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Abstract: Scheduling the recharging of electric vehicle fleets under different scenarios is an 

important but open problem. One important scenario is that vehicles travel at different speeds in 

different periods since traffic congestion is common in urban areas nowadays. Therefore, this 

paper proposes a novel time-dependent electric vehicle routing problem with congestion tolls. If a 

vehicle enters a peak period, a fixed congestion toll needs to be paid in this problem. A mixed 

integer linear programming model is established and an adaptive large neighborhood search 

(ALNS) heuristic is designed to solve the model. The model and solving method are validated and 

evaluated extensively with benchmark instances. Results indicate that a certain level of congestion 

tolls could prevent vehicles from entering peak periods and relieve road congestions significantly. 

Furthermore, the ALNS heuristic could provide much better solutions for the problem than typical 

optimization software such as Gurobi in much shorter running time. 

Keywords: Adaptive Large Neighborhood Search, Congestion Toll, Electric Vehicle Routing 

Problem, Recharge Allocation, Time-Dependent 

1. Introduction 

Green logistics is an important research field. It was reported that transportation activities represent 

about 22% of the total carbon emissions; road transportation is responsible for almost 75% of the 

carbon emissions from transportation in the year of 2010 (refer to [1]). Freight transportation by 

road has caused not only environmental but also social issues. For example, serious haze-fog days 
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appeared widely in recent years in some countries including China. The emissions of trucks 

contribute the cause of such a serious atmospheric problem, more or less. Additionally, freight 

transportation has also aggravated traffic congestions in many cities, especially in morning and 

evening peak periods. The Ministry of Industry and Information Technology of People’s Republic 

of China issued in 2019 that the use of conventional internal combustion engine vehicles would be 

forbidden in some cities and that the government is taking a series of measures to promote the 

development of alternative fuel vehicles [2]. For instance, a highway network with recharging 

stations has been built in the Beijing-Tianjin-Hebei zone. 

Electric vehicles (EVs), as a major alternative fuel vehicle type, are becoming a hot point in the 

field of green logistics. It is obvious that the operating process of EVs almost does not emit carbons. 

The whole life-cycle really emits very few carbons if the generation of electricity is also clean. 

However, development of EV industries is still restricted partially because of the limited travel 

ranges and long recharging time of EVs [3]. Therefore, researchers are focusing on the design of 

EV batteries and other technologies in the viewpoint of electric engineering (refer to [4-7]), the 

locating of recharging stations (refer to [8-9]) and the scheduling as well as routing of EVs (refer 

to [10]) in the viewpoint of operations research. 

Few articles investigate electric vehicle routing problems (EVRPs) considering both routing and 

recharging of vehicles. For example, Schneider et al. [10] extended EVRP introducing time 

window constraints resulting in EVRP with time windows (EVRPTW). They assumed that the 

recharging time at a station is a function of the current battery level and the battery becomes full 

when the vehicle departs from the station. However, this is unnecessary in most applications. The 

articles addressing EVRP with partial recharges are even scarce. For instance, Keskin and Çatay 

[11] allowed EV batteries to be recharged to any level (up to capacity of the batteries) with a linear 

rate. 

Much attention has also been paid to traffic congestions. Vehicles travel at different speeds in 

different road conditions due to the existence of congestions. For example, some articles presented 

the shortest path problem on a time-dependent network (see, e.g., [12]). Tolling on the vehicles 

that pass certain roads or enter certain areas has become very popular to relieve congestions and 

to guide public transportation. For example, Liu et al. [13] studied a morning commute problem 

with both household and individual travels in which tolls are collected on bottleneck roads. Similar 



researches could also be found in, for example, [14]. 

However, most articles that address EVRPs assume that EVs travel at a given constant speed 

between locations without considering traffic congestions (see Section 2 for a detailed review of 

literature). To the best of our knowledge, the model introduced by Shao et al. [15] was the first 

routing model that considers variable travel time. They considered soft time window and vehicle 

capacity constraints. However, they did not consider partial recharging schemes and assumed a 

fixed charging time in their model. Pourazarm et al. [16,17] took into account real-time traffic 

information when arranging EV routes where each EV traveled from a fixed origin to a fixed 

destination, which is beyond the scope of this research. 

As a result, we introduce time-dependent travel speeds and congestion tolls into EVRPTW in this 

paper, in which a fleet of EVs deliver freight to a set of geographically scattered customers. A 

working day is divided into morning peak, off-peak, and evening peak periods. The speeds of EVs 

in different periods are different. Each EV consumes a fixed amount of electricity per travel 

distance and can be recharged to any level at a linear rate of time at recharging stations. If a vehicle 

enters a peak period, a fixed toll is collected. The problem minimizes total transportation costs 

including route duration related costs, recharging costs and congestion tolling costs. 

The contributions made in this research could be summarized as follows. Firstly, time-dependent 

travel speeds and congestion tolls are introduced into EVRPs. A time-dependent EVRP with 

congestion tolls and time window constraints (TDEVRP-CT, for short) is mathematically modeled 

as a mixed integer linear programming model. Secondly, an adaptive large neighborhood search 

(ALNS) heuristic (refer to [11]) with an allocating algorithm of recharging amounts and an 

adjusting algorithm of visit-beginning time is designed to solve the TDEVRP-CT. Thirdly, the 

ALNS heuristic is validated with benchmark instances that were designed for EVRPTW and 

compared with a typical optimization software Gurobi. Finally, several primary concluding 

remarks are presented. The experimental results will indicate how the TDEVRP-CT help 

decreasing the total cost by routing and scheduling EVs in different congestion scenarios. 

The remainder of this paper is organized as follows. Section 2 reviews the related literature. 

Sections 3 and 4 describe and mathematically model TDEVRP-CT, respectively. The ALNS 

heuristic is designed in Section 5 and then validated and evaluated in Section 6. Section 7 



concludes this paper finally. 

2. Literature Review 

This section reviews two streams of related literature. Firstly, the research addressing EVRP, as 

the main topic of this research, is surveyed extensively. Secondly, we also briefly summarize the 

variant of VRP that considers road congestions as well as time-dependent travel speeds. 

2.1. The Electric VRP 

We only summarize electric vehicle routing problems which focus on the recharging of EVs at the 

operational level. The development and usage of EVs in applications also include the design of 

batteries to enlarge their energy density, the unification of batteries for convenient battery swaps, 

the centralized recharging strategy under battery swapping scenario (see, e.g., [18,19]), and the 

location of recharging stations (see, e.g., [20]). However, these issues are relatively far from the 

routing of EVs and hence beyond the scope of this article. 

