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ABSTRACT As air pollution becomes an increasing concern globally, governments, and research institutions
have attached great importance to air quality prediction to help give early warnings and prevent the
impacts of air pollution. The existing prediction methods for air quality forecasting include deterministic
methods, statistical methods, machine learning, and deep learning methods. Deep learning-based prediction
methods have attracted much attention these years due to its high performance and powerful modeling
capability. However, the majority of the deep learning methods only focus on the prediction of the places
where there have monitoring stations, and limited studies have integrated deep learning to predict places
without monitoring stations. To address the limitations, this paper proposes a new methodology framework
combining a deep learning network, namely, bi-directional long short-term memory (BLSTM) network
and the inverse distance weighting (IDW) technique for the spatiotemporal predictions of air pollutants
at different time granularities. The BLSTM can effectively capture the long-term temporal mechanism of
air pollution. The IDW layer, on the other hand, can consider the spatial correlation of air pollution and
interpolate the spatial distribution. A case study is conducted to validate the effectiveness of the proposed
methodology. The PM2.5 concentration at Guangdong, China is forecasted. Prediction performances of
the LSTM network at hourly, daily, and weekly granularities and over different time spans are presented.
Spatial distribution of the predicted PM2.5 concentrations and the prediction errors are analyzed. The
experimental results demonstrate that the proposed method can achieve better prediction performance for
the PM2.5 concentration compared with other models.

INDEX TERMS Air pollution, machine learning, neural networks, spatiotemporal phenomena, deep
learning, long short-term memory, inverse distance weighting.

I. INTRODUCTION
Air pollution has now become one of the most significant
environmental problems in the world. It will not only acceler-
ate climate change but also pose a severe threat to the health
systems of human beings. According to World Health Orga-
nization (WHO), around 4.2 million people die every year
from exposure to ambient air pollution, and 9 out of 10 people
in the world breathe air that contains high levels of pollu-
tants [1]. In developing countries like India and China, air
pollution is even worse due to the rapid urbanization and
industrialization in the last decades [2]–[4].
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Against this background, governments and research insti-
tutions have attached great importance to the prevention and
control of air pollution. Although a large number of air quality
monitoring stations have been built to observe the air pol-
lutant concentration, there still are many places that require
scientific predictions to report the air quality. It can help
give early warnings, suggest outdoor activities and prepare
control strategies. Many researchers have been working on
proposing a better method to improve prediction accuracy
[5]–[9]. Existing methods for air quality prediction can be
divided into three major categories: deterministic methods,
statistical methods, and machine learning methods. Deter-
ministic methods deploy fundamental principles to simulate
the dispersion and transport mechanisms of air pollution.
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Commonly seen deterministic methods include Operational
Street Pollution Model (OSPM) [10], Community Multiscale
Air Quality (CMAQ) model [11], Nested Air Quality Predic-
tion Modeling System (NAQPMS) [12]. However, traditional
deterministic methods were usually designed under specific
assumptions and cannot fit other real-world conditions. The
use of default parameters and the lack of real observations
limit their performance [13].

Statistical methods, on the other hand, apply data-
based models to predict air quality [5]. For example,
Sharma et al. [14] forecasted the air pollution load in
Delhi using time series regression models. Gupta and
Christopher [15] used a multiple regression approach to mon-
itor particulate matter air quality. Slini et al. [16] devel-
oped a stochastic Autoregressive Integrated Moving Average
(ARIMA) model for maximum ozone concentration fore-
casts. Deng et al. [17] proposed a cellular automata (CA)
model based on a multivariate regression model and sev-
eral physical models to analyze the generation and diffusion
of PM2.5. Compared with deterministic methods, statistical
methods can be applied under a broader range of conditions as
long as enough data are given. However, the linear assump-
tion behind the traditional statistical methods is opposite to
the non-linear characteristics of the real world, and this limits
their performance.

