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ABSTRACT Analyzing the influential factors of traffic accidents has been a hot topic in city management.
Most existing literature in this domain implemented linear based sensitivity analysis in statistics to study
the problems. However, the linear assumption limits their model performance and therefore interferes with
the detection of influential factors. Recent studies started to use nonlinear machine learning methods to
explore the problem. One of the most popular ways is the association rule analysis. Based on the Support and
Confidence value, researchers were able to identify the top influential factors. However, (1) the identification
of the thresholds for Support and Confidence has not been well solved in related studies. This study,
therefore, proposes Lazy ensembled adaptive Associative Classifier to tackle this problem. Besides, (2)
most of the existing literature only analyzed the general relationships between the influential factors and
the traffic fatality but did not further investigate their spatial connections. Those studies could not answer
specific questions like “which region should be focused more on alcohol control?”’, or “where requires
more attention on motorcycle control?”’. This study combines the road-based GIS analysis and the results
from association rule analysis to spatially analyze the relationships between the impact factors and the traffic
fatalities. Specific suggestions on city management and traffic control were proposed thereafter.

INDEX TERMS Association rule analysis, GIS, machine learning, road-based analysis, traffic accident
fatality.

I. INTRODUCTION

Road traffic accidents (RTAs) have become a global public
health and development problem, killing nearly 1.3 million
people and disabling 20-50 million people annually and
costing most countries 3% of their gross domestic product
[1]. RTAs have been reported as “‘the eighth leading cause
of death globally”’. However, interventions implemented by
countries in past years have proved that most traffic crashes
are both predictable and preventable [1]. To support the
prediction and prevention of RTAs, scholars and governors
should have a proper understanding of the influential factors
of traffic accidents. Identifying the factors can help better

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita

117932

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

understand the cause-effect behind, and thus help design
relevant interventions. Some studies have been conducted
to investigate various kinds of influential factors, such as
speed, alcohol, helmets, seat-belts, and road infrastructure
[2]-[5]. To better model the relationships and evaluate the
factor importance, scholars have proposed different kinds of
methods to analyze these impact factors. Commonly used
methods can be classified into the following groups.

The first group of methods bases on multivariate regres-
sion. For example, Zhong-Xiang et al. [6] combined Ver-
hulst and multivariate linear regression models to analyze
the fatalities of road traffic accidents in China from 2002 to
2011; Girotto et al. [2] investigated the relationship between
professional experience and traffic accidents or near-miss
accidents among truck drivers using multinomial logistic
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regression. Anastasopoulos et al. [3] used the multivariate
Tobit regression model to analyze the highway accident-
injury-severity rates. However, the linear assumption behind
these methods (e.g., Y = XpB + €) goes against the non-
linearity of the influential factors in real-world problems and
affects the model performance [7], [8].

The second group of methods relies more on latent class
analysis. For example, Depaire et al. [9] applied latent class
clustering to identify homogenous traffic accident types.
Adanu et al. [10] investigated the factors that influence the
severity of single-vehicle crashes that happen on weekdays
and weekends with the latent class logit model. Latent class
analysis can capture unobserved heterogeneity by allowing
parameters to differ across observations, but it does not
account for the possibility of variation within a class as
it assumes homogeneous characteristics of the within-class
observations [11], [12].

Some researchers applied non-parameter methods, such
as the Bayesian network, to reveal the connection between
traffic accidents and their influential factors. For example,
de Oiia et al. [13] used Bayesian Networks as well as the
latent class clustering method to study 3229 accidents on
rural highways in Granada between 2005 and 2008. Theofi-
latos [4] deployed Bayesian and finite mixture logit models
to investigate the accident likelihood and severity on urban
arterials, finding that traffic variations had a significant effect
on accident occurrence but mixed effects on accident severity.
Elvik et al. [14] developed a before-after evaluation of road
safety to study the impact of a new motorway in Norway with
Empirical Bayes. The problem of the Bayesian network is
that it is computationally expensive and not effective on high-
dimensional datasets [15].

To avoid the shortcomings of the previous methods, schol-
ars have developed artificial intelligence (AI) related algo-
rithms recently. In data analysis, Al-related methods can be
divided into machine learning methods and deep learning
methods [16], [17]. Deep learning methods have caught lots
of attention these years in traffic analysis due to its superb
nonlinear modeling ability [18], [19]. However, its black
box nature restricts it from analyzing impact factors [20].
Therefore, the current research directions on this problem
shift more towards machine learning (ML) methods. Among
all the reported ML methods, one typical example is the
association rule analysis. It can not only study the cause-
effect between one item factor and the target but also inves-
tigate the relationships between multiple item factors and the
target. For example, Montella et al. [5] applied association
rule to reveal the characteristics of powered two-wheeler
crashes. Xi et al. [21] analyzed the level of influence of cau-
sational factors for traffic accidents by association rules.
Weng et al. [22] investigated the crash casualty patterns of
the work zones using association rules. However, the iden-
tification of thresholds of association rule analysis remains
to be a problem. Previous literature usually relied on the
experience of researchers to identify the thresholds [23]-[26],
which is not a method that can be generalized. Therefore,
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an association rule mining-based framework with the ability
to identify the thresholds is worthy of attention.

