [4],
some paid attention to the improvement of vehicles [5], [6],
some studied the emergency medical service [7], [8], and
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some focused on the factors that influence the severity of
traffic accidents [9]-[12].

Knowing what the influential factors are and how they
affect the accidents can help us better understand the
cause-effect behind. This is beneficial to improve the esti-
mation of the accident severity and the preparation of coun-
termeasures. Many factors have been studied by previous
literature. For example, Adanu et al. [10] studied the fac-
tors that influence the severity of single-vehicle accidents
that happen on weekdays and weekends. They found that
factors such as driver unemployment, driving with invalid
license, no seatbelt, fatigue, have a high correlation with
the severity of the accidents. Mohamed et al. [11] studied
the influential factors of rear-end crashes. They found that
factors like tailgating, driving too fast, years of experience,
number of lanes, are significantly affecting the severity of
rear-end crashes. Lee et al. [13] analyzed the impact of
rainfall intensity and water depth on traffic accident severity.
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Schneider er al. [14] examined the statewide motorcycle
crash data in a five year range in Ohio and found that
female, the presence of alcohol and high degree curve
would increase the likelihood of severe traffic accidents.
Hashimoto et al. [15] studied the correlations between traffic
accidents and environmental factors like population and road
condition. Aziz et al. [16] concluded that low-lighted-roads
and pedestrian crossing intersections would increase the like-
lihood of severe pedestrian-vehicle accidents.

When analyzing the impact factors, these literature had
adopted different kinds of statistical methods. For example,
Russo and Savolainen [17] applied three regression models
namely negative binomial, order logit and multinomial logit
to ascertain the relationship between different median bar-
rier types and freeway median crash frequency and severity.
Dapilah et al. [18] examined how motorcyclist character-
istics influence the road traffic accidents using chi-square
analysis. Karimi and Kashi [19] investigated the effect of
geometric parameters on accident reduction using sensitivity
analysis. Onozuka et al. [20] studied whether a full moon
contributes to the road traffic accidents using conditional
Poisson regression. However, most of these methods are
based on linear assumptions. Their performances are limited
since the real cases are very complicated, and the relation-
ships between the factors and accidents are non-linear. There-
fore, non-linear machine learning algorithms were applied in
some recent research to address this problem. For example,
Mussone et al. [21] predicted the severity of the accidents
in urban road intersections using Artificial Neural Network
(ANN). Li et al. [22] used Support Vector Machine (SVM)
models for crash injury severity analysis. However, algo-
rithms like ANN and SVM are referred to as black box pro-
cesses because they do not provide a direct explanation of the
variable importance [23]. This does not help when analyzing
the cause-effect behind traffic accidents. Therefore, a non-
linear methodology framework with the ability to calculate
the variable importance needs to be proposed.

Furthermore, geographical information system (GIS) is
gradually becoming more popular due to its ability to capture,
store, manipulate, analyze, manage and present spatial or geo-
graphical data [24]-[26]. Many previous studies have used
GIS to analyze the data spatially and temporally. For example,
Kazmi and Zubair [27] estimated the vehicle damage cost
involved in road traffic accidents based on GIS. Din et al. [28]
assessed the level of service of public transportation using
GIS. Zangeneh et al. [29] conducted a spatial-temporal clus-
ter analysis of mortality from road traffic injuries using GIS.
However, few studies have combined GIS and machine learn-
ing algorithms to analyze the influential factors on traffic
accident fatality.

The objective of this paper is to propose a Grid-based non-
linear machine learning framework to analyze the critical
factors that influence traffic accidents fatality. A non-linear
machine learning algorithm namely XGBoost is imple-
mented to process the data and distinguish the variable with
higher importance. Its performacne is compared with five

148060

other machine learning algorithms, including multiple linear
regression (MLR), logistic regression (LR), multi-layer per-
ceptron (MLP), support vector machine (SVM) and random
forest (RF). Factors including crash characteristics, time and
locations, and environmental characteristics are considered in
the model. Whether a traffic accident involves fatality is the
classification target. Results show that XGBoost outperforms
other algorithms with higher classification accuracy. Eight
factors such as alcohol use and lighting conditions are found
to be the leading causes of fatal accidents based on the
proposed framework. GIS is then used to conduct the spatial
analysis on the relationships between these eight factors and
the fatality rate.

The remaining paper is organized as follows: Section II
describes the proposed methodology framework, Section III
presents a case study in Los Angeles County, Section IV and
Section V show the results and discussion, and Section VI
concludes the work.

Il. METHODOLOGY FRAMEWORK

Figure 1 shows the proposed methodology framework. It con-
sists of three parts. The first part is data preprocessing.
Data collection, cleaning, formatting, and balancing are con-
ducted. The second part is model training and optimization.
XGBoost is applied to build the classification model and
calculate the feature importance. The last part is post-mining.
This is accomplished by conducting the grid-based spatial
analysis in GIS.