The research of EVRP belongs to the fields of green logistics since EVs are a type of alternative 

fuel vehicles. Erdoğan and Miller-Hooks [21] proposed a model of green-VRP (GVRP), which 

minimizes the total travel distance of involved vehicles with the constraints of given refuelling 

stations and restricted length of routes. They assumed that the refuelling time at a station is fixed 

and the tank becomes full after each time of refuelling. Neither load capacity of vehicles nor time 

window constraints at customers were considered. Two constructive heuristics as a modified 

Clarke and Wright saving heuristic and a density-based clustering algorithm, and a customized 

improvement technique were designed to solve GVRP. Moreover, Wang and Cheu [22] reported 

the operations of an electric taxi fleet. The batteries consume at a given rate per distance and can 

be recharged fully in a constant time at stations. 

Schneider et al. [10] proposed EVRPTW extending GVRP. EVRPTW differs from GVRP mainly 

in the following aspects. Firstly, each vehicle has a limited load capacity. Secondly, each customer 

has a positive demand and a time window during which the service must start. Thirdly, the 

recharging time at a station depends on the battery level when the EV arrives at the station. 

Furthermore, Schneider et al. [10] also assumed that a battery becomes full when the EV departs 

from a station and the recharging rate is linear and fixed. On the other hand, EVRP is also similar 

to but differs from the multi-depot vehicle routing problem with inter-depot routes (MDVRPI) 



described in [23]. The main difference between them is that, although the vehicles also need to 

visit some depots (i.e., recharging stations) during the visits of customers, the renewed amount at 

a depot does not depend on the demand but on the current battery level. Schneider et al. [24] 

unified EVRP and MDVRPI by using different service times in different intermediate facilities, 

specifically speaking, recharging time at stations or loading time at intermediate depots. They 

presented a hybrid algorithm of a variable neighborhood search heuristic and a tabu search 

heuristic to solve EVRPTW. Their method is validated with benchmark instances of GVRP as well 

as new instances generated from the data of [25]. 

Quite few articles addressing EVRP allow partial recharges. Conrad and Figliozzi [26] introduced 

a recharging VRP in which EVs can be recharged at some customers. The recharging time at 

customers is constant. The battery level after recharging depends on a given choice of recharge: 

full or partial. For the partial recharge case, EVs are recharged to a certain level such as eighty 

percent. Felipe et al. [27] extended GVRP in another way by allowing partial recharges using 

multiple power options. They considered load capacity constraints and route duration limits but 

not time window constraints at customers. They formulated the problem mathematically and 

presented several algorithms as constructive algorithms, determinate local search algorithms, and 

a simulated annealing algorithm to solve the problem. Koç et al. [28] simultaneously considered 

the locating of recharging stations and the routing of vehicles by allowing several companies 

jointly investing in and using recharging stations. They considered route duration limits but still 

not time window constraints at customers. They formulated the problem as a 0-1 mixed integer 

linear program and constructed a hybrid algorithm of ALNS and the mathematical program to 

solve the problem. 

Quite recently, Keskin and Çatay [11] reported an EVRPTW with a partial recharge scheme. They 

assumed that each EV has a load capacity constraint and each customer has a time window as well 

as a demand. A battery can be recharged at a given rate at stations to any level up to its battery 

capacity. They also solved the problem based on the ALNS framework. Their article is the most 

similar one in existing research to this paper. This paper differs from their article mainly in the 

following aspects. Firstly, they assumed that travel speeds are given as a constant while we divide 

the working day into several time periods (i.e., morning peak, evening peak, and off-peak) and 

travel speed differs from period to period. Secondly, they minimized the total travel distance while 



we minimize the total operating costs including route duration costs, recharging costs and 

congestion toll costs. Qiao and Karabasoglu [29] showed that the least-cost paths might be 

different from the shortest-distance or shortest-time paths when arranging the trip from a fixed 

origin to a fixed destination, which suggested that the research with a cost-based-objective is 

meaningful. Thirdly, our solving heuristic based on the ALNS framework differs from theirs 

especially in the decoding, feasibility and optimality of solutions due to the different problem 

definition. 

2.2. Congestions and Time-dependent Speeds in VRP 

This subsection briefly summarizes the topic of time-dependent travel speeds as well as road 

congestions in VRP. Note that this topic was introduced into the routing and recharging of EVs 

but not the main topic of this research. Therefore, we only survey the corresponding literature very 

briefly but do not present a complete review of this large topic. 

Road congestions considered in VRP are caused by two types of reasons. The first type of reason 

is non-periodic and / or unpredictable events such as accidents, breakdowns of vehicles, bad 

weather events. The traveling speeds of vehicles in this scenario are usually denoted as stochastic 

variables. For example, Taş et al. [30] presented a VRP with stochastic travel times. They built 

two versions of mathematical models as with or without service time at customers, and solved the 

problem using tabu search and ALNS heuristic. 

The second type of reason is periodic and predictable events such as the heavy traffic in morning 

or evening peak periods. Compared to the first type of reason, this type of reason results in much 

more traffic delays and transportation costs [31, 32]. The speeds of vehicles in this scenario are 

usually denoted as time-dependent. For example, Malandraki and Daskin [33] introduced a time-

dependent VRP in which travel times are calculated using piecewise functions. Ichoua et al. [34] 

investigated a vehicle dispatching problem with time-dependent travel speeds. Since Ichoua et al. 

[34], most articles addressing time-dependent VRP satisfy a first-in-first-out (FIFO) property. The 

FIFO property indicates that if a vehicle starts from a location 𝑖 earlier, it definitely arrives at a 

location 𝑗 earlier. Furthermore, Xiao and Konak [35]-[36] studied a variant of GVRPs with time-

dependent travel speeds minimizing carbon emissions as (one of) the objective functions. 

Few articles consider congestion tolls when studying VRPs. For example, Wen and Eglese [37] 



presented a VRP considering congestion tolls and designed a heuristic to solve it. In their model, 

they minimized the total costs including fuel costs, driver costs and congestion tolls. If a vehicle 

enters a congestion-controlled zone at any time, a fixed toll is paid. Differently from [37], we 

assume that if a vehicle enters a peak period, a fixed toll is paid. To the best of our knowledge, the 

articles addressing time-dependency and congestion tolls aforementioned do not consider the 

routing and recharging of EVs. 