Another limitation of the existing studies on the influential
factors is that most of them only investigated the overall
weights or relationships between the factors and the traffic
fatalities. Few of them went further and analyzed the spatial
relationships. For example, an impact factor that has been
recognized by many studies is driving with alcohol (or drunk
driving), but previous studies failed to answer the question
that which place in the city should enhance the alcohol con-
trol. This answer to the question is the result of what we
defined the spatial analysis of the influential factors in this
study.

This study proposes a methodology framework based on
association rule analysis and road-based GIS analysis to
investigate the influential factors that cause traffic fatalities.
The methodology integrates Lazy ensembled adaptive Asso-
ciative Classifier (LeaCA) to optimize the thresholds and
uses geographical information system (GIS) to interpret the
cause effects spatially. Traffic accident data of Los Angeles
are used to test the framework. By providing evidence-based
information, our results can help governments identify the
major causes of traffic fatalities in Los Angeles and formulate
specific policies and legislation.

The rest of this paper is organized as follows. In Section 2,
we describe the methodology framework. In Section 3, a case
study in Los Angeles is presented. Discussions of results are
given in Section 4. Conclusions and limitations of this paper
are provided in Section 5.

Il. METHODOLOGY FRAMEWORK

The proposed methodology framework is shown in
FIGURE 1. It consists of three parts. The first part is data
preprocessing. The second part is the model implementation.
Association rule analysis was conducted to investigate the
relationships between impact factors and traffic fatalities.
The lazy associative classifier was proposed to optimize
the threshold for support and confidence in association rule
mining. The third part is post engineering, including rule
mining and road-based GIS analysis.

A. PREPROCESSING

The first part is data preprocessing. The collected raw
data usually has some problems, such as missing values,
noisy data, and data imbalance. These problems should be
addressed before we use the data in the model. The proce-
dures to tackle these problems are typical in machine learning
but may vary a bit from problem to problem. More details will
be introduced in the case study.

Besides, the features need to be binarized since the asso-
ciation rule mining can only analyze binary data. In this
study, there involved four kinds of features, including binary
features, categorical features, numerical features, and string
features. Binary features do not need any formatting since
it can directly fit association rule analysis. Categorical fea-
tures are transformed into binary features using the one-hot
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FIGURE 1. Methodology framework.

001 Driver (D) 1 0 0 0 0
002 Passenger (Pa) 0 1 0 0 0
003 Pedestrian (Pe) - 0 0 1 0 0
004 Bicyclist (B) 0 0 0 1 0
005 Other (0) 0 0 0 0 1

FIGURE 2. An example of one-hot encoding.

encoding [27]. This technique will generate new binary
features to represent each option in the categorical feature.
FIGURE 2 presents an example of one-hot encoding.

The formatting of numerical features and string features is
a bit complicated. The idea is transforming these features into
categorical features first and then modify them into binary
features using one-hot encoding. Numerical features may use
binning methods to achieve so, while string features are more
complicated and the procedures may require much domain
knowledge and can vary from problems to problems. More
details will be introduced in the case study.

B. MODEL IMPLEMENTATION

1) ASSOCIATION RULES ANALYSIS

Association rules analysis is a rule-based machine learning
method for determining the connections between different
fields of data. Due to its excellent performance in identifying
strong rules in databases, it has been employed in many
application areas, such as market basket analysis, web usage
mining, and bioinformatics [28]. Association rules mining
was firstly introduced by Agrawal et al. [29] and can be
defined as follows.

Let I = {i1,i», ..., i} be a set of m binary features.
Let D = {s1,s2,...,s,} be a set of accidents that form the
database. Each accident in D has a unique ID and contains a
subset of features in /. A rule is defined as an implication
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Rule Mining and GIS Analysis

of the form X = Y where X, Y CI and XNY = . The
sets of features X and Y are called antecedent (left-hand-
side or LHS) and consequent (right-hand-side or RHS) of
the rule. In this study, Y has only one indicator of whether
the accident is fatal or the victim is dead, while X is the
combination of different accident situations and attributes.
In this way, the identification of the strong rules in X = Y
can help identify the influential factors.

Theoretically, numerous rules can be generated. However,
not all rules can provide useful information. Rules which
surpass user-specified minimum support and minimum con-
fidence threshold are defined as interesting rules that may
reveal valuable knowledge [30]. Support (S) and confidence
(C) are two critical criteria in association rules mining. Sup-
port determines how often an item appears in the given
dataset, and confidence indicates how frequently items in
Y appear in transactions that contain X. Their mathematical
format can be expressed as Eq. (1) and (2).

Support, S(X — Y) = oxnl) ()
. oXNY)
Confidence, C(X — Y) = W 2)

where o is summation notation.