A. XGBOOST

The classification modeling using Extreme Gradient Boost-
ing Decision Tree (XGBoost) is an essential component
in the proposed framework. It plays the role of modeling
between the urban features and the outputs. This algorithm
has been reported to achieve good performance in different
research domains. For example, Zhang and Zhan [30] adopted
XGBoost to classify the rock faces. Torlay ef al. [31] utilized
XGBoost to identify atypical language patterns and differen-
tiate patients with epilepsy. Ma and Cheng [32] improved the
identification accuracy using XGBoost when modeling fea-
tures that affect the green building markets. Zheng et al. [33]
applied XGBoost to evaluate the feature importance in short-
term electric load forecasting.

XGBoost is an ensemble technique developed based on the
Gradient Boosting proposed by Friedman [34]. It learns a set
of regression trees (CARTS) in parallel and obtains the result
by summing up the score of each CART. Compared with the
original GBDT algorithm [34], Chen and Guestrin [35] added
some improvements in 2016 and named it as XGBoost. One
of special improvements is the regularized objective to the
loss function. Calculation of the regularized objective L; for
the k™ iteration is shown in Equation (1).

n k
L=y 16", 50 + Y Q) (1

i=1 j=1
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FIGURE 1. Methodology framework.

where n represents the number of samples, 512)represents the
prediction of the sample i at iteration k, /(-)represents the
original loss function. 2 is the regularization term, and is
calculated by Equation (2).

T
Q(f):yT+%)»ij2 )
j=1
where T represents the number of leaf nodes. y and A are two
constants used to control the regularization degree.

Another improvement of XGBoost is the utilization of
additive learning strategy [36]. Instead of applying stochastic
gradient descent method to complement the corresponding
optimization procedure, XGBoost adds the best tree model
fi(x?y into the current classification model to give prediction
result for the mth iteration. In this case, Equation (1) can be
further formulated as follows:

n k—1
Le = Y1673, A + Q) + ) ()
i=1 j=1

Furthermore, XGBoost adopts the Taylor Expansion sec-
ond order to the objective function, and Equation (3) can be
further expanded to Equation 4.

n
L=y 1675 ) + & - file®)
i=1

1 .
+ 5hi SN+ Q) +C @)

where g; = Byk_ll(y(i),ka_l) and h; = 3§k711@(i),5/k—1) are
the first and second order derivatives on the loss function
respectively, C is a constant.

These advantages make XGBoost potentially to obtain
better results than traditional GBDT. According to the results
of the experiments in our case study, it also outperforms other
commonly-used machine learning algorithms. More details
will be provided later.

VOLUME 7, 2019

Model Training and Optimization

Post mining

B. VARIABLE IMPORTANCE

Except the ability in modeling non-linear classification and
regression problems, XGBoost is also capable of ranking the
variable importance by using the weight. It is given by the
frequency of a feature used in splitting the data across all
CARTs. Importance of a variable v (W,)) based on the weights
can be calculated by Equation 5 and Equation 6.

K L-1
W, =Y "> 1(V.v) Q)
k=1 1=1
1, ifvi=vy
IVivy=1" k 6
Vi v) 0, otherwise ©

where K represents the number of trees or iterations, L rep-
resents the number of leaf nodes of the k" tree, V,frepresents
the feature related to the node /, I(-) represents the indicator
function.

C. GRID-BASED ANALYSIS IN GIS

A geographical information system (GIS) is a framework for
gathering, integrating, managing, and analyzing data. It can
analyze the spatial locations and organize different layers of
information into visualizations using maps and 3D scenes.
With this capability, GIS reveals deeper and broader spatial
insights in data.

In this article, GIS is applied to further detect the spatial
relationships between the fatality rate and the influential fac-
tors. However, since we cannot directly calculate the fatality
rate using the traffic data points, the gridding technique in
GIS is then applied to tackle the problem. It divides the
studied region into many fishnets (grids), and then maps the
traffic data points into these grids. The fatality rate R} of
the ith grid can be calculated using Equation 7.

(N
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where N} means the total number of fatal accidents, and N}
means the total number of accidents.

lll. CASE STUDY

A. DATA COLLECTION

To validate the proposed framework, we conducted a case
study in Los Angeles County, USA. The dataset was collected
from California Statewide Integrated Traffic Records System
(SWITRS). It records every traffic accident reported in Los
Angeles County during 2010-2012, totaling 307,971 acci-
dents. Each record contains the information of the accident
severity, the number of parties involved, the surrounding
environment, and the location. Table 1 presents an overall
summary of the data. The data contains 28 collision features,
18 time and location features, and 7 environment features,
so the data dimension is 53. Besides, since the study focuses
on analyzing the leading causes of traffic fatalities, we set
whether the case involves fatality as the classification target.
Therefore, 3,146 fatal accidents are marked as negative cases
while 304,825 non-fatal accidents are marked as positive
cases.

TABLE 1. Data summary.