3. Problem Description 

TDEVRP-CT considered in this paper can be described as follows. A homogeneous fleet of EVs 

provide delivery services in a local area. The logistic company possesses a depot, indexed as 0, 

and several recharging stations, say 𝐹, in the area. Note that the EVs can also be recharged at the 

depot. Each EV parks at the depot initially and returns to the depot finally. Each of the depot and 

stations, say 𝑖 ∈ 𝐹 ∪ {0}, has a time window [𝑒𝑖, 𝑙𝑖](𝑒𝑖 ≤ 𝑙𝑖)  representing its opening hours. Each 

EV has a load capacity (in volume) 𝐶 and a battery capacity 𝑄. 

Assume that each vehicle consumes an amount of electricity 𝑟 per unit distance of traveling. In 

real scenario, the electricity consumption of an EV depends on a large number of factors including 

total weight of the vehicle, road condition, traveling speed, and the weather condition according 

to [38]. It is too complicated to calculate the electricity consumption exactly and hence most factors 

aforementioned are seldom used when considering the scheduling and routing of EVs. For example, 

Goeke and Schneider [39] and Lin et al. [40] consider the weight of vehicles but not the driving 

behaviors such as acceleration and brake. Moreover, the last-mile delivery of small packages is a 

typical scenario of the TDEVRP-CT. The weight of packages is neglectable compared to the 

weight of the vehicles (see, e.g., [41]) while the total weight of a vehicle is the most important 

factor among all affecting factors. This is the reason for which we assume a linear consumption 

rate. 

We further assume that any vehicle can be recharged at a rate 𝑔 at any station. Actually, the 

recharging speed decreases significantly as the level approaches the last 10% of a battery. However, 

it is usually unnecessary to recharge the batteries completely fully especially in the scenarios where 

partial recharges are allowed. Therefore, linear recharging rate or piecewise linear recharging rate 

is widely used (see, e.g., [28,42]). 



When departing from the depot, each EV has a full battery, i.e. a level of 𝑄. The EV fleet needs to 

finish the delivery services to a set of customers, say 𝑉, in a scheduling horizon. Each customer 

𝑖 ∈ 𝑉 has a demand 𝑑𝑖 (0 ≤ 𝑑𝑖 ≤ 𝐶), a desired time window [𝑒𝑖, 𝑙𝑖] (𝑒𝑖 ≤ 𝑙𝑖) during which the 

service has to start, and a service duration 𝑠𝑖. When visiting a station, an EV does not need to be 

recharged to a full battery level, but only to such a level that it is enough to complete its services. 

After finishing its services, an EV could return to the depot with any non-negative battery level 

because the depot can also be used for charge. Let the distance between any two locations 𝑖 and 𝑗 

be 𝑑𝑖𝑗, 𝑖 ∈ 𝑉 ∪ 𝐹 ∪ {0}, 𝑗 ∈ 𝑉 ∪ 𝐹 ∪ {0}. 

The scheduling horizon is normally a working day. Considering different traffic conditions in 

different time periods, the scheduling horizon was divided into 3 time periods. The starting and 

ending times of the 𝑘th period are 𝐸𝑘 and 𝐿𝑘, respectively, 𝑘 = 1, 2, 3. The first, second, and third 

periods are the morning peak, off-peak, and evening peak, respectively. Considering the time 

continuity, we have 𝐿1 = 𝐸2 and 𝐿2 = 𝐸3. The speeds of vehicles differ from period to period. 

EVs travel at an average speed of 𝑣𝑘 in a period 𝑘. Moreover, once an EV enters the morning or 

evening peak period, the driver should pay a congestion toll of 𝑓𝑐 (a given constant). If an EV 

enters both peak periods, the driver pays a double congestion toll, i.e., 2𝑓𝑐. The scenario that EVs 

travel at night is beyond the scope of this study. 

The aim of this problem is to determine a set of routes and the departure times at locations 

minimizing the total operating costs. Each route starts from the depot, visits a sequence of 

customers and stations, and finally returns to the depot, satisfying the constraints of load capacity 

and battery capacity of vehicles, and the time windows at variant locations. Note that the depot 

time window implicitly limits the route durations, i.e., the working time of drivers. As commonly 

done for VRPs with time window constraints (refer to [10, 11]), we assume that the EVs are enough. 

The total operating costs consist of three parts. The first part depends on the total durations of all 

routes including the traveling time, servicing time, recharging time, and waiting time. The cost of 

this part is denoted as 𝑓𝑑 (a given constant) per time unit. The second part is the recharging cost, 

including a fixed and a variable cost component. The fixed cost is paid each recharge that is 

denoted as 𝜐 (a given constant) per cycle, corresponding to the cost of battery degradation. The 

variable cost of a recharge is proportional to the amount of electricity recharged, indicated as 𝑓𝑒 (a 



given constant) per unit. The third part is the total tolls of all drivers. 

4. Model Formulation 

This section formulates the problem TDEVRP-CT as a graph firstly and then as a mathematical 

model. 

4.1. Graphical Formulation 

It is not easy to directly formulate the starting and returning times of vehicles because different 

vehicles have different starting / returning times (refer to [43]). Therefore, we duplicate the depot 

as twice the number of vehicles resulting in two node sets 𝑂𝑆  and  𝑂𝑅 . Each node 𝑖 ∈ 𝑂𝑆 

corresponds to the start from the depot of a vehicle. Each node 𝑖 ∈ 𝑂𝑅 corresponds to the return to 

the depot of a vehicle. Each node 𝑖 ∈ 𝑂𝑆 ∪ 𝑂𝑅 has the same location as the depot. Similarly, the 

recharging stations are also duplicated. The number of duplicated nodes of station 𝑖 ∈ 𝐹, say 𝑛𝑖, is 

the time that station 𝑖 might be visited. Let the set of these duplicated nodes of stations be 𝐹′. Note 

that 𝑛𝑖 should be set as small as possible so as to reduce the size of the model, but large enough to 

not restrict the time of beneficial visits of station 𝑖. See Section 6.2 for more details about the 

setting of 𝑛𝑖 (a similar method can also be found in [21]). 