The identification of the rules and the calculation of its
support and confidence can be time-consuming because when
the number of features m gets larger, the combination of the
features in X can be massive. It is not smart to conduct a
brute force procedure to accomplish this. Therefore, schol-
ars proposed the Apriori algorithm to tackle this problem.
The algorithm uses a breadth-first search strategy to count
the support of feature sets and uses a candidate genera-
tion function that exploits the downward closure property
of support. The pseudo-code of Apriori is as shown in
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ALGORITHM 1. However, in many cases, the efficiency of
Apriori is still not satisfactory, especially for long patterns
[31]. In this study, since the length of itemsets is less than four
in later experiments and the consequent item is fixed as the
fatality of the traffic accident, then the rule extraction process
is not very complex, and there is no much difference between
these choices. Also, the main focus of the methodology is
to propose an association rule-based classification model,
so we will just go for the most typical and publicly accepted
algorithm, Apriori, for rule extraction.

Algorithm 1 The Apriori Algorithm for Generating Candi-
dates of Strong Rules
Ly, : frequent feature sets of size k
1. for (k=1; L;! = @; k++)

2. Cr+1 = candidates generated from Ly;

3. for each transaction t in database

4. increment the count of all candidates in
Ci+1 that are contained in t

5. end

6. Ly4+1 = candidates in Cy1 with min_support

7 end

8 return Uy Ly ;

It can be inferred from ALGORITHM 1 that the identifi-
cation of the minimum threshold of support and confidence
is one of the prerequisites in association rules analysis.
Previous literature usually relied on the experience of the
scholars to determine the threshold [30], which, however,
is not a method that can be generalized. In this paper,
this problem is addressed by integrating a classification
algorithm, namely Lazy ensembled adaptive Associative
Classifier (LeaAC).

2) LAZY ENSEMBLED ADAPTIVE ASSOCIATIVE

CLASSIFIER (LeaAC)

The idea is to build a classification model that has the same
target as the association rule mining. For example, this study
intends to mine the association rule that will lead to fatal
accidents. Then the proposed method will build a classifica-
tion model based on the boolean features to classify whether
an accident is fatal or not. The classification algorithm we
developed here is LeaAC, and in this algorithm, Support
and Confidence are two parameters. Therefore, the set of
parameters that help LeaAC to achieve the highest classifi-
cation accuracy becomes the optimal value for Support and
Confidence. The equation format of this optimization idea is
shown in (3), (4), and (5).

L. . rulemining
{111121"'7lm} —_— T (3)

classification

{xi,x,..., 00} ———— T 4)
(S, C} = argmin Y |T = T'| (5)

where T is the target, and is the fatality of the accidents in this
study. T’ is the predictions of the classification model, x;, are
the values of the binary features.
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Traditional associative classifier mines all frequent class
association rules (CARs) as essential decision-rules [32].
It checks whether each CAR matches the test instance during
the testing phase and chooses the first CAR matching the test
instance to predict the class. However, it may generate a large
number of rules, many of which may be useless, and in some
cases, important rules may never be mined [33].

Lazy associative classifier (LAC) overcomes this problem
by focusing the rule mining in the given test instance. Instead
of creating the classification model during the learning phase
using training data, LAC postpones generalization and builds
the classification model until a query is given. Although the
testing stage can, therefore, be slower, the accuracy can be
improved significantly. Also, this study upgrades the labeling
process of LCA by introducing adaptive weights for the
rules used for classification. The weights are calculated using
the information gain in each rule, and the eventual output
incorporates the idea from ensemble learning to gather the
prediction results of all the rules. We name this algorithm
as Lazy Ensembled Adaptive Associative Classifier (LeaAC).
The pseudo-code of LeaAC is as shown in ALGORITHM 2.

Algorithm 2 Lazy Ensembled Adaptive Associative Classi-
fier (LeaAC)
D: the set of all n training instances
T: the set of all m test instances
y: the target class (traffic fatality in this study, 1 means
fatal, while —1 means non-fatal)

1. for each t;¢T do
let D; be the projection of D on features

only from #;
3. let L; be the set of all rules {X — y} mined
from D; passing min support and min confidence
4. Calculate the information gain vector G; of all the
rules in L;
5. Ensemble the results G; - y; and predict class y;
(positive/negative separation)
6. Inserty;toY
7. ReturnY

C. RULE MINING AND GIS ANALYSIS

After the optimized support and confidence value are
obtained, association rules can be extracted using the Apri-
ori algorithm. The rules will then be examined through an
analytic hierarchy process (AHP) to determine the real influ-
ential factors. AHP is one of the techniques of Multi-Criteria
Decision Making (MCDM) to weight and compare a set of
elements and then select the best one. Different decision-
makers first give out their opinions on the factor weights and
factor values, and AHP will integrate their opinions using
weighted regression. The top rank factors in the AHP process
then become the most appropriate rules. Note that the AHP
method relies on the knowledge from domain experts, and
their opinions may be subjective to some extent. However,
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the problem we target in this study in a complicated real-
world city governing problem. The procedure cannot merely
be a numerical analysis and avoid opinions from domain
experts, and AHP is a scientific tool to collect and integrate
the knowledge from experts, while the association rule anal-
ysis provides essential preliminary results.