Item Description
Negative cases (Fatal accidents) 3,146 cases
Positive cases (Non-fatal accidents) 304,825 cases

Total number of accidents
Number of collision description variables
Number of time and location variables

307,971 cases
28 features
18 features

Number of environment variables 7 features
Total variable dimension 53 dimensions
Time span 2010-2012

Geographic area Los Angeles County

Table 2 shows the detailed description of the data features.
The second column in Table 2 shows the feature abbreviation
and description. The third column presents the data type.
Here C represents categorical features, N represents numeric
features, B represents binary features, and S represents string
features. For example, VIOLCAT in Collision Description
means the Violation Category, and this categorical feature
recorded what kind of traffic violation has the vehicle com-
mitted, including speeding, impeding traffic, traffic signals
etc. POP in the Environment represents the surrounding pop-
ulation density of the accident spot. For more details, please
refer to the official SWITRS website.

B. DATA PREPROCESSING

Since the raw data always has some flaws, preprocessing is
usually necessary before applying the data into the math-
ematical model. The preprocessing process in this study
includes three parts: data formatting, data cleaning, and data
balancing.

1) DATA FORMATTING

The first part is data formatting. The features collected in
this study are mostly categorical but not ordinal. However,
some machine learning algorithms like logistic regression
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TABLE 2. Feature description.

Feature abbreviation Data
and description type3

CHPTYPE:CHP! Beat Type
VIOLCODE:PCF? Violation Code
VIOLCAT: PCF Violation Category
CRASHTYP:Type of Collision
INVOLVE:Motor Vehicle Involved With
PED:Pedestrian Action
CHPFAULT:CHP Vehicle Type is at fault
SHIFT:CHP eftect of new 12-hour shifts
VIOLSUB:PCF Violation Subsection
BEATTYPE:Beat Type
PARTIES:Party Count
PEDCOL:whether involved a pedestrian
BICCOL:whether involved a bicycle

Collision MCCOL:whether involved a motorcycle

Description TRUCKCOL:whether involved a big truck
ETOH:whether involved drinking party
STFAULT:indicates who is at fault
HITRUN:Hit And Run
PCF:Primary Collision Factor
RIGHTWAY:Control Device
NOTPRIV:whether on private property
DIRECT:Direction of the offset distance
INTERSECT_:whether at an intersection
KILLED:counts of victims with 1-degree injury
INJURED: counts of victims with 2,3,4 of injury
CRASHSEYV: the severity level of the collision
BEATNUMB: Beat Number
VIOL: PCF Violation

YEAR_:Collision Year:
MONTH_:The month of the year
DAYWEEK:The Day of Week
TIMECAT:3-hour categories time
DATE_: the date when the collision occurred
TIME_: the time (24 hour time)
LAPDDIV:City Division LAPD
STATEHW:whether on a state highway

Time and POINT_X: The longitude of the geocoded loca-

Location tion
POINT_Y: The latitude of the geocoded location
JURDIST: Reporting District
DISTANCE: Offset distance from the secondary
road
LOCATION: the location code PRIMARYRD
JURIS: Jurisdiction
POSTMILE: markers that indicate the mileage
in California
SECONDRD: A secondary reference road
SPECIAL:Special Condition
RAMP:Ramp Intersection

WEATHER:the weather condition
WEATHER?2:the additional weather condition
LIGHTING:lighting condition

Environment POP:Population level
ROADSURF:Road Surface
CHPRDTYP:CHP Road Type
RDCOND1:Road Condition 1

[oNe!

Zwnz zZzwwruzoOOoQQ|lvwnnuzZzzZzzooawoooQWwmmmwmwzoooaoooaoan

Znwn

oXololoNoNoNoRNoNOR L

1: California Highway Patrol
2: Primary Collision Factor
3: C-categorical, B-binary, N-numeric, S-string

cannot operate on categorical values directly. They require
the input variables and the output variables to be numeric.
Therefore, these categorical data were converted into dummy
variables in this study. Note that a dummy variable means
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to use numeric value 0 or 1 to represent a binary variable.
For example, in the original dataset, categorical data DIRECT
has four independent labels, including north, east, south,
and west. After one hot encoding, four dummy variables,
DIRECT_N, DIRECT_E, DIRECT_S, and DIRECT_W, are
given to indicate the driving direction of the vehicle. In this
way, 29 categorical features were formatted into 359 dummy
variables, and the data dimension is expanded to 383.

2) DATA CLEANING

Data cleaning usually refers to the process of excluding use-
less data. Two types of data, including noisy data and high
correlational data [37], [38], need to be deleted from the
dataset. Noisy data means the data is irrelevant to our prob-
lem or has limited contribution to the model but increases the
computation complexity. For instance, POINT_X, POINT_Y,
LAPDDIYV, and JURIS recorded the location and jurisdiction
information. In this study, they are not the potential causes of
accident fatality. Therefore, they are excluded from the data
mining process.

High correlational data includes two kinds of data. The
first kind is the data that are high correlational to the target.
For example, CRASHSEV has the similar meaning with
our target “fatality”. It will influence the accuracy of our
model. Therefore, it should be deleted. The second kind
of data is those closely related to each other. For example,
TIME means the record of accident time. TIMECAT has
the similar meaning but divides the time into nine intervals.
As TIMECAT is more convenient for further treatment and
analysis, TIME is deleted. Pearson correlation coefficient is
deployed to remove high correlational data. It is a method
based on co-variance and can give information about the
magnitude of the association or correlation. In each pair that
has a correlation coefficient higher than 0.9, we would delete
one feature in order to mitigate the multicollinearity problem.