To address this problem, many researchers started to adopt
non-linear machine learning methods, such as Support Vector
Machine (SVM), Artificial Neural Networks (ANN), Ran-
dom Forest (RF) to predict the air quality. Among these
machine learning methods, ANN has been one of the most
widely used methods. For example, Li et al. [5] proposed
the self-adaptive neuro-fuzzy weighted extreme learning
machine (ANFIS-WELM) to predict the air pollutant concen-
tration. Alimissis et al. [18] conducted a spatial estimation
of urban air pollution with the use of ANN and Multiple
Linear Regression (MLR). To improve the forecasting accu-
racy of air pollutant concentration, Yang and Wang [19]
proposed a new hybrid model that combined Complemen-
tary Ensemble Empirical Mode Decomposition (CEEMD),
Modified Cuckoo Search and Differential Evolution algo-
rithm (MCSDE) and Elman Neural Network (ENN). Gardner
and Dorling [20] trained multilayer perceptron (MLP) neural
networks to model hourly pollutant concentrations in Cen-
tral London. Niska et al. [21] adopted feed-forward neural
networks for forecasting hourly concentrations of nitrogen
dioxide at a traffic station.

Air pollution at one moment could have a short or long-
term impact on future status. The influence might last for
hours, days or even weeks. Therefore, when forecasting air
quality, it is necessary to consider the time traverse. However,
most of the ANN methods above fail to strengthen the time
lag of air pollution or learn the long-term dependencies.
This limits their performance to some extent. To overcome
this problem, some studies adopted advanced deep learn-
ing techniques to model the time series data. Commonly
seen networks include Recurrent Neural Network (RNN),

Gated Recurrent Unit (GRU), and Long Short-TermMemory
(LSTM). These methods were reported to have high perfor-
mance in different domains. For example, Donahue et al. [22]
used the LSTM networks for visual recognition and descrip-
tion. Fu et al. [23] applied LSTM to predict short-term traffic
flow and achieved high performance. Shi et al. [24] pre-
dicted the future rainfall intensity in a local region over a
relatively short period using the LSTM network. However,
not so many studies in air quality prediction have applied
LSTMas the regressionmethod until recently. Zhao et al. [25]
implemented a long short-term memory-fully connected
(LSTM-FC) neural network to predict PM2.5 contamina-
tion of a specific air quality monitoring station over 48 h.
Tong et al. [26] developed a bi-directional LSTM RNN
network for spatiotemporal interpolation of air pollutants.
Qi et al. [27] proposed Deep Air Learning (DAL) for the pre-
diction, interpolation, and feature analysis of fine-grained air
quality. Fan et al. [28] proposed a spatiotemporal prediction
framework based onmissing value processing algorithms and
deep RNN.

Still, their results were not perfect. Most of them focus
on the predictions where there have monitoring stations.
Limited studies have extended their methods on places
without stations. This is, in fact, a typical spatial inter-
polation/extrapolation problem of air quality predictions
[29], [30]. However, traditional interpolation methods either
overlooked the temporal effect from historical data, or just
used subjectively defined liner/non-linear equations to define
the complicated real-world temporospatial relationships [26].
Such a problem can be improved by deep learning techniques
to some extent. However, limited studies have tried to address
the traditional temporospatial interpolation problems with
advanced deep learning technologies. Existing ones have dif-
ferent kinds of limitations that have not been well addressed.
For example, Qi et al. [27] proposed a well-structured inter-
polation model but their results are not based on the lat-
est LSTM models, and this may limit their performance.
Tong et al. [26] proposed a deep learning based interpolation
method but unfortunately, they did not provide any spatial
interpolation results on places with no data records.

To overcome the limitations and fill the research gap, this
paper combines the bi-directional Long Short-Term Mem-
ory (BLSTM) network and the Inverse Distance Weighting
(IDW) for spatiotemporal prediction of the concentration of
PM2.5 at different time granularities. A new IDW-BLSTM
model is proposed and PM2.5 concentrations at different
time granularities and over different time spans are predicted.
Figure 1 shows the proposed research framework. Firstly,
the raw data set is collected and the time series samples are
built. Then the IDW-BLSTM model is constructed, and its
parameters are optimized. Comparison of IDW-BLSTM net-
work and five other algorithms is conducted. Results demon-
strate that the proposed method outperforms other models
in air pollution estimation. Next, PM2.5 concentrations at
different time granularities and over different time spans
are estimated. Results show that the predicted distribution is
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FIGURE 1. Research framework.

generally consistent with the real one. Spatial analysis of the
PM2.5 concentrations in the study area is also conducted to
provide practical suggestions to the local government.