Then, GIS is used to study the spatial relationships between
the impact factors and traffic fatality. Traditionally, when
plotting the distribution of the factors, scholars may directly
use the density plot [34], [35]. However, the density plot
of the accidents associated with different factors generally
follows the same distribution of the accident density, which
makes the density plot less sensitive when studying the spatial
relationships between impact factors and traffic fatalities.

In addition, instead of the number of fatal accidents, city
managers might be more interested in the fatality rates of acci-
dents. Places with more fatal accidents may simply because
they have higher traffic volumes. However, places with higher
fatality rates indicate that the place is dangerous, and should
be given more attention.

To achieve the spatial analysis of fatality rates, we pro-
posed a road-based analysis in GIS, because traffic accidents
are all happened on or near the roads. This study collected
all the road data from Los Angeles County GIS Data Portal,
and these roads are that used by the US Census Bureau to
help locate citizens during its decennial census. The proposed

spatial analysis is conducted as follows.
e Map the accident data into the road maps. Since the

roads are line features, the accident points cannot
directly be joined into the roads. We created polygon
buffer zones along both sides of the roads 10 meters, and
then map those accidents points into the roads.

o Transfer road features to point features. Although the
accidents have been grouped into the roads, the road
features are not friendly in visualization. Some roads are
long while some are short, so the plotted network can
be visually messy and not friendly to analyze. To tackle
these, we used points to represent the roads. Each road is
transformed into a point, which is located at the central
position of the road. We then plot the relevant rates and
relationships using those points in GIS.

o Value calculation. After mapping the accident points,
we were able to calculate the fatality rates in each road
and the relevant accident features, which allows the
spatial analysis of these influential factors. More details
will be introduced in the case study.

IIl. AN EXPERIMENTAL CASE IN LOS ANGELES CITY

A. DATA COLLECTION

To validate the proposed methodology, we conducted a case
study in Los Angeles city. We choose this city because it is
reported to have the highest rate of injury-causing and fatal
traffic accidents in the nation [36]. The data was extracted
from the open dataset of the Transportation Department
of California and the American Highway Control Center
(https://dot.ca.gov/). This study focuses on the fatality of the
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traffic accidents, while the fatality level of an accident is
decided by whether there is any victim been killed. Therefore,
this study uses the fatality of the victim as the research target.
This target can provide more insights from the perspective of
the victim to understand fatal accidents. Alongside the ten-
year accidents (2003-2012) from the raw data, we obtained
526,123 victims and the information of the related accidents.
Based on the fatality of the victims, we obtained 43,668 pos-
itive cases (fatal), and 482,455 negative cases (non-fatal).

TABLE 1 presents the detailed features of the dataset.
73 features are divided into 5 groups, representing features
about the collisions (28 features), features regarding the vic-
tims (8 features), features of the parties that involved in the
accidents (11 features), features concerning the time and
location of the accidents (19 features) as well as the features
related to the environment (7 features). The second column
shows the feature abbreviation and description. The third
column shows the data type, and the fourth column presents
more details of the features. If the feature is categorical, then
the number of categories is shown. If the feature is numeric,
then the standard deviation is provided [37].

B. DATA PREPROCESSING
1) DATA FORMATTING
The raw data cannot be directly inputted into the method-
ology framework due to some flaws. Several preprocessing
procedures need to be conducted. The first is data formatting.
There are 18 numerical features in the dataset, and these
features cannot be directly used in association rules analysis.
They need to be converted to binary categorical data. This
study implemented an equal bin method. This method first
ranks the numerical value from the smallest to the largest
and then divides the cases into k different groups with the
same frequency. The samples in each group share the same
categorical value. FIGURE 3 presents an example of format-
ting a numerical feature into a categorical feature. By using
this method, this study transformed the 18 numerical features
into categorical features, and k is set as 5 (k = 5 provides the
highest accuracy in later experiments).

Note that the only string feature in this study refers to the
name of the roads, which is useless in this study, so it was
excluded from the experiment. After obtaining the categorical

m Rank Binning m
001 23 5 5-13 001 14-26
002 26 13 5-13 002 14-26
003 13 - 23 - 14-26 m) 003 5-13
004 60 26 14-26 004 27-70
005 70 60 27-70 005 27-70
006 5 70 27-70 006 5-13

t t

(Numerical) (Categorical)