In summary, 15 noisy features and 18 high correlational
features are excluded from this study. The remained number
of features reduces to 350.

3) DATA BALANCING

As shown in Table 1, there are 3,146 negative cases and
304,825 positive cases. This means the dataset is very
imbalanced and could make our analysis biased. Therefore,
the dataset needs to be balanced. Two sampling schemes
namely oversampling and undersampling are commonly used
to address this problem [39]. However, both of them have
disadvantages. Oversampling will induce more massive com-
putation and may cause overfitting, while undersampling
may discard potentially useful information. In this study,
we combine both undersampling and parts of oversampling
concept to balance their disadvantages. This is achieved by
conducting the under-sampling ten times and calculate the
average performance. Each time, all the 3,146 negative cases
were selected, and the same amount of positive cases was
sampled and selected without replacement. Combine them to
form a new dataset of 6,292 cases, and then cross-validate
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the mathematical model and get the result. Averaging the ten
results gives the final result.

IV. RESULTS

A. MODELING AND OPTIMIZATION

The experiment was run on a computer with 16 GB ram,
Intel (R) Xeon CPUL5640, Windows 7 operating system. The
coding environment is Python 3.6. Parameter optimization
of XGBoost is firstly conducted. As stated in Section II,
parameter optimization refers to the adjustment of the algo-
rithm parameters so that the algorithm can better model
the problem. After referring some literature [30], [40]-[42],
the following parameters of XGBoost are optimized in this
section:

o Ir: Learning rate. This parameter adjusts the size of the
learning steps. Too small will lead to local optimum and
slow down the calculation, while too large may miss the
optimal value and not converge.

o n_estimators: Number of boosting rounds(or trees). This
parameter represents the number of training iterations on
the data. Too small will lead to under fitting, while too
large will cause overfitting.

o max_depth: Maximum depth of a tree. Increasing this
value will make the model more complex and more
likely to overfit.

o min_child_weight: Minimum sum of instance weight
(hessian) needed in a child.

0.86
0.84
>
(9]
c
-
S o082
< |
— Ir=0.01
Ir=0.05
0:80 — Ir=0.1
— Ir=0.15
—— Ir=0.2
0.78 ‘
10 200 400 600 800 920 1000

n_estimators

FIGURE 2. Optimization of Ir and n_estimators.

Note that all the optimization process was conducted using
5-fold cross-validation to obtain stable results. To begin with,
we set Ir to {0.01, 0.05, 0.1, 0.15, 0.2} and n_estimators to
{10, 20, 30, ..., 1000}. The optimization result is shown
in Figure 2. It can be seen that the pair {Ir, n_estimators} =
{1.0, 920} offered an optimal value. After this, max_depth
and min_child_weight were then processed to be tuned.
As shown in the Figure 3, when these two parameters were
set as max_depth = 10 and min_child_weight = 1, the model
was able to obtain an optimal result with 0.8673 in Accuracy.
Note that the optimization criteria used here is Accuracy. Its
calculation is shown in Figure 4.
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In addition, to further test the performance of XGBoost,
we compared its performance with five other commonly seen
models: Multiple Linear Regression (MLR), Logistic Regres-
sion (LR), Multi-Layer Perceptron (MLP, one typical Artifi-
cial Neural Network model), Support Vector Machine (SVM)
and Random Forest (RF). 5-fold cross validation is applied to
stabilize the results. Also, two more commonly used criteria
for binary classifications are tested [42]. Their calculations
are shown in Figure 4. Precision reflects the percentage of
corrected predictions among the positively predicted cases,
while recall represents the percentage of corrected predic-
tions among the real positive cases. All Accuracy, Precision,
and Recall are within [0, 1], and the higher values mean better
predictions.

The performances of the models are shown in Table 3. As it
can be seen, the indicators of the non-linear algorithms, MLP,
SVM, RF, and XGBoost are significantly higher than the
linear-based algorithms, MLR and LR. XGBoost outperforms
MLP, SVM and RF with the highest numbers in all the three
indicators. This proves that selecting XGBoost to model our
problem and further analyze the variable importance is a
reasonable choice.

B. VARIABLE IMPORTANCE

As introduced in Section II, XGBoost can help calculate
the variable importance. Figure 5 presents the 15 features
that obtained the highest importance. The most influential
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TABLE 3. Comparisons of models.