The remained paper is organized as follows: Section 2
presents the collected data and sample modeling. Section 3
introduces the methods and model optimization. Results are
analyzed and discussed in Section 4. Section 5 concludes the
study.

II. DATA COLLECTION AND PREPROCESSING
A. DATA COLLECTION
To validate the effectiveness of the proposed research frame-
work, we collected 2017/1/1-2017/12/31 one-year air qual-
ity data of the monitoring stations in Guangdong province,
China. The province has 100 stations in total. Each station
records 8,760 hourly PM2.5 concentration data. The distri-
bution of the 100 stations is shown in Figure 2. Each green
circle represents a station.

FIGURE 2. Distribution of the monitoring stations in Guangdong, China.

B. TIME SERIES SAMPLE MODELING
After data collection, preprocessing should be conducted.
Since there is no missing value in the collected data,

the remaining yet the most essential step is sample modeling.
The data should be transformed in a way that can be imple-
mented in machine learning/deep learning models. For time
series problems, a typical way of modeling is called rolling-
window [31].

FIGURE 3. An example of time series samples modeling.

The rolling window method will construct one sample for
each time record t . The sample for t0 is constructed using
the values within [t0 − 1t, t0) as the features, and the value
at t0 as the label or target. 1t is called the window size.
Figure 3 shows an example of how to build time-series sam-
ples. Assume there were 10 time-series records in the dataset,
including T1, T2, . . . , T10. If 1t = 6, then for Sample 1,
it has T1, T2, T3, T4, T5 and T6 as its features and T7 as
its label. For Sample 2, it has T2, T3, T4, T5, T6 and T7 as
its features and T8 as its label. Sample 3 and Sample 4 were
given in a similar way. As a result, four time-series samples
can be built when the time records are 10 and the window
size is 6.
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FIGURE 4. Typical examples of ANN, RNN, and LSTM.

In our dataset, each station has 8,760 hourly records. For
convenience, we pre-define the window size 1t as 24, and
there will be 8,736 time-series samples in total for each
station. More optimal window sizes for different time granu-
larities will be identified later.

III. MODELING AND OPTIMIZATION
A. FROM ANN TO RNN
As mentioned above, an IDW-BLSTM model is proposed
as the main regression algorithm in this study. It is devel-
oped based on LSTM and IDW. Long Short-Term Memory
(LSTM) is a type of Recurrent Neural Network (RNN) spe-
cially designed to prevent the neural network output for a
given input from either decaying or exploding as it cycles
through the feedback loops [32]. It effectively accounts for
the long-term dependencies and has been applied to a lot
of fields, such as meteorological forecasting [33], weather
forecasting [34], network traffic prediction [35], air pollution
forecasting [36], etc. LSTM is developed based on Artifi-
cial Neural Network (ANN) and Recurrent Neural Network
(RNN). Therefore, to better understand LSTM, it is necessary
to start from ANN and RNN.

ANN was initially introduced in the 1970s, but its impor-
tance wasn’t fully appreciated until a famous paper by David
Rumelhart, Geoffrey Hinton and Ronald Williams [37]. It is
a multilayer feedforward neural network using the technique
of backward propagation of errors. One typical structure is
presented in Figure 4 (a). It can be seen that the network
consists of an input layer, hidden layers, and an output layer.
Usually, it has only one input layer and one output layer but
one or more hidden layers [37]. Each neuron is a weight
calculation of the inputs from the last layer and followed by
an activation function.

However, when it comes to modeling time-series data,
traditional ANN models fail to relate the information of the
previous moment to the next moment [38]. To resolve the
issue, scholars proposed Recurrent Neural Network (RNN).
Compared to traditional ANN, RNN is equipped with a novel
connection method. As shown in Figure 4 (b), it takes the out-
put of the previous moment as the input of the next moment to

affect the weights at the next moment. In this way, it exhibits
temporal dynamic behavior for a time sequence and improves
the prediction accuracy.