FIGURE 3. An example of formatting a numerical feature into a
categorical feature using the equal bin method (k = 3).
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Item abbreviation and Description "l]")y a}::g Detail
CHPTYPE: CHP' Beat Type C 12
VIOLCODE: PCF’ Violation Code C 7
VIOLCAT: PCF Violation Category C 9
CRASHTYP: Type of Collision C 25
INVOLVE: Motor Vehicle Involved With C 10
PED: Pedestrian Action C 7
CHPFAULT: CHP Vehicle Type is at fault C 99
SHIFT: CHP effect of new 12-hour shifts C 4
VIOLSUB: PCF Violation Subsection C 5
BEATTYPE: Beat Type C 9
PARTIES: Party Count N 2.28+1.03
PEDCOL: whether involved a pedestrian B /
BICCOL: whether involved a bicycle B /
Collision related MCCOL: whether involved a motorcycle B /
features TRUCKCOL: whether involved a big truck B /
ETOH: whether involved drinking party B /
STFAULT: indicates who is at fault C 15
HITRUN: Hit and Run C 3
PCF: Primary Collision Factor C 6
RIGHTWAY: Control Device C 5
NOTPRIV: whether on private property B /
DIRECT: Direction of the offset distance C 4
INTERSECT_: whether at an intersection B /
KILLED: counts of victims with 1-degree injury N 0.02+0.17
INJURED: counts of victims with 2,3,4 of injury N 1.89+1.55
CRASHSEYV: the severity level of the collision N 3.56+ 0.64
BEATNUMB: Beat Number C 999
VIOL: PCF Violation C 999
VTYPE: victim role C 6
VSEX: victim sex C 2
VAge: victim age N 0-100
Victim related Vseat: victim seating position C 9
features
Vsafetyl: victim safety equipment C 26
Vsafety2: victim safety equement2 C 26
Vejected: victim Ejected C 3
Parties involved Ptype: party type C 5
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TABLE 1. (continued) Data description.

Atfault: if party was at fault B /
Psex: party sex C 2
Page: party age N 0-99
Psober: indicates drink influence C 6
Pdruy: indicates party drug influence C 4
Psafetyl: party safety equipment C 26
Psafety2: party safety equipment C 26
Insured: Financial responsibility C 4
Cell: includes party cell if in use C 5
Vehyear: the model year of the party’s vehicle N 2000-2012
YEAR_: Collision Year: C 10
MONTH_: The month of the year C 12
DAYWEEK: The Day of Week C 7
TIMECAT: 3-hour categories time C 9
DATE_: the date when the collision occurred N /
PROCDATE: Date the record was processed N /
TIME_: the time (24-hour time) N /
LAPDDIV: City Division LAPD N /
STATEHW: whether on a state highway B /
Temporal and POINT_X: The longitude of the geocoded location N /
spatial features
POINT_Y: The latitude of the geocoded location N /
JURDIST: Reporting District N /
DISTANCE: Offset distance from a secondary road N §(7)47102§§
LOCATION: the location code PRIMARYRD N /
JURLS: Juisiction | N s
}:gf,;[;lltglﬁu rr:tlflsi(ers indicate the distance a route travels through N 53441191
SECONDRD: A secondary reference road S /
SPECIAL: Special Condition C 7
RAMP: Ramp Intersection C 8
WEATHER: the weather condition C 8
WEATHER?2: the additional weather condition C 8
LIGHTING: lighting condition C 6
E:::;:;:memal POP: Population level C 10
ROADSURF: Road Surface C 5
CHPRDTYP: CHP Road Type C 9
RDCOND1: Road Condition 1 C 9

1: CHP: California Highway Patrol
2: PCF: Primary Collision Factor
3: C: Categorical B: Binary N: Numeric S: String
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features, we transformed them into binary features using the
one-hot encoding methods introduced in the methodology
section. After these steps, the data dimension of this exper-
iment is expanded to 682.

2) DATA CLEANING

Besides formatting the data into a model friendly man-
ner, the noisy data need to be excluded. Data cleaning can
help reduce the calculation complexity and better interpret
the relationships [38], [39]. In this study, we removed two
kinds of noisy data, including redundant features and high
correlational features. Redundant features describe useless
information for mining the influential features on the victim
fatalities, so they are excluded from the experiment [40].
For example, features such as “POING_X"’, “POINT_Y",
and “LAPDDIV” describe the spatial coordinates and the
jurisdictional information, which are not the causes of traffic
fatalities, and therefore, they are deleted.

High correlational features mean some features are too
similar to each other, and the existence of these features
provides limited additional information for data mining but
increases the complexity, and therefore, they should be
excluded as well. Since the features in this study have already
been transformed into binary features, the Pearson correla-
tion is not available for measuring the correlation. There-
fore, Spearman correlation is used in this experiment. The
difference between these two measures is that Pearson uses
numerical values, while Spearman uses rank values. For a
binary feature, positive values rank the first, while negative
values rank the second. This study excluded one feature in
each pair that has an absolute correlation higher than 0.9. The
remained one has a higher correlation with the target (victim
fatality), while the deleted one has a lower value. After these
two steps of data cleaning, the data dimension drops to 399.