Models MLR LR MLP SVM RF XGBoost
Accuracy 0.7739 0.7854 0.8278 0.8280 0.8463 0.8673
Precision  0.7249 0.7901 0.8335 0.8080 0.8674 0.8758
Recall 0.8490 0.7790 0.8205 0.8510 0.8178 0.8562
Feature Importances
ETOH
PARTIES
CRASHTYPE_C
INVOLVE_C
LIGHTING_A
PEDCOL
MCCOL
FED_A
CHPFAULT_02
DAYWEEK_6
DAYWEEK_5
LIGHTING_C
DAYWEEK_4
TIMECAT_1800
DAYWEEK_T
0.00 0.01 0.02 0.03 0.04 0.05

Relative Importance

FIGURE 5. Top 15 influential factors.

factor is ETHO, followed by PARTIES, CRASHTYPE_C,
INVOLVE_C, LIGHTING_A, etc. Explanations of these fea-
tures can be seen in Table 2.

It can be observed from Figure 5 that some features
have similar meanings or belong to the same category of
data. For example, MCCOL and CHPFAULT_02 both mean
whether the accidents involve motorcycles. DAYWEEK_6,
DAYWEEK_5, DAYWEEK _4, and DAYWEEK_7 all refer
to the date category. LIGHTING_A and LIGHTING_C both
refer to the lighting condition. PED_A and PEDCOL both
relate to pedestrian accidents. INVOLVE_C refers to motor-
motor collision, and it could be discussed when analyz-
ing motor-pedestrian collisions. Therefore, we grouped the
15 features from Figure 5 into eight representative ones for
a more explicit analysis and discussion. Table 4 lists these
eight features and presents the fatality rates with and without
the relevant feature. More details will be discussed in the
following section.

V. DISCUSSION

Before diving into the eight features, identifying the overall
distribution of the traffic accidents in Los Angeles County
can help us better understand the spatial relationship between
the fatality rate and the eight features. Figure 6 plots the
distribution of the accident density, the fatal accident density,
and the fatality rate. Figure 6 (1) and (2) were plotted using
the kernel density in GIS. It can be seen that most accidents
and fatal accidents happened in urban areas. Figure 6 (4)
was calculated using the grid-based analysis introduced
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TABLE 4. Fatality rates of the selected eight features.

Feature Description The fatality rate of the accidents  The fatality rate of the accidents
that not involve the feature (%) that involve the feature (%)

ETOH Drink-driving 0.714 4.645

PARTIES Number of parties in the collision ~ 0.986 (when the number <=4) 2.708 (when the number >4)

CRASHTYP_C  Rear-end collision 1.408 0.385

LIGHTING_A Daylight 2.038 0.604

PEDCOL Pedestrian accidents 0.673 4.547

MCCOL Motorcycle accidents 0.912 3.24

DAYWEEK Day of the week 0.904 (weekday) 1.414 (weekend)

TIMECAT Time of the day 0.817 (6:00-24:00) 3.724 (00:00-6:00)
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Canogo Park
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o Maliby s Angeles Pomen ufhEi""
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FIGURE 6. The distributions of (1) accident density, (2) fatal accident density, (3) main cities in Los

Angeles County, and (4) fatality rates (grid-based).

in Section II-C. It is drawn by firstly cutting the Los Angeles
County map in Figure 6 (3) into 60%60 grids. Then the Ry
of each grid was summarized and calculated. The grids with
Ry = 0 were presented using the green color, while others
are plotted based on their Ry values from low to high. It can
be observed that the fatality rates in eight areas are relatively
higher. They are:
o Area A: the city of Lancaster, the city of Palmdale and
their surrounding areas.
e Area B: Interstates 5 Highway between Santa Clarita
Valley and the Pyramid Lake.
e Area C: the southern portion of the California State
Route 14 (SR 14).
e Area D: the middle portion of the California State
Route 2 (SR 2).
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o Area E: the city of Malibu, the Malibu Creek State Park

and their. surrounding areas.

o Area F: the east of Los Angeles city and its surrounding

areas.

e Area G: city of Pomona, the city of West Covina and

their surrounding areas.

o Area H: interchange of Interstates 405, 5 and 210 High-

ways and its surrounding areas.

It can be observed from Figure 6 that the distribution of
the fatality rate is not highly correlated with the accident
density. This is because the density of accidents mostly relies
on traffic volumes. Higher traffic volumes in urban areas
will naturally lead to more traffic accidents [9]. However,
compared with other places, the higher fatality rates in area
A-H mean that these places are more dangerous, and the
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low

FIGURE 7. The grid-based distribution of the percentage of (1) the drink-driving accidents, (2) the accidents under poor lighting
condition (no street lights or the lights are not functioning), (3) the accidents involving pedestrians, (4) the accidents involving
motorcycles, (5) the accidents happened on weekends and (6) the accidents happened during 0am-6am.

traffic control and safety supervision are not doing well there.
Therefore, one object of this study is to look into the reasons
behind these dangerous areas and discuss possible measure-
ments to improve the safety performance. According to the
results shown in Table 4, the eight features may reveal some
clues.

A. DRINK-DRIVING
Drink-driving is the most important feature on the fatality of
the accidents according to our results. It can be seen from
Table 4 that when under the influence of alcohol, the fatal-
ity rate is 4.645%, while the number drops to 0.714% for
those without alcohol. Previous studies have demonstrated
that driving under the influence of alcohol is considered an
elevated risk of traffic accidents [18], [43]. The reason behind
is that the response time and the awareness of the drivers
will be impaired under the influence of alcohol. When the
accidents are imminent, intoxicated drivers cannot judge the
dangers or take evasive actions in time. This highly increases
the potential fatality of traffic accidents.