A directed graph 𝐺 = (𝑁, 𝐴) could formulate TDEVRP-CT, where 

𝑁 = 𝑂𝑆 ∪ 𝑂𝑅 ∪ 𝐹′ ∪ 𝑉 

is the node set, and  

𝐴 = {(𝑖, 𝑗)|𝑖 ∈ 𝑁𝑆 , 𝑗 ∈ 𝑁𝑅 , 𝑖 ≠ 𝑗} 

is the arc set, where 𝑁𝑆 = 𝑂𝑆 ∪ 𝐹′ ∪ 𝑉  and 𝑁𝑅 = 𝑂𝑅 ∪ 𝐹′ ∪ 𝑉 . Each node 𝑖 ∈ 𝑁  has a time 

window [𝑒𝑖, 𝑙𝑖] and a demand 𝑑𝑖, where 𝑑𝑖 = 0 for 𝑖 ∉ 𝑉. Each customer node 𝑖 ∈ 𝑉 has a service 

time 𝑠𝑖. Each arc (𝑖, 𝑗) has a distance 𝑑𝑖𝑗. 

4.2. Variables 

The decision variables used in the model are defined as follows: 

𝑥𝑖𝑗: 1 if arc (𝑖, 𝑗) ∈ 𝐴 is chosen, or 0 otherwise 

𝑥𝑖𝑗𝑘: 1 if arc (𝑖, 𝑗) ∈ 𝐴 is chosen in period 𝑘(= 1, 2, 3), or 0 otherwise 



𝑑𝑖𝑗𝑘: traveled distance of arc (𝑖, 𝑗) ∈ 𝐴 in period 𝑘(= 1, 2, 3) 

𝜏𝑖
𝐴: service beginning time at node 𝑖 ∈ 𝑁𝑅 

𝜏𝑖
𝐷: departure time (i.e., service ending time) from node 𝑖 ∈ 𝑁𝑆 

 

We also introduce the following auxiliary variables to build the model. 

𝑡𝑖𝑗𝑘: traveled time of arc (𝑖, 𝑗) ∈ 𝐴 in period 𝑘(= 1, 2, 3) 

𝑞𝑖
𝐴: battery level when arriving at node 𝑖 ∈ 𝑁 

𝑞𝑖
𝐷: battery level when departing from node 𝑖 ∈ 𝐹′ 

𝑐𝑖
𝑅𝐸𝑀: remaining load level when arriving at node 𝑖 ∈ 𝑁 

𝜆𝑖
𝑆: 1 if vehicle 𝑖 ∈ 𝑂𝑆 enters the morning peak period, or 0 otherwise 

𝜆𝑖
𝑅: 1 if vehicle 𝑖 ∈ 𝑂𝑅 enters the evening peak period, or 0 otherwise 

 

4.3. Objective Function 

The objective function of the mathematical model that formulates TDEVRP-CT is 

min 𝑓𝑑 ( ∑ 𝜏𝑖
𝐴

𝑖∈𝑂𝑅

− ∑ 𝜏𝑖
𝐷

𝑖∈𝑂𝑆

) + 𝑓𝑒 ∑(𝑞𝑖
𝐷 − 𝑞𝑖

𝐴)

𝑖∈𝐹′

+ 𝜐 ∑ ∑ 𝑥𝑖𝑗

𝑗∈𝐹′𝑖∈𝑁𝑆

 

(1)  

+𝑓𝑐 ( ∑ 𝜆𝑖
𝑆

𝑖∈𝑂𝑆

+ ∑ 𝜆𝑖
𝑅

𝑖∈𝑂𝑅

) 

where the first part formulates the route duration costs, the second and third parts formulate the 

recharging costs, and the fourth part formulates the congestion tolls. 

4.4. Constraints for Degrees of Nodes 

The model has a series of basic constraints which limit the times for which the nodes are visited 

as follows: 

∑ 𝑥𝑖𝑗

𝑗∈𝑁𝑅

= 1, 𝑖 ∈ 𝑉 (2)  

∑ 𝑥𝑖𝑗

𝑗∈𝑁𝑅

− ∑ 𝑥𝑗𝑖

𝑗∈𝑁𝑆

= 0, 𝑖 ∈ 𝑉 ∪ 𝐹′ (3)  

∑ 𝑥𝑖𝑗 ≤ 1,   

𝑗∈𝑁𝑅

𝑖 ∈ 𝐹′ ∪ 𝑂𝑆 (4)  



∑ 𝑥𝑗𝑖 ≤ 1,   

𝑗∈𝑁𝑆

𝑖 ∈ 𝑂𝑅 (5)  

∑ ∑ 𝑥𝑖𝑗 −

𝑗∈𝑉∪𝐹′𝑖∈𝑂𝑆

∑ ∑ 𝑥𝑗𝑖

𝑗∈𝑉∪𝐹′𝑖∈𝑂𝑅

= 0 (6)  

 

Constraints (2) and (3) ensure that each customer is visited exactly once. Specifically, Constraint 

(2) states that one arc leaves each customer node meanwhile Constraint (3) states that the number 

of arcs entering a customer node equals to the number of arcs leaving the customer node. In 

addition, Constraint (3) also guarantees this point for duplicated station nodes. Constraint (4) 

ensures that each node 𝑖 ∈ 𝐹′ ∪ 𝑂𝑆 is visited at most once. Similarly, Constraint (5) states that each 

node 𝑖 ∈ 𝑂𝑅  is visited at most once. Constraint (6) ensures the consistency of the involved vehicles. 

4.5. Constraints for Period Consistency 

The following constraints handle the consistency between time periods, which are a little similar 

to those in [35]. 

𝑑𝑖𝑗𝑥𝑖𝑗 − ∑ 𝑑𝑖𝑗𝑘

3

𝑘=1

= 0, (𝑖, 𝑗) ∈ 𝐴 (7)  

𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑘 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2, 3 (8)  

𝑥𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑘

3

𝑘=1

≤ 0, (𝑖, 𝑗) ∈ 𝐴 (9)  

𝑑𝑖𝑗𝑘 − 𝑑𝑖𝑗𝑥𝑖𝑗𝑘 ≤ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2, 3 (10)  

𝑥𝑖𝑗𝑘 − 𝑀𝑑𝑖𝑗𝑘 ≤ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2, 3 (11)  

Here, Constraint (7) indicates that the total distance traveled in all periods should be equal to the 

distance of an arc (𝑖, 𝑗) if the arc is visited, i.e.,  𝑥𝑖𝑗 = 1; or zero otherwise. Constraints (8) and (9) 

connect the variables 𝑥𝑖𝑗 and 𝑥𝑖𝑗𝑘. Specifically, Constraint (8) ensures that if such a period 𝑘 that 

𝑥𝑖𝑗𝑘 = 1 exists, we have 𝑥𝑖𝑗 = 1. Meanwhile, Constraint (9) states that if 𝑥𝑖𝑗𝑘 = 0 for all 𝑘 =

1, 2, 3, i.e., ∑ 𝑥𝑖𝑗𝑘
3
𝑘=1 = 0, we have 𝑥𝑖𝑗 = 0. Constraints (10) and (11) formulate the consistency 

of 𝑥𝑖𝑗𝑘 and 𝑑𝑖𝑗𝑘. In detail, the traveled distance of arc (𝑖, 𝑗) in period 𝑘 is at most its full distance 

𝑑𝑖𝑗 if 𝑥𝑖𝑗𝑘 = 1 or zero otherwise in Constraint (10). Constraint (11) states that an either smaller or 

larger distance must be traveled, that is to say, 𝑑𝑖𝑗𝑘 must be larger than zero, if the arc is selected 



to be traveled in period 𝑘, i.e., 𝑥𝑖𝑗𝑘 = 1, where 𝑀 is a large enough constant. 