3) NEGATIVE ASSOCIATION RULES

Traditional association rule analysis can only discover posi-
tive rules because when calculating support and confidence,
it will neglect the negative class. However, the negative
classes can sometimes provide valuable insights [41], [42].
For example, according to the results in this study, whether
the victim has insurance can influence the fatality rate a lot.
Howeyver, it is not the rule “the victim has insurance lead to
a fatal accident™ is a strong rule, but the reverse, “‘the victim
has no insurance lead to a fatal accident™ a strong one.

To identify these negative but strong rules, we generated a
set of negative features by reversing the positive and negative
classes in each feature. The newly created features have
a —1 correlation with the original features. After this step,
the feature dimension increases to 798.

4) DATA BALANCING AND CROSS-VALIDATION

Another problem that exists in this study is the imbal-
ance. As introduced in data collection, this experiment has
43,668 positive cases and 482,455 negative cases. The dataset
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is very imbalanced. The rate between positive cases and
negative cases is around 1:11.

Traditionally, scholars would use either under-sampling or
oversampling to address this problem. However, with such a
large imbalance rate, oversampling can easily cause overfit-
ting [43], while under-sampling can miss a large proportion of
the data. Therefore, this study proposes a combined strategy
to address this issue. This strategy will divide the negative
cases into 11 segments without replacement, and then con-
duct the modeling procedure 11 times. Each time the positive
cases will be combined into one segment of the negative cases
to form a dataset for modeling and calculation. The averaged
results of these 11 runs give the eventual results.

Also note that thanks to the 11-run strategy, there is no need
for cross-validation in this study. The averaged performance
of the traditional 3/7 testing/training partition of these 11 runs
can already provide stable and reliable results for both classi-
fications using LeaCA and association rule mining. Note that
the random seed in each run is different, so the positive cases
in these 11 runs are also different.

IV. RESULTS AND DISCUSSION

A. IDENTIFICATION OF THE OPTIMAL THRESHOLDS

FOR SUPPORT AND CONFIDENCE

This experiment targets at studying the influential factors on
the victim fatalities using association rule analysis. Support
and Confidence are two criteria to filter out numerically
strong rules. One problem in the existing literature is that
they cannot identify a set of proper thresholds for these two
criteria. This study proposes the implementation of LeaCA
models to address this gap. The idea is using the influential
features as the variables and the victim fatalities as the target
to build binary classification models with the data balanced.
Support and Confidence are two critical parameters in this
model, so the model that provides the best classification
performance defines the optimal thresholds for Support and
Confidence.

After preprocessing, the dataset can be fed into the classifi-
cation model built by the LeaCA algorithm. Besides Support
and Confidence, there is another parameter that affects the
performance of LeaCA a lot. That is the number of maximum
items in a rule and is marked as I,,,,;. Therefore, in order to
identify the best set of Support and Confidence, this study
optimizes these three parameters together.

This experiment explored the model performance when
Lnax = {2, 3, 4}. Note that when I,,,,, = 2, the rules generated
by the Apriori algorithm only has two items, which consist of
one antecedent and one consequent (such as A = B), while
when I, = 3, three-item rules such as A, C} = B, can be
generated.

After some tests, we found when [,,,, = 4, the training
time of the model is too long to be acceptable, and the
accuracy drops significantly, so we explored when I, =
{2, 3}. FIGURE 4 and FIGURE 5 present the optimization
procedures of Support and Confidence with different I,,,,y.
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TABLE 2. Classification accuracy of the four algorithms. The results are
presented using the mean + standard deviation format of the 11 runs.

Algorithm Accuracy
LeaAC 82.31%=%0.67%
MLR 81.60%+0.68%
LR 78.83%10.72%
NB 81.92%20.53%

It is discovered that when I, = 2, the highest modeling
accuracy is 82.31%, and when /.4, = 3, the highest modeling
accuracy becomes 77.78%. Therefore, I,y is set as 2, and
the best performance model is given by the parameter set
with Support=0.04 and Confidence =0.74. As a result, this
set of parameters is set as the threshold for association rule
mining in this study. We think the reason why /,,,, = 2
outperforms I, = {3, 4} is because longer rules contained
more constrains and has higher risks of overfitting.

Besides, to further verify the effectiveness of the pro-
posed methodology, we added a comparison with three other
commonly used methods on modeling the feature weights.
They are multiple linear regression (MLR), logistic regres-
sion (LR), Naive Bayes. MLR and Naive Bayes are the most
typical algorithms mentioned and the first and third group
of methods in the introduction, while logistic regression is
the most commonly used nonlinear regression methods in the
industry. For the latent class analyses mentioned in the intro-
duction, since they are unsupervised learning methods and do
not support regression, we did not pick them for comparison
here. TABLE 2 presents the results of the comparison. The
proposed LeaAC method has the highest modeling accuracy.
This performance, on another angle, supported the priority of
the proposed method.