Figure 7 (1) shows the distribution of the percentage of
traffic accidents associated with drink-driving. It indicates
that the numbers are higher in area A, C, G, H and F.
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This might be caused by the relatively looser drink-driving
control there. Compared with Figure 6 (4), it can be inferred
that drink-driving is one of the crucial reasons why areas A, C,
G, H, and F have higher fatality rates. Hence, in these areas,
drink-driving enforcement should be strengthened.

B. PARTIES INVOLVEMENT

The second feature is the number of parties involved in the
accidents. It can be seen from Table 4 that when this number
is lower than or equal to 4, the fatality rate is 0.986%. While
the number is higher than 4, the fatality rate increases to
2.708%. More details about the number and the fatality rate
are shown in Figure 8. It can be seen that when the number
is larger than one, the fatality rate goes up as the number
of parties increases. This is reasonable because multi-vehicle
accidents are more likely to be serious traffic accidents, which
have a higher probability to cause fatality. Previous studies
also agreed that the more parties involved in an accident,
the higher the number of people to be involved, which in
turn increases the potential fatality rate [44]. Also, in a multi-
vehicle accident, those who are not wounded at first and
decide to escape at once from their vehicles are still at risk of
being hit by other upcoming vehicles. However, the cause of
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21:00-24:00

Time of the Day

FIGURE 8. Fatality rate under different conditions.

multi-vehicle collisions is often hard to determine. Increasing
the road speed limit can be one choice to control the rate of
multi-vehicle accidents.

Another thing can be seen from Figure 8 is that when
the number of parties equals to one, the fatality rate is also
high. Common factors contributing to single-vehicle colli-
sions include excessive speed, driver fatigue, driving under
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influence and age of vehicle [45], [46]. Environmental and
roadway factors can also contribute to single-vehicle acci-
dents. These include inclement weather, falling rocks, poor
lighting condition, narrow lanes and shoulders, insufficient
curve banking and sharp curves [47], [48]. These can be
the reasons why single-vehicle collisions have a high fatality
rate.
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C. REAR-END COLLISION

Whether the accident is a rear-end collision is the third fac-
tor that differentiates the fatal and the non-fatal accidents.
Rear-end collisions are considered the most frequently occur-
ring type of traffic accidents [11]. In our data, there are more
than 108 thousand rear-end crashes, accounting for around
35.3% of the total accidents. It can be observed from Table 4
that if the type of accidents is rear-ended, the fatality rate is
0.385%. Otherwise, the fatality rate is 1.408%. Fatality rates
of different crash types are shown in Figure 8. It can also
be observed that the rear-end crashes have the lowest fatality
rate while overturned and hit object crashes are the highest.
Overturned means the vehicles flip over its side or roof and
usually happens when the vehicle makes a high-speed sharp
turn. This apparently will lead to a higher fatality rate. Hit
object means leaving the roadway and hitting a fixed object
alongside the road. Such consequences always result from
behaviors like excessive speeds, drowsy driving, drink driv-
ing, and reveal a higher fatality rate [11], [49].

D. LIGHTING CONDITION

Lighting condition has been concluded to be one of the most
critical factors affecting traffic accidents in previous literature
[50], [51]. Poor lighting condition will significantly increase
the likelihood of fatal accidents. In can be seen in Table 4
that the fatality rate during the daytime is only 0.604%,
but it increases to 2.038% under other lighting conditions.
Detailed fatality rates under different lighting conditions are
presented in Figure 8. It can be seen that when there is no
street light, or the street lights are not functioning, the fatality
rates are higher. This is reasonable since the drivers may not
see the road condition clearly and make wrong judgments.
Besides, when the surrounding is dark, drivers are more likely
to be influenced or dazzled by the strong headlights from
other vehicles. This is even more dangerous as the drivers may
not see the road at all.

Figure 7 (2) shows the distribution of the percentage of
accidents happened under poor lighting conditions (no street
lights or the lights are not functioning). It can be observed
that the numbers in area B, area C, area H and the main roads
around area A are higher than other places. Compared with
Figure 6 (4), it can be inferred that poor lighting conditions
may be one of the reasons of the higher fatality rate in area B,
area C, area H and the surrounding areas of A. Therefore, it is
suggested that the maintenance of the street lights should be
strengthened in these areas.

E. PEDESTRIAN INVOLVEMENT

The fifth factor is the pedestrian involvement. Pedestrians
are referred to as one typical kind of vulnerable road users
(VRUs), which means they are at higher risk in the traf-
fic compared with other road users [52]. This is because
pedestrians do not have sufficient protections when traffic
accidents happen. Also, drinking and traffic-rule violation is
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a severe risk not only to motor drivers, but also to pedestrians,
especially when they crossing the roads [55].