B. LSTM AND BI-DIRECTIONAL LSTM
However, when handling time series problems, RNN is
not capable of capturing the long-term dependencies in the
input sequences. It may also cause vanishing gradient and
exploding gradient problems. To address these, Hochreiter
and Schmidhuber proposed the Long Short-Term Memory
(LSTM) network [38]. The specialty in LSTM is that it
adds self-connected units which allow a value (forward
pass) or gradient (backward pass) that flows into the unit to
be preserved and subsequently retrieved at the required time
step [32]. As shown in Figure 4 (c), the unique connections
between neurons are shown as the green arrows. They are
used to control the cell states, and help maintain information
in memory for long periods of time.

FIGURE 5. Inputs and outputs of an LSTM cell Ht .

Figure 5 shows the inputs and outputs of an LSTM cell. ht
and Ct are the outputs. ht−1 and Ct−1 are the inputs from the
last cell, and xt is the input from the last layer. Equation (1)
presents its mathematical format.

(ht ,Ct ) = Ht (xt , ht−1,Ct−1) (1)

where Ht is the whole function within the cell. It consists of
three parts, namely the forget gate, the input gate, and the

107900 VOLUME 7, 2019



J. Ma et al.: Spatiotemporal Prediction of PM2.5 Concentrations at Different Time Granularities Using IDW-BLSTM

output gate. Forget gate determines the extent to which the
information of the last unit remains in the present cell. This
gate is the main difference between typical ANN and LSTM
since it records the influence from long and short memories.
As shown in Equation (2), it checks ht−1 and xt , and outputs
a number between 0 and 1 for each number in the cell state
Ct−1 to represent which information to ‘‘remember’’ when
calculating this cell.

ft = σ (Wf · [xt , ht−1]+ bf ) (2)

where ft is the output of the forget gate, W and b are the
relevant parameters, σ is the sigmoid function.
The next part is the input gate. It determines which new

information should be stored by updating the cell state from
Ct−1 to Ct . It is calculated based on Equation (3) and (4),
where it is the output of the input gate.

Ct = ft � Ct−1 + it � tanh(WC · [xt , ht−1]+ bC ) (3)

it = σ (Wi · [xt , ht−1]+ bi) (4)

After having the updated status, the output gate can help to
calculate the outputs of the cell, ht , by Equation (5) and (6).

Ot = σ (WO · [xt , ht−1]+ bO) (5)

ht = Ot � tanh(Ct ) (6)

However, the LSTM network is still not perfect. The current
version only supports forward learning and optimization. In
practices, the values in later times can also help adjust the
original predictions at earlier times. For example, in speech
recognition, a later sentencemay help adjust the translation of
some earlier words. As a result, a backward LSTM prediction
can be very helpful.

Under such a problem, Graves and Schmidhuber [39]
designed the bi-directional LSTM/RNN (BLSTM/BRNN)
models. Several studies have pioneered its applicability in
air quality forecasting. For example, Tong et al. [26] imple-
mented BLSTM in predicting the PM2.5 concentrations in
Florida, the U.S. However, the way they designed the geo
coordinates into time series may reduce the efficiency of
modeling and optimization. This study proposes a newly
designed network based on BLSTM and traditional spatial
interpolation techniques like IDW to predict the air quality
in the whole region including the places where there are no
monitoring stations.

Different from ordinary LSTM, BLSTM will have a set of
LSTM units to backwardly learn and optimize the time series.
In this case, it will double the original units, and the additional
LSTM units will train the inputs in a reverse sequence. These
two groups of LSTM units will output two different values,
which are donated as Eh, and

←

h . As shown in Equation (7), the
eventual outputs of a BLSTM unit are the sum of these two
predictions.

h(t)bi = Eh(t)+
←

h (t) (7)

C. IDW-BLSTM
As discussed in the introduction, although deep learning-
based techniques have been more and more popular in air
quality research. Limited studies have explored the possibil-
ity of combining traditional spatial interpolation methods like
IDW to predict the air quality in the whole region including
the places where there are no monitoring stations. To address
this gap, this study proposes the Inverse Distance Weight-
ing BLSTM (IDW-BLSTM) network for spatial-temporal air
quality prediction.