4.6. Constraints for Time Continuity 

The following constraints formulate the time continuity of the model. 

𝑑𝑖𝑗𝑘 𝑣𝑘⁄ = 𝑡𝑖𝑗𝑘 ≤ 𝐿𝑘 − 𝐸𝑘, (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2, 3 (12)  

𝜏𝑖
𝐷 + 𝑡𝑖𝑗𝑘 ≤ 𝐿𝑘 + 𝐿3(1 − 𝑥𝑖𝑗𝑘), (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2, 3 (13)  

𝐸𝑘 + 𝑡𝑖𝑗𝑘 ≤ 𝜏𝑗
𝐴 + 𝐿3(1 − 𝑥𝑖𝑗𝑘), (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2, 3 (14)  

𝜏𝑖
𝐷 + ∑ 𝑡𝑖𝑗𝑘

3

𝑘=1

≤ 𝜏𝑗
𝐴 + 𝐿3(1 − 𝑥𝑖𝑗), (𝑖, 𝑗) ∈ 𝐴 (15)  

𝜏𝑖
𝐴 + 𝑠𝑖 ≤ 𝜏𝑖

𝐷 , 𝑖 ∈ 𝑉 (16)  

𝜏𝑖
𝐴 + (𝑞𝑖

𝐷 − 𝑞𝑖
𝐴) ∕ 𝑔 ≤ 𝜏𝑖

𝐷 ≤ 𝑙𝑖, 𝑖 ∈ 𝐹′ (17)  

𝑒𝑖 ≤ 𝜏𝑖
𝐴 ≤ 𝑙𝑖, 𝑖 ∈ 𝑁𝑅 (18)  

𝑒𝑖 ≤ 𝜏𝑖
𝐷 , 𝑖 ∈ 𝑂𝑆 (19)  

 

Constraint (12) calculates the traveled time of an arc (𝑖, 𝑗) in a given period as 𝑡𝑖𝑗𝑘 =  𝑑𝑖𝑗𝑘 𝑣𝑘⁄  and 

limits its scale by the length of the period. If 𝑥𝑖𝑗𝑘 = 1, Constraint (13) becomes 𝜏𝑖
𝐷 + 𝑡𝑖𝑗𝑘 ≤ 𝐿𝑘, 

i.e., the departure time at node 𝑖 plus the travel time in period 𝑘 cannot exceed the ending time of 

that period. If 𝑥𝑖𝑗𝑘 = 0, Constraint (13) is relaxed automatically because the ending time of the 

third period, i.e., 𝐿3, is large enough. Similarly, as in Constraint (13), Constraint (14) formulates 

the relationship between the starting time of a period 𝑘 plus the traveled time of an arc in that 

period, and the service beginning time at node 𝑗. Constraint (15) ensures that if an arc (𝑖, 𝑗) is 

selected, the departing time at node 𝑖 plus the total traveling time in all periods cannot exceed the 

arrival time at node 𝑗. Constraint (16) guarantees the service time according to the arrival time and 

departure time at a customer node. Similarly, Constraint (17) calculates the battery level of an EV 

according to the arrival time and departure time at a station node. Constraint (18) is the time 

window constraint for service beginning time of node 𝑖 ∈ 𝑁𝑅. Note that Constraints (17) and (18) 

form the double-side time window constraints for node 𝑖 ∈ 𝐹′. Constraint (19) states the left side 

of time window for departure time of node 𝑖 ∈ 𝑂𝑆 omitting the unnecessary right side. 

4.7. Constraints for Load and Battery Level 



The following constraints state the consistency of the remaining capacity and battery level. 

0 ≤ 𝑐𝑗
𝑅𝐸𝑀 ≤ 𝑐𝑖

𝑅𝐸𝑀 − 𝑑𝑖𝑥𝑖𝑗 + 𝐶(1 − 𝑥𝑖𝑗), (𝑖, 𝑗) ∈ 𝐴 (20)  

0 ≤ 𝑐𝑖
𝑅𝐸𝑀 ≤ 𝐶, 𝑖 ∈ 𝑂𝑆 (21)  

0 ≤ 𝑞𝑗
𝐴 ≤ 𝑞𝑖

𝐷 − 𝑟 ∑ 𝑑𝑖𝑗𝑘

3

𝑘=1

+ 2𝑄(1 − 𝑥𝑖𝑗), (𝑖, 𝑗) ∈ 𝐴 and 𝑖 ∈ 𝐹′ (22)  

0 ≤ 𝑞𝑗
𝐴 ≤ 𝑞𝑖

𝐴 − 𝑟 ∑ 𝑑𝑖𝑗𝑘

3

𝑘=1

+ 2𝑄(1 − 𝑥𝑖𝑗), (𝑖, 𝑗) ∈ 𝐴 and  𝑖 ∈ 𝑉 ∪ 𝑂𝑆 (23)  

0 ≤ 𝑞𝑖
𝐴 ≤ 𝑞𝑖

𝐷 ≤ 𝑄, 𝑖 ∈ 𝐹′ (24)  

 

Specifically, Constraint (20) formulates the remaining load level along routes using a similar 

method as in (13)-(15). The remaining capacity of an EV is changed by 𝑑𝑖 after it travels from 

node 𝑖  to node 𝑗 . Constraint (21) limits the initial capacity when an EV starts from a depot. 

Constraint (22) states that the battery level when an EV departs from node 𝑖 minus the consumed 

electricity should equal to the battery level when it arrives at node 𝑗. Remembering that an EV has 

the same battery level when it departs from a node 𝑖 ∈ 𝑉 ∪ 𝑂𝑆 as it arrives at that node, we have 

Constraint (23). Constraint (24) bounds the battery level when an EV arrives at and departs from 

a station node. 