It can be observed from Table 4 that for accidents involving
pedestrians, the fatality rate reaches 4.547%, while for acci-
dents without the involvement of pedestrians, the rate is only
0.673%. More kinds of fatality rates of accidents between
motor vehicles and other parties are shown in Figure 8.
It can be seen that the fatality rate of pedestrian accidents is
almost eight times higher than motor-motor accidents (Other
Motor Vehicle). This could be the reason why INVOLVE_C
(motor-motor collisions) stands out in Figure 5 since its rel-
atively low fatality rate differentiates the fatal and non-fatal
accidents.

Distribution of the percentage of pedestrian accidents is
presented in Figure 7 (3). It indicates that area F, H and
G have a higher percentage of pedestrian accidents. This is
because that in these areas, the population density are higher.
Compared with Figure 6 (4), it can be inferred that pedestrian
accidents might be one of the reasons why area F, H, and G
have higher fatality rates. Therefore, it is suggested that,
in these three areas, traffic operation on pedestrians should
be strengthened, for example, reducing the vehicle speed
limit, installing more raised crosswalks, adding pedestrian
lights, etc. [53]-[55].

F. MOTORCYCLE INVOLVEMENT

Motorcycle accidents are the sixth factor. It can be observed
from Table 4 that for motorcycle accidents, the fatality rate
is 3.240%, but for accidents without the involvement of
motorcycles, the fatality rate decreases to 0.912%. Reasons
behind the high fatality rate of motorcycle accidents can
be divided into two aspects. On one hand, compared with
automobile drivers, motorcycle drivers are not protected by
seatbelts or airbags. Therefore, when the accidents happen,
they are more likely to be ejected from the seats, and their
heads might be directly bumped without protection form any
cushions. These will increase the likelihood of fatality. On the
other hand, the stability of motorcycles is poor. They are
easily influenced by elements like debris, uneven road, wet
road surface and other small objects [56].

Figure 7 (4) shows the distribution of the percentage of
motorcycle accidents. It can be seen that area C, D and E have
higher percentages of motorcycle accidents. These three areas
are located in the mountainous areas of Los Angeles County.
Steep grades and curves of highways built on mountainous
areas pose serious safety threats on passing vehicles, espe-
cially motorcycles [57]. Compared with Figure 6 (4), it can be
inferred that motorcycle accidents can be one of the causes of
the high fatality rates in area C, D and E. Thus, in these areas,
traffic control on motorcycles should be strengthened, speed
limits should be lowered, and more warning signs should be
installed to remind the motorcyclists.

G. DAY OF THE WEEK
Day of the week appears to be an essential factor differ-
entiating the fatal and non-fatal accidents according to our
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calculation results. It can be observed from Table 4 that the
fatality rate is 0.904% and 1.414% for accidents in weekdays
and weekends respectively. Fatality rates from Monday to
Sunday within the whole county are presented in Figure 8.
It also indicates that the fatality rates in weekends are higher
than those on weekdays. This might be because that accidents
involving alcohol use, speeding, not using seatbelts, etc.,
are more likely to happen when people are having fun on
weekends [10].

The distribution of the percentage of accidents happened
on weekends is presented in Figure 7 (5). It can be seen that
the percentage of weekend accidents are higher in area B, D,
E, F and H. Compared with Figure 6 (4), it can be inferred
that the problems in weekends may be one of the reasons why
area B, D, E, F, and H have higher rates of fatality. Therefore,
in these areas, traffic control during the weekend should be
strengthened.

H. TIME OF THE DAY

Different times within a day have different fatality rates.
It can be seen from Table 4 that compared with other time
periods, the fatality rate is significantly higher from 0 am
to 6 am, reaching 3.724%. Detailed fatality rates of different
time periods within a day are shown in Figure 8. It shows that
the fatality rate reaches the highest during 3 am and 6 am.
Although the traffic volume during this period is not as large
as other periods, factors like fatigue driving, speeding, poor
lighting conditions, and loose traffic control all could be
possible reasons for exacerbating the severity of the accidents
after mid-night [58].

Figure 7 (6) presets the distribution of the percentage
of accidents happened from 0 am to 6 am. It can be seen
that the rate is higher in area F and H. Compared with
Figure 6 (4), it can be inferred that one of the reasons of the
high fatality rate in area F and H might be the problems during
0 am to 6 am. Therefore, in these two areas, the traffic control
should be strengthened during this period.

I. SUMMARY

Based on Table 4, Figure 6, Figure 7 and Figure 8, possible
reasons behind the high fatality rate in area A-H are ana-
lyzed and discussed. According to the results revealed by our
methodology, relevant countermeasures to those areas can be
summarized as follows:

e Area A: In this area, drink-driving and poor lighting
condition are two crucial reasons for the high fatality
rate. Therefore, in area A, drink-driving control should
be emphasized, more street lights should be installed,
and regular maintenance should be strengthened.