As shown in Figure 7, the main idea of IDW-BLSTM is
integrating spatially allocated BLSTM predictors by intro-
ducing an IDW layer on top of them. Different from the
spatial first mechanism in CNN-LSTM [40], IDW-BLSTM is
temporal modeling first and then spatial. This is in line with
the discoveries in related studies that, the temporal correlation
is stronger than the spatial correlation for air quality predic-
tion [26]. The weights in the IDW layer are combined using
inversed distance and additional neural network weight vec-
tors. In this way, the method can utilize the back-propagation
techniques in neural networks to update and optimize the
weights.

The proposed structure of IDW-BLSTM is shown in
Figure 6. It consists of five kinds of layers, including the
input layer, the BLSTM layers, the fully connected layer,
the IDW layer, and the output layer. The number of input
layer to FC layer chains equals to the number of monitoring
stations. This could largely reduce the calculation in training
compared with similar complexity CNN-LSTM/ConvLSTM
and fine-grid modeling.

For example, for point A, IDW-BLSTM predicts its air
quality values by de-normalizing the output value, as shown
in Equation (8).

PredA = fD (OIDW) (8)

where OIDW is the output of the IDW layer, which is calcu-
lated by Equation (9).

OIDW = σ (WIDW · IIDW + bIDW) (9)

where σ is the sigmoid function, WIDW and bIDW are the
neural network parameters, and can be optimized by back-
propagation. IIDW = [iIDW1 , iIDW2 , . . . , iIDWn ] is the input of
the IDW layer, and it is given by Equation (10). n is the
number of stations.

iIDWi =
Zi · wi∑n
j=1wj

(10)

whereZi is the output value of the ith-station ordinary BLSTM
network. wi is the weight assigned to xi. The weight is calcu-
lated based on the inverse distance value, the calculation of
which is shown in Equation (11).

wi =
1

d(x,xi)p
(11)
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FIGURE 6. Structure of the proposed IDW-BLSTM.

where d(x, xi) is the distance between point x and xi, p is the
power factor used to adjust the sensitivity from the known
value and is set as 1 in this study.

IV. RESULTS AND DISCUSSION
A. PARAMETER OPTIMIZATION
The parameters of the IDW-BLSTM model need to be tuned
for better results. Important parameters in this study include
NBLSTM
L -the number of layers in the BLSTM part, NBLSTM

N -
the number of neurons in each BLSTM layer, NFC

N -the num-
ber of neurons in the FC layer, N IDW

N -the number of neurons
in the IDW layer, batch size, dropout rate, etc.

After referring to the literature [41]–[43] and some initial
tests, we set the candidates for the parameters as NBLSTM

L =

{1, 2, 3, 4},
{
NBLSTM
N ,NFC

N ,N IDW
N

}
= {16, 32, 64, 128, 256},

batch size = {32, 64, 128, 256, 512}, dropout rate = {0, 0.1,
0.2, 0.3, 0.4, 0.5}. When optimizing the parameters, we pre-
set the window size as 24, epoch as 200, and learning rate as
0.015. 70% of the shuffled samples are used as the training
set, while the remained 30% are for testing. The parameters
are optimized by the integration of the Mini-Batch Gradient
Descent algorithm, dropout neuron algorithm and L2 reg-
ularization algorithm. RMSE was used as the optimization
criteria. Its calculation is shown in Equation (12).

RMSE =

√√√√1
n

n∑
i=1

(
yi − y∗i

)2 (12)

where yi is the observed value of the ith case and y∗i is the
predicted value. A smaller RMSE means better performance.

After two rounds of one-sided grid search test, it is dis-
covered that when NBLSTM

L = 2, NBLSTM
N = 64, NFC

N = 256,
N IDW
N = 128, batch size= 128, dropout rate= 0.1, the model

was able to get an optimal result with RMSE = 8.24.