4.8. Constraints for Whether Entering Peak Periods 

The following constraints determine whether a vehicle enters a peak period. 

𝜆𝑖
𝑆 ≥ ∑ 𝑥𝑖𝑗

𝑗∈𝑉∪𝐹′

− 𝜏𝑖
𝐷 𝐿1⁄ , 𝑖 ∈ 𝑂𝑆 (25)  

𝜆𝑖
𝑅 ≥ 𝜏𝑖

𝐴 𝐸3⁄ − ∑ 𝑥𝑗𝑖

𝑗∈𝑉∪𝐹′

, 𝑖 ∈ 𝑂𝑅 (26)  

We have ∑ 𝑥𝑖𝑗𝑗∈𝑉∪𝐹′ = 1 if a vehicle departs from node 𝑖. If the departure time is earlier than the 

ending time of the first period, that is, 𝜏𝑖
𝐷 𝐿1⁄ < 1, 𝜆𝑖

𝑆 should be larger than a positive number. Its 

binary attribute forces it to be 1 according to Constraint (25). Otherwise, 𝜏𝑖
𝐷 𝐿1⁄ > 1, 𝜆𝑖

𝑆 should be 

larger than a negative number. The objective function forces it to be 0. Similarly, Constraint (26) 

ensures that a vehicle enters the evening peak period if and only if it arrives at the depot later 

than 𝐸3. 



4.9. Constraints for Variable Type 

Finally, the following constraints describe the type and range of variables, where necessary. 

𝑥𝑖𝑗 ∈ {0,1}, 𝑥𝑖𝑗𝑘 ∈ {0,1}, 𝑑𝑖𝑗𝑘 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, 2,3 (27)  

𝜆𝑖
𝑆 ∈ {0,1}, 𝜆𝑗

𝑅 ∈ {0,1}, 𝑖 ∈ 𝑂𝑆, 𝑗 ∈ 𝑂𝑅 (28)  

4.10. NP-hard Property 

Theorem 1: The problem of TDEVRP-CT is NP-hard. 

Proof: TDEVRP-CT degenerates to the vehicle routing problem with time windows (VRPTW) if 

the battery capacity Q is infinitely large. Savelsbergh [44] reported that VRPTW is NP-hard. As a 

result, we can conclude that TDEVRP-CT is NP-hard.  □ 

5. An Adaptive Large Neighborhood Search Heuristic 

The model presented in Section 4 is a mixed-integer linear programming (MILP) model. Due to 

its NP-hard property, existing optimization software such as Gurobi can only be used to solve 

small-sized instances of TDEVRP-CT. Therefore, we propose an ALNS heuristic to solve the 

problem. 

ALNS is an extension of the large neighborhood search (LNS) framework put forward by Shaw 

[45]. In order to escape from a local optimum solution, Shaw [45] made large changes to a current 

solution instead of making very small changes as could be seen in most metaheuristics. Ropke and 

Pisinger [46] improved the LNS framework applying the removal and insertion operators 

adaptively. Recently, ALNS has been successfully applied to solve variant VRPs, see, e.g., [11], 

[47]-[51]. 

The ALNS heuristic generates an initial solution firstly. It updates the solution iteratively until a 

given number of iterations is reached. During each iteration, several nodes 𝑖 ∈ 𝑁 are removed from 

the current solution and then inserted back resulting in a new solution. The acceptance criterion of 

simulated annealing is used to accept or reject the generated new solution. That is, a new solution 

is accepted if it is better than the best-so-far solution, or accepted with a dynamic probability 

otherwise. The selection of removal algorithms and insertion algorithms is based on a roulette 



wheel mechanism, in which the weights of the removal / insertion algorithms are updated 

according to their performance dynamically. Main idea and framework of the ALNS heuristic 

aforementioned could also be found in [11]. Therefore, we only present the differences compared 

to the method of [11] hereafter in this section. 

5.1. Initial Solution 

The initial solution is obtained by sequential inserting the customers to a current route. The solution 

construction begins with an empty route. The insertion costs of all unassigned customer nodes to 

all possible existing positions of the route are determined. The best customer node is selected and 

inserted at the best position. If necessary, a station node 𝑖 ∈ 𝐹 is inserted using the Greedy Station 

Insertion algorithm. That is to say, insert the best station between the first customer node at which 

the battery level becomes negative and its preceding node. If this insertion is infeasible, insert the 

station on the preceding arc similarly. If no customer node can be inserted, the current route is 

finalized and a new empty route is constructed. Such a procedure is repeated until all customer 

nodes have been assigned. 

5.2. Removal / Insertion Algorithms 

The removal algorithms include two classes as: customer removal and station removal. The 

customer removal algorithms used in the ALNS heuristic are Random Removal, Worst-Distance 

Removal, Shaw Removal, Random Route Removal, and Greedy Route Removal. For these 

customer removal algorithms, we use two more options as (a) removing customer with preceding 

station and (b) removing customer with succeeding station in addition to the default option as 

removing customer only. The station removal algorithms used in this research are Random Station 

Removal, Worst-Distance Station Removal, and Worst-Charge Usage Station Removal. See [11] 

for a detailed description of the aforementioned removal algorithms and their options. 

Similarly, the insertion algorithms also include two classes: customer insertion and station 

insertion. The customer insertion algorithms are Greedy Insertion, Regret-2 Insertion, and Regret-

3 Insertion. When calculating performance of the customer insertion algorithms, two options as (a) 

without noise, i.e., actual cost, and (b) with noises, are used (refer to [52]). The performance of 

operators with noises is defined as the actual cost plus 0.2𝜆𝑓𝑑(𝐿3 − 𝐸1), where 𝜆 is a random 

number between −1 and 1. The station insertion algorithms include Greedy Station Insertion, 



Greedy Station Insertion with Comparison, and Best Station Insertion. See [11] for a detailed 

description of these insertion algorithms. In addition to the three station insertion algorithms 

aforementioned, we propose a so-called Multiple Greedy Station Insertion. That is, if inserting one 

station to a route cannot make it feasible, the Greedy Insertion is repeated until the route is feasible. 

See Section 5.3 for calculation of (actual) insertion cost of a node as well as the determination of 

charged amount at a station. 

5.3. Decoding, Feasibility, and Optimality of Solutions 

The removal / insertion algorithms presented above handle node sequences only. A node sequence, 

i.e., a route, corresponds to the visiting of customer nodes and the recharging at stations of a vehicle. 