B. STRONG RULES ON VICTIM FATALITY
After obtaining the optimal Support and Confidence,
we applied the thresholds on the 11 datasets generated in
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FIGURE 4. Parameter optimization when Imgx= 2.
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FIGURE 5. Parameter optimization when /mgx = 3.

the balancing step. To reduce the impact of data variance,
the rules that survive in all these 11 runs are extracted
as the strong rules. This resulted in 69 strong rules in this
study.

However, not all the 69 rules are of practical use, and
some of them become ‘‘strong” may because of data vari-
ance. Therefore, this study conducted the Analytic Hierar-
chy Process (AHP) method to identify practical strong rules
further. AHP is a decision-making process that will collect
opinions from domain experts first to decide the weights of
the decision-making factors and then decided the score of a
candidate at each factor [44], [45]. For example, we defined
three criteria to identify strong rules. Besides Support and
Confidence, we added ‘“‘practicality” that also ranges from
[0,1] to measure the practicality of a rule. This “practicality”
is to collected the domain experts’ opinions on the practicality
of a rule in the questionnaire. An expert should first mark
the practicality score of a rule (P in Equation I'V-C) and then
provide his opinion on the decision-making weights of these
three criteria (Ws, W, Wp, in Equation IV-C). Support and
Confidence already have calculated values, so the expert does
not need to score for them. The following equation then gives
the final score of a rule.

Score =S-Wsg+C-Wc +P-Wp (6)

where S and C are Support and Confidence value, P is the
practicality score, and W is the weights provided by the
experts.

The questionnaire is sent out to fifty scholars that have
related publications on machine learning or statistics in acci-
dent research. Sixteen of them replied, and eleven of them
completed the questionnaire. We gathered their opinions,
averaged their weights in Equation IV-C, and calculated the
final score of all the 69 rules. TABLE 3 lists the top 10 rules
with the highest score. These are recognized as the strong
practical rules in this study.
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TABLE 3. Top 10 features.

No. antecedents support confidence description

1 (VSAFETY2 W) 0.0785 0.8800 Victims are motorcycle drivers with
helmets

2 (VEJECTED 1) 0.1121 0.8722 Victims are fully ejected from their seats

3 (VIOLCAT _11) 0.0678 0.8636 Pedestrian violation

4 (VTYPE 3) 0.1492 0.8461 Victims are pedestrians

5 (PSOBER B) 0.06035 0.8366 Parties involved are under alcohol
influence

6 (notINSURED _Y) 0.3321 0.7868 Proof of insurance is not obtained or
insurance is not applicable

7 (notPSAFETY2 G) 0.3453 0.7829 Parties involved don’t use lap/shoulder
belt

8 (INSURED_N) 0.0835 0.7826 Proof of insurance is not obtained

9 (PSAFETY1 P) 0.0860 0.7749 Party safety equipment is not required

10 (notVSAFETY2 G) 0.3560 0.7530 Victims don’t use lap/shoulder belt

FIGURE 6. (1) The density distribution of the traffic accidents; (2) the distribution of the fatality rates in LA.

C. DISCUSSIONS AND SPATIAL RELATIONSHIPS

It can be seen from TABLE 3 that some of the rules
have similar meanings. For example, VIOLCAT_11 and
VTYPE 3 are both talking about pedestrians. notIN-
SURED_Y and INSURED_N both mean in the accidents,
proof of insurance is not obtained or the insurance is
not applicable. So, in this discussion section, we com-
bined the discussion of the rules with similar meanings and

VOLUME 8, 2020

got six major influential factors, including VSAFETY2_W,
VEJECTED_1, VTYPE_3, PSOBER_B, notINSURED_Y,
and notVSAFETY2_G.

These features have been partly discussed by previous lit-
erature [4], [10], [22], [46]. All of them exhibit explicit threats
that lead to fatal accidents. For example, VSAFETY2_W and
VTYPE_3 are talking about two typical Vulnerable Road
Users (VRUs), which are motorcycle drivers and pedestrians.
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FIGURE 7. Percentage distribution of (1) motorcycle accidents; (2) victims ejected from vehicles; (3) pedestrians involved
accidents; (4) alcohol-impaired accidents; (5) victims or parties that do not have insurance; (6) victims that do not use seatbelts.

Studies have shown that these VRUs have five times higher
fatality rates than typical car-car accidents [46] because they
have no protection equipment such as seat belts or airbags.

VEJECTED_1 refers to the victims that are fully ejected
from their seats. This relationship may have two situations.
First is that the victim may not have fastened the seatbelt
during a severe accident, which is also part of the situation
described by the feature notVSAFETY2_G. This apparently
can lead to higher fatality rates. The second situation may go
back to motorcycle accidents. The drivers or the victims on a
motorcycle does not have seatbelts and can be easily ejected
from their seats.