B. ALGORITHM COMPARISON
To further evaluate the performance of the proposed method,
we compared it with other algorithms, including Autore-
gressive Integrated Moving Average (ARIMA), ElasticNet,
Support Vector Regression (SVR), Gradient Boosting Deci-
sion Tree (GBDT), Artificial Neural Network (ANN)
[44], [45], Recurrent Neural Network (RNN), ordinary
LSTM, BLSTM, Convolutional Neural Network-LSTM
(CNN-LSTM). To evaluate the performance of these algo-
rithms, this study implemented three different indicators,
including root mean square error (RMSE), mean absolute
error (MAE) and mean absolute percentage error (MAPE).
Calculations of these three indicators are presented in
Equation (12), (13) and (14), respectively.

MAE =
1
n

n∑
i=1

∣∣yi − y∗i ∣∣ (13)

MAPE =
1
n

n∑
i=1

∣∣yi − y∗i ∣∣
yi

(14)

where n is the number of cases, yi is the observed value
of the ith case and y∗i is the predicted value of the ith case.
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A smaller value of these indicators means better performance
in prediction.

These three indicators evaluate the prediction performance
of the models from different angles. RMSE reflects the gap
between the real value and the estimated value, and shows the
sensitivity of the models to huge errors. MAE also evaluates
the gap between the two values, but it reflects the robustness
of models. MAPE represents the percentage of the error over
the real value.

TABLE 1. Comparison of different algorithms.

The calculation results are shown in Table 1. It can be seen
that IDW-BLSTM, CNN-LSTM, BLSTM, ordinary LSTM,
and RNN have better performance than other algorithms.
This reflects that (1) the networks designed for time series
problems outperform typical machine learning algorithms in
air quality predictions. Also, LSTM based algorithms have
lower error measures than RNN means (2) the longer-term
dependency does have an important impact on PM2.5 con-
centrations. (3) BLSTM was again proved to perform better
than ordinary LSTM [26] due to its bi-directional model-
ing concept. (4) The newly designed IDW layer additional
improved the performance of BLSTM by 5.6% (comparing
BLSTM and IDW-BLSTM), and this proved the effectiveness
of the proposed model. (5) CNN-LSTM and IDW-BLSTM
perform the best because these two algorithms not only con-
sidered the temporal correlation on the historic values but
also included the spatial correlation from nearby stations.
(6) The proposed IDW-BLSTM obtained the lowest RMSE
and MAE, and this proved the effectiveness of the proposed
method.

C. OPTIMAL WINDOW SIZE FOR DIFFERENT
TEMPORAL GRANULARITIES
In this study, another objective is to explore the air quality
prediction at different time granularities. The optimal window
size 1t can be different for different time granularities. This
parameter is important to time series problems and needs to
be optimized. It is because many time-series problems follow
periodic changes to some extent. This means the values at

FIGURE 7. Graphical illustration of the IDW-BLSTM network.

previous moments have a lagged effect on the value at the
next moment. The lagged effect might be strong in the short
term or weak in the long term. Therefore, when predicting
the air pollutant concentration, the influence of the window
size in different lengths needs to be considered. A smaller
window size1t cannot guarantee enough long-term memory
inputs for IDW-BLSTMmodel while a larger window size1t
will increase unrelated inputs and the computation complex-
ity [46]. Hence, it is necessary to identify themost appropriate
window size.

To tackle this problem, this study adopted the auto-
correlation function. This function helps determine the
time correlation among the time series data itself. Larger
auto-correlation coefficients mean stronger time correla-
tions and stronger lagged effects. Calculation of the auto-
correlation coefficient at time lag 1t is shown in
Equation (15) [47].

ρ1t =

∑T
t=1t+1 (Yt − Ȳ)(Yt−1t − Ȳ)∑T

t=1 (Yt − Ȳ)
2 (15)

where Yt is the data set sorted by ascending date, and Yt−1t
represents the same data set with1t time lag. Ȳ is the average
value.

FIGURE 8. The autocorrelation coefficients of the stations with respects
to different time lag values.