e Area B: Poor lighting condition is one of the reasons
why area B has a high fatality rate. Thus, the local
government should increase the budget and improve the
lighting condition there. High percentage of weekend
accidents is another possible reason for the high fatality
rate in area B. Therefore, traffic control such as speed
limit should be strengthened in weekends there.
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e Area C: Similar to area A, drink-driving and poor light-
ing conditions are two principal causes of the high fatal-
ity rate in area C. Furthermore, the high frequency of
motorcycle accidents also worsens the road safety there.
Hence, in area C, besides the drink driving control and
the improvement of lighting infrastructures, proper man-
agements on motorcycles should also be emphasized.

e Area D and E: The high fatality rates in area D and E
may be caused by motorcycle accidents and weekend
accidents. Therefore, in these two areas, the control of
motorcycles should be stricter, and the traffic manage-
ment in weekends need to be enhanced.

e Area F and H: Reasons behind the high fatality rate in
area F and H include drink-driving, pedestrian accidents,
weekend accidents as well as the high accident rate from
0 am to 6 am. In this case, it is suggested that in these
two areas, the management for drink-driving control
should be stricter. Road infrastructures for pedestrians
should be further improved. Traffic control during week-
ends and the time from 0 am to 6 am should be given
more attention. Also, area H also reveals poor light-
ing conditions, and relevant enhancements should be
delivered.

e Area G: In area G, drink-driving and pedestrian acci-
dents are the main driving factors of the high fatality
rate there. Therefore, in this area, drink-driving control
should be improved, and more road infrastructures for
pedestrians should be installed.

Note that this study is analyzing the influential factors on
fatality rates rather than accident rates. Fatality rates represent
the rates of the fatal accidents over all the accidents, while
accident rates mean the proportion of accidents over traffic
volume. These are two different problems. The former prob-
lem assumes that if an accident happens, what are the factors
that will likely make it fatal. While the latter one refers to
the study of the factors that may lead to an accident from
normal driving. Both problems are important and typical in
accident analysis [21]. Due to data availability, this study
focuses on the grid-based fatality rate. Future work will try
to integrate traffic volume data and analyze the influential
factors on accident rates.

In addition, driving speed is a potentially important fac-
tor that had been mentioned by some literature [11], [55].
However, the speed related factor “whether the vehicle is
driving in an unsafe speed (speeding)” derived from the
“VIOLCAT” feature in Table 2 did not rank into top 15 in our
experiment in Los Angeles. This means it is not as important
as the top 15 in leading an accident into fatal according to
our methodology. This is understandable because, on one
hand, due to data availability, this speed related factor may
not perfectly represent the influence of speed on accident
fatality. On the other hand, in many fatal accidents, it is
not because that the drivers violated the traffic rules but the
drunk pedestrians or other vulnerable road users did. A deeper
investigation on the influence of driving speed on fatality
rates should be conducted in the future.
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VI. CONCLUSION

To conclude, this paper proposed a GIS-based data mining
methodology framework to analyze the influential factors of
fatal traffic accidents. The idea of this study is firstly using
XGBoost to build a binary classification model between fatal
and non-fatal accidents. Based on the identified important
factors using XGBoost models, the grid-based analysis (or the
area analysis) is then used to conduct the spatial analysis
on fatality rates. A case study in Los Angeles County was
conducted to validate the proposed method. Five commonly
seen machine learning algorithms, including MLR, LR, MLP,
SVM, and RF, were applied to model the influential fea-
tures and the traffic fatality. Results showed that XGBoost
obtained the highest modeling accuracy. It was then applied
to investigate the variable importance of the studied features.
Eight factors were found to be the most influential. They
were drink-driving, the number of parties involved, rear-end
crash, lighting condition, pedestrian involvement, motorcycle
involvement, the day of the week and time of the day. Through
the grid-based analysis in GIS, their spatial relationships
between the fatality rate were analyzed.

A. CONTRIBUTIONS
The strengths and contributions of the study lie in two aspects.
First is that we proposed an effective methodology framework
in analyzing the influential factors on the fatality of traffic
accidents. The methodology not only provided accurate mod-
eling performance compared with traditional linear methods,
but also calculated the variable importance more objectively,
and then specifically located the relationships between the
factors and the target. Such a process can systematically
analyze the most influential features on traffic fatalities in
a numerical way. Of course, the current experiments only
supported the effectiveness of the method in analyzing the
accidents and fatalities in Los Angeles, whether the method
fits other places and scopes need further studies to verify.
The second contribution is that the case study conducted in
Los Angeles County uncovered eight areas with higher traffic
fatality rate. According to our numerical analysis, the higher
fatality rate in these areas may result from the top influential
factors discovered in our model. Based on the spatial anal-
ysis, specific practical suggestions on how to improve road
safety in these eight areas are provided. These can be useful
references for the governments during policy-making.

B. LIMITATIONS AND FUTURE WORK

Still, there are limitations in this paper. Due to the availability
of the data, some possible influential factors, such as traffic
volume, education, and road width, are not considered for
different grids. Also, the authors did not obtain the accident
data in more recent years like 2017-2018 with sufficient
features and factors, this restricted us from analyzing and
comparing the difference and improvements on the traffic
fatalities in Los Angeles. Further studies can be expanded
to consider those factors and data for a more comprehensive
analysis.
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