Besides node sequences, a solution of TDEVRP-CT also consists of the arrival time, departure 

time, and remaining load capacity at customer nodes as well as the recharging amount of electricity 

at stations. This section presents the determination of such information, i.e., feasibility and 

optimality of a route. Such determination process is executed for each route of a solution. Note 

that the feasibility and optimality of a route are discussed along with the decoding of the route. 

Due to the difference in the mathematical model especially in the objective function (1), calculation 

of the insertion cost of a node to a route differs from that in [11], which is the main difference 

between the ALNS in [11] and the ALNS illustrated here. 

5.3.1 Insertion of customer nodes 

Checking the constraints of load capacity and time windows are relatively easy. Therefore, we 

mainly discuss the constraint of battery level given that the constraints of load capacity and time 

windows are satisfied. The main steps of inserting a customer node to a route are as follows. 

Step 1: If the battery level when an EV arrives at some nodes in the current route is negative, let 

the first one among such nodes be 𝑖, go to Step 2; otherwise, go to Step 5. 

Step 2: If a station node, say 𝑗, exists before 𝑖 in the current route and the battery has enough 

capacity when the EV departs from node 𝑗, go to Step 3; otherwise, go to Step 4. 

Step 3: Try to increase the recharging amount at node 𝑗 (see Section 5.3.3)). If the route fails to 

become feasible, go to Step 4; otherwise go to Step 5. 



Step 4: Try to insert a station node using the Greedy Station Insertion algorithm. If the route fails 

to become feasible, the insertion of the customer node is infeasible, return; otherwise, go to Step 

5. 

Step 5: Adjust service-beginning time in the route (see Section 5.3.4)). 

5.3.2 Insertion of station nodes 

The insertion of a station node before a node 𝑖 of a route depends on cases. 

Case 1: There is no station node before node 𝑖 in the route. Select the best station among those 

which are reachable from the preceding node of 𝑖 and insert it to the given position. If the route is 

feasible with respect to the time window constraints, try to allocate the recharging amount at the 

station (see Section 5.3.3)) and then adjust the service-beginning time (see Section 5.3.4)). The 

insertion is infeasible either if it violates the time window constraints or if the allocation of 

recharging amount fails. 

Case 2: One or more station nodes exist before node 𝑖 in the route. Try to allocate the recharging 

amounts at the existing stations (see Section 5.3.3)) in order to make the route feasible. If this 

allocation fails to make the route feasible, the handling under Case 1 is executed; otherwise, the 

adjusting of service-beginning time is executed (see Section 5.3.4)). 

5.3.3 Allocation of recharging amounts 

Notice that a battery-infeasible route might become feasible without inserting stations. Now we 

try to make an infeasible route feasible without modifying the sequence of nodes. Whether the load 

capacity constraint is satisfied depends only on the customer nodes in the route. As a result, here 

we always assume that the load capacity constraint holds. In addition, the arrival and departure 

times at each node satisfy its time window constraint initially. 

Therefore, we get the following main idea of the allocation of recharging amounts. Firstly, an EV 

should depart the customer nodes as early as possible initially so that it has enough time to recharge 

its battery. Secondly, an EV should be recharged as much as possible at stations so that it could 

travel a long distance. Thirdly, the time window constraint at any node cannot be violated. Fourthly, 

the battery level at any time can neither be negative nor higher than its battery capacity (specifically, 



when the EV departs from a station node). Such an allocation succeeds if it makes a route feasible 

or fails otherwise. 

5.3.4 Adjustment of service-beginning time 

Now we are ready to adjust the service-beginning time at nodes in a feasible route so as to minimize 

operating cost of the vehicle. The summation of the operating costs of all involved EVs results in 

the objective value in (1). Remember that an EV should depart from the depot as early as possible 

in the allocation of recharging amounts as well as in the insertion of nodes aforementioned. Such 

an early departure might cause waits at some other nodes. We delay the departure time at the depot 

and the service-beginning times at the nodes as much as possible on the condition that the vehicle 

returns to the depot at the earliest time. The aim of this delay is to avoid waiting at nodes if possible. 

In such scenario, the departure time from the depot is denoted as 𝜏𝐸𝐷.  

Case 1: The EV waits at some nodes when departing the depot at 𝜏𝐸𝐷.  

Proposition 1: If the EV still waits at some nodes with departure time 𝜏𝐸𝐷 , then 𝜏𝐸𝐷 corresponds 

to the minimum route duration. 

Proof: Let the first one among the waiting nodes be 𝑖. There exists a node before 𝑖 whose service-

beginning time is the right side of its time window. Otherwise, the EV still can postpone the 

departure time, which contradicts the construction of  𝜏𝐸𝐷 . Thus, 𝜏𝐸𝐷  is the latest allowed 

departure time. We can conclude that  𝜏𝐸𝐷 corresponds to the minimum route duration.    □ 

Following Lemma 1, the operating cost can be calculated according to the departure time 𝜏𝐸𝐷 from 

the depot, the earliest return time to the depot, and whether it enters peak periods. 

Case 2: The EV does not wait at any node. We also try to delay the departure time at the depot. 

However, the aim of this delay is to avoid entering peak periods if possible. Let this latest departure 

time of an EV be  𝜏𝐿𝐷 . The vehicle selects the best departure time at the depot in the range 

of [𝜏𝐸𝐷 , 𝜏𝐿𝐷]. The selecting criterion is to minimize its operating cost. 

6. Validation and Evaluation  

This section validates and evaluates the modeling and solving methodology of TDEVRP-CT. 

Specifically, Section 6.1 presents experiment setting and parameter tuning. Sections 6.2 and 6.3 



evaluate the methodology with small-and medium-sized instances, and large-sized instances, 

respectively. 

6.1 Experimental Setting and Parameter Tuning 

The ALNS heuristic presented in Section 5 was coded in C++. As a comparison, small- and 

medium- sized instances of the MILP model were also solved using Gurobi version 6.5.2 

embedded by the Matlab toolbox YALMIP. All experiments were carried out on a personal 

computer with 3.2 GHz Intel I5 CPU and 4 GB of RAM. 

The division of the scheduling horizon into periods, the speeds of vehicles in periods, and the cost 

coefficients in the objective function were generated based on the instances for EVRPTW in [10], 

which is available at http://evrptw.wiwi.uni-frankfurt.de. For instances of Type C1, C2, R2, and 

RC2, the scheduling horizon was divided into three periods using the ratio vector [0.1, 0.8, 0.1]. 