Figure 8 shows the autocorrelation coefficients of the
stations in Guangdong. The horizontal axis represents the
time lag, and the vertical axis represents the autocorrelation
coefficients. It can be observed from Figure 8 that when

VOLUME 7, 2019 107903



J. Ma et al.: Spatiotemporal Prediction of PM2.5 Concentrations at Different Time Granularities Using IDW-BLSTM

TABLE 2. Performance of different window sizes at hour granularity.

time lag increases, the coefficient shows a descending trend.
This confirms that earlier events have a weaker influence
on the current status. Furthermore, when the time lag is
smaller than 24, auto-correlation coefficients of most stations
are higher than 0.5, which indicates the time correlations
are stronger. Therefore, the range of time lag 1t for hourly
granularity is pre-set as [1], [24].

FIGURE 9. Scores of three indicators with different window sizes.

To further identify the optimal window sizes at hourly
granularity, we tested the prediction performance using dif-
ferent 1t within [1], [24]. 70% of the data are taken as the
training set and the remaining 30% as the testing set. Results
of the estimation performance of the IDW-BLSTM network
are then shown in Table 2. When the window size varies from
1 to 24, RMSE varies around 8 to 9, MAE around 5 and
MAPE around 8 to 10. To better observe the change of the
three indicators, we presented their scores in a line chart,
which is shown in Figure 9. The horizontal axis shows the
window size and the vertical axis represents the score. The
blue line represents the scores of MAPE, the red line RMSE
and the yellow lineMAE. It can be observed that the trends of
these three lines are similar. When the window size is smaller
than 5, the scores decrease as the window size increases.
This is because when the window size is too small, the input

features would have too limited information to have a lower
error score. On the other hand, when the window size is larger
than 5, the error scores increase a bit and then gradually
become stable. This may because when the window size is
large enough, increasing its value will add more noise and
therefore interfere with the performance. As a result, it can
be concluded that the optimal window size for the hourly
granularity is 5.

TABLE 3. Performance of different window sizes at daily granularity.

D. DAILY GRANULARITY AND WEEKLY GRANULARITY
When it comes to daily granularity and weekly granular-
ity, the number of cases becomes smaller as there are only
365 days and 52 weeks in the collected data. Therefore, this
study set the range of window size as (1, 7). Results of the
prediction performance at the daily granularity and weekly
granularity are presented in Table 3 and Table 4 respectively.
It can be seen that when the window size is 5, all the error
indicators at the daily granularity and weekly granularity
reach the smallest scores. Therefore, 5 is the optimal window
size at these two granularities.
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TABLE 4. Performance of different window sizes at the weekly
granularity.

On the other hand, compared with Table 2, values of
RMSE, MAE, and MAPE are much higher at daily/weekly
granularities than those at hourly granularity. This means the
prediction accuracy of LSTM decreases as the time dimen-
sions expand from hours to weeks. The reason behind is that
the size of data used for training at daily and weekly granular-
ities is far less than that used at hourly granularity. Consider
that the time span of the collected data is one year, and the
minimum unit is an hour. In this case, we have 8760 data
records for hourly granularity, while only 365 records for
daily granularity and 52 records for weekly granularity. Also,
PM2.5 values at larger granularity are more difficult to pre-
dict. Because other factors such as weather, climate, and
urban activities, may have more substantial impacts on values
at larger granularity. Those data would be collected to further
test the performance of the proposedmethod in future studies.

E. SPATIAL ANALYSIS
The experiments in previous sections discussed the feasibility
of implementing the proposed methodology and its measur-
able performance. Another important feature of the proposed
method is that it inherited the interpolation method from the
traditional IDW method. Therefore, it can be further utilized
to calculate and predict the air quality at places where there is
no monitoring station. This is very practical since researchers
andmanagers would be able to have a more integrated idea on
the overall performance of the air quality in the surrounding
regions.

Figure 10 presents the calculated prediction diagrams of
the PM2.5 concentration in Guangdong province using the
proposed method. It is drawn by the predicted value of each
pixel at 12 am, December 30th, 2017. The PM2.5 concen-
trations in the central part of the Guangdong province are
relatively higher than other parts of the province, especially
Dongguan city and Zhuhai city. These two cities are therefore
suggested to put more effort into their air quality problems.