PSOBER_B refers to the accidents involved with alco-
hol, which has been a well-known Kkiller in traffic acci-
dents. Although governments have tried different policies
and strategies, drunk driving is still causing many traffic
fatalities. This experiment will later point out where should
the government focuses more when controlling drunk driving.

notINSURED_Y is describing the group of victims and
parties that do not have insurance. The cause-effect behind
this feature may result from two aspects. The first may refer
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to those from low-income families or under the poverty level.
They are not willing to buy insurance due to economic issues,
and therefore cannot receive proper treatments after a car
accident. The fatality rate is then increased. The second aspect
may result from those who are not fully aware of the impor-
tance of insurance and do not want to waste money on that.
This group of people may have limited education, and they
may also have a weak sense of traffic rules or proper driving
behaviors. These factors potentially lead to higher fatality
rates.

To spatially analyze the relationship between the six major
influential factors and the fatality rate, the road-based GIS
analysis introduced in the methodology section is utilized.
FIGURE 6 presents the distribution of traffic accidents and
the victim fatality rate. The red line represents the road
network, and the yellow cycle represents the density of traf-
fic accidents or the victim fatality rate. Larger cycle means
denser accidents or higher rates. It can be observed from
the accident distributions that traffic accidents mainly scatter
in areas A, B, and C. This might be caused by the dense
population and the large traffic volume there. The distribution

VOLUME 8, 2020



C. Zhai et al.: Spatial Analysis Methodology Based on Lazy Ensembled Adaptive Associative Classifier and GIS

IEEE Access

of the victim fatality rate shows that areas D to H are more
dangerous because they have higher fatality rates than other
areas. As a result, instead of discussing the phenomenon
behind the high density in areas A to C, this study is more
interested in analyzing the influential factor behind the area
with high fatality rates (D to H). To achieve this, we ana-
lyzed and plotted the percentage distributions of the accidents
related to the six features in FIGURE 7 [47].

FIGURE 7 (1) indicates that the percentage of motorcy-
cle accidents are quite high in area F and G. Therefore, to
better control and reduce the fatality rate in these two areas,
the government is suggested to put more constraints on the
motorcycle driving there, such as speed control, forbidding
motorcycle in bad weather. FIGURE 7 (2) shows that the
percentage of ejected-from-seat accidents are higher in area
F and G. The distributions in FIGURE 7 (2) are quite close
to FIGURE 7 (1). We might guess that most of the ejected-
from-seat accidents relate to motorcycle accidents.

FIGURE 7 (3) reflects that the high fatality rates in areas G
and H may be caused by the high rates of pedestrian accidents
there. Therefore, the government should consider enhancing
pedestrian safety in these areas. For example, design more
pedestrian overpasses and underpasses, build more pedestrian
guardrails.

FIGURE 7 (4) is the distribution of the percentage of
accidents involved with alcohol. It seems that most of the dan-
gerous places involve a high percentage of alcohol-impaired
driving, such as area D, E, G, and H. Although it has been a
tough task to control drunk driving all over the country for
many years, the LA government should know that D, E, G,
and H, these four areas should be their focuses.

The percentage distribution of the victims that do not have
insurances is shown in FIGURE 7 (5). According to the
analysis in previous contents, we suggest the government may
enhance the management of compulsory insurance in areas F,
G, and H. Also, proper financial support on the insurance in
those areas can be considered.

The last figure in FIGURE 7 refers to the percentage of
victims not using seatbelts. Therefore, the government may
consider increasing the penalty for not wearing seatbelts
in area E, G, and H, or investing in Al-empowered video
surveillance on seatbelts to strengthen the management.

To sum up, this section discussed the identified influential
factors for traffic fatality in LA. Through the road-based
spatial analysis in GIS, we provided several suggestions to
the government on improving traffic safety. Note that these
suggestions are only the results from numerical studies. The
real cause effects of the relationships and the effectiveness of
these suggestions require further research to verify.

V. CONCLUSION

This paper studied the relationships between fatal traffic
accidents and their influential factors in Los Angeles during
ten years, using association rule analysis and Geographical
Information System (GIS). The problem of determining the
minimum thresholds of support and confidence in association
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rules mining is addressed by applying Lazy Ensembled Adap-
tive Associative Classifier (LeaAC). Spatial analysis of the
relationship between the influential factors and the locations
is conducted with the help of GIS. The contributions of this
study are as follows:

o The proposed methodology can not only numerically
identify the most critical rules on traffic fatality, but also
spatially analyze the relationships between the features
and fatality rates. This method is expected to be applica-
ble in other cities or regions, as well.

o The LeaAC model addressed the threshold problem in
association rule mining, which is viewed as an advanced
machine learning method for analyzing influential fac-
tors.

o The case study in LA uncovered six important influential
factors on traffic fatality. The road-based analysis in GIS
provided several actionable suggestions to the govern-
ment.

On the other hand, this study has limitations. Due to data
availability, we only tested the traffic accidents in Los Ange-
les and did not examine the method performance in other
cities and countries. Also, the data used in this study is from
2003 to 2012, which did not reveal the situations in recent
years. Future studies can be extended to address these gaps
and validate the proposed method in other accident datasets.
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