Furthermore, this study also examined the RMSE distri-
bution of the predicted PM2.5 concentration. Three IDW
diagrams of the average RMSE calculated at the record sta-
tions using the proposed method are shown in Figure 11.
Different diagrams represent the RMSE distribution at

FIGURE 10. Prediction diagram of the PM2.5 concentration in Guangdong
province using IDW-BLSTM.

FIGURE 11. The RMSE distribution of IDW-BLSTM at hourly, daily and
weekly granularities.

different temporal granularities. Green means lower RMSE
and red means higher RMSE. Figure 11 (a) presents the
RMSE distribution at hourly granularity, (b) at daily granu-
larity, and (c) at weekly granularity. It can be concluded from
Figure 11 that the predictions of PM2.5 concentrations at
smaller granularities have lower errors than larger granulari-
ties. This is in line with the results in previous sections.

In addition, the calculated diagram of the RMSE distri-
butions can help the government to plan new stations. For
example, it can be seen from Figure 11 (b) that the prediction
error in area A, B and C are relatively higher than other places
at daily granularity. This reflects that the PM2.5 concentra-
tions at these three places are more complicated to predict
and require more additional information to help. Therefore,
if the government wants to improve the prediction accuracy
at the daily granularity of the whole province, more stations
could be added to enhance the analysis. Especially for area A,
by referring to Figure 10, it can be seen that it is not only a
high error district but also a high PM2.5 area. So it is strongly
suggested that the government put more effort into studying
the PM2.5 concentrations in that area.

On the other hand, it is also understandable that area A has
such a different numerical pattern. This district is the Greater
Bay area in Guangdong Province, and it is one of the fastest
developing areas in China. The central part is Dongguan city,
which has a high-rankingmanufacturing industry nationwide.
The mid-east part is Shenzhen city. It is one of the top 5
fast-growing cities in China, and is famous for its electronic
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device market and industry. The complicated PM2.5 concen-
tration there may result from the fast-developing environ-
ment. Although economic growth is an important concern
in urban management, the environment problem, such as air
quality or PM2.5, is also a critical issue that needs enough
attention.

V. CONCLUSION
To conclude, this paper proposed a new methodology frame-
work that combines LSTM network and IDW techniques to
predict the air pollutant concentration based on historical
records. To validate the effectiveness of the proposed frame-
work, a case study in Guangdong, China, was conducted.
SVR, GBDT, ANN, RNN, and ordinary LSTM were com-
pared with the proposed method. The prediction performance
of IDW-BLSTM at different time granularities and time spans
were evaluated. Contributions of this study can be summa-
rized as follows:

1. To the best of our knowledge, this is the first study
that tried to integrate the traditional spatial interpola-
tion methods like IDW and advanced deep learning
techniques like BLSTM to explore the temporospatial
prediction problem. Results show that the proposed
network has good performance compared with other
latest methods.

2. The implementation of the IDW layer into the neural
networks helped the performance of BLSTM improve
by 5.6%. This may because the IDW layer helped
consider the spatial correlation and impact from other
stations into the modeling. This is, on the other hand,
supported the advantage of the proposed model.

3. The prediction results of PM2.5 concentration at
smaller temporal granularities have smaller errors than
larger temporal granularities.

4. According to the case study, two cities, Zhuhai and
Dongguan, are suggested to put more effort into their
PM2.5 management since the PM2.5 concentrations
there are very high.

5. In terms of station planning, areas such as A, B, and C
in Figure 11 are suggested to install more monitoring
stations since the air quality there is more complicated
to predict.

Overall, the proposed methodology framework was able
to provide valid results in PM2.5 prediction problems, and
further experiments can be conducted to verify its feasibility
in studying other pollution sources in other places. On the
other hand, this paper has some limitations. Due to the data
availability, we only used the historic air pollution data and
did not include the meteorological and urban information.
In the future, more relevant features should be collected to
improve prediction and analysis.
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