The average speeds in the three periods are 0.65, 1, and 0.55, respectively. For example, the 

horizon in Instance C101-5D is 1236, where the letter 'D' at the end of instance names in this paper 

denotes the time-dependent property. Therefore, the morning peak is [0, 123.6], i.e., 𝐸1 = 0, 𝐿1 =

𝐸2 = 123.6, 𝐿2 = 𝐸3 = 1112.4, and 𝐿3 = 1236. As a contrast, for instances of Type R1 and RC1, 

the horizon was divided into two periods using the ratio vector [0.1, 0.9] because they are short. 

The first period is the (morning) peak period with an average speed 0.75. The second period is off-

peak with a speed 1. Based on the salary standard as 10 euro per hour and the recharging fees given 

in literature [27], the cost coefficients are generated as: 𝑓𝑑 = 0.167€/min ,  𝑓𝑐 = 5€ , 𝑓𝑒 =

0.0098€/km and υ = 1€. 

The maximum number of iterations of the ALNS heuristic was set to be 25,000, as in most ALNS 

algorithms [11, 47, 49]. The lower bound and upper bound for the number of customers to be 

removed were set as 0.1|𝑉| and 0.4|𝑉|, respectively, where |𝑉| denotes the size of 𝑉. Similarly, 

the upper bound for the number of stations to be removed was set as 0.35 times the number of 

stations used in the current solution. The tuning methodology of the other key parameters of the 

ALNS heuristic is the same as in [11], and has been widely used in literature such as [46]. Six 

instances, i.e., C106D, R106D, R107D, RC101D, RC104D, RC105D, were selected for parameter 

tuning. The initial value of each parameter was set as the optimum value of the corresponding 

parameter in [11]. The tuning results as well as the corresponding symbols used in [11] are shown 

in Table 1. 



Table 1 Tuning results of parameters 

Parameter (Symbol used in [11]) Value 

Score of the best-so-far solution in the performance of algorithms (𝜎1) 25 

Score of the better solution in the performance of algorithms (𝜎2) 20 

Score of the worse solution in the performance of algorithms (𝜎3) 21 

Roulette wheel parameter when updating weights of algorithms (𝜌) 0.25 

Cooling rate of the temperature (𝜖) 0.9994 

Initial temperature control parameter of the acceptance criteria (𝜇) 0.4 

First Shaw parameter in Shaw Removal (𝜙1) 0.5 

Second Shaw parameter in Shaw Removal (𝜙2) 13 

Third Shaw parameter in Shaw Removal (𝜙3) 0.15 

Fourth Shaw parameter in Shaw Removal (𝜙4) 0.25 

Shaw removal determinism factor in Shaw Removal (𝜂) 6 

Worst removal determinism factor in Worst-Distance Removal (𝜅) 4 

# of iterations between which adaptive weights of customer algorithms are updated (𝑁𝐶) 200 

# of iterations between which adaptive weights of station algorithms are updated (𝑁𝑆) 5500 

# of iterations between which station algorithms are performed (𝑁𝑆𝑅) 60 

# of iterations between which Random Route Removal is performed (𝑁𝑅𝑅) 2000 

# of consecutive iterations during which Random Route Removal is performed (𝑛𝑅𝑅) 500 

Upper bound in Random Route Removal (𝑚𝑟) 0.3 

 

6.2 Experiments on Small- and Medium- Sized Instances 

All 36 small- and medium- sized instances, each of which consists of 5, 10, or 15 customers, are 

solved. The instances were solved using the ALNS heuristic as well as directly by Gurobi. When 

an instance is solved directly, the time limit of Gurobi was set as 7200 seconds. Remember that 

the number of duplicated depots and that of each station should be determined before we solve the 

MILP model directly. The size of 𝑂𝑆, which is also the size of 𝑂𝑅, is determined as follows. We 

initially set it as the number of involved EVs in the corresponding instance in [11] and try to solve 

the model. If the model is reported to be infeasible or Gurobi cannot find even a feasible solution 

in the given time, we enlarge the two sets 𝑂𝑆 and 𝑂𝑅 by 1. Such a procedure is repeated until a 

feasible solution is reported. However, we stop enlarging the sets if the size of them reaches the 

number of EVs in the solution given by the ALNS heuristic. The number of duplicated stations is 

determined similarly. We initially set 𝑛𝑖 as |𝑂𝑆| for each station 𝑖 ∈ 𝐹 and try to solve the model. 

If all duplicated nodes of a station 𝑖 are used, we increase 𝑛𝑖 by 1. If more than one duplicated 

nodes of a station 𝑖 are not used, we decrease 𝑛𝑖 by 1. That is, one of the duplicated nodes of each 

station is not used finally. 



Table 2 presents results of the two solution methods. It can be observed that Gurobi finds a solution 

for each of 31 instances and fails to give feasible solutions for the other 5 instances in the given 

time limit. Among the 31 instances, Gurobi obtains the optimum solutions for 14 instances before 

the time limit reaches. As a comparison, the ALNS heuristic obtains a solution for each of the 36 

instances very quickly, in several seconds for most instances. For the 14 instances which optimum 

solutions have been found by Gurobi, the ALNS heuristic provides the same solution (with the 

same objective values). Among the instances which feasible but not optimum solutions are 

obtained by Gurobi, the ALNS heuristic provides a better solution than Gurobi for 12 instances. 

The average improvement is 6.16% (see the last column). For all instances which solutions 

(optimum or feasible) have been obtained by Gurobi, the number of involved vehicles in the 

solutions provided by the two methods is the same (see the column "#Veh."). As a result, the ALNS 

heuristic can provide the optimum solutions for smaller-sized instances or better solutions for 

medium-sized instances in a much shorter time than the software Gurobi. This validates the ALNS 

heuristic. 

6.3 Experiments on Large-Sized Instances 

We further evaluate the methodology based on large-sized instances in this subsection. Focus of 

the evaluation is the impact of congestion tolls. Twenty-nine instances, each of which consists of 

100 customers and 21 recharging stations, were selected. We set 𝑓𝑑 = 0.167 in all instances. The 

value of 𝑓𝑐 in each instance was set as 0 and then as 20 in addition to the default value of 5 as in 

Section 6.1. For each of the 87(= 29 × 3) instances, the ALNS heuristic is repeated for 5 times 

independently and the best solution among the 5 repeats are reported. Unsurprisingly, the running 

time of the ALNS heuristic is much longer than the time when solving the small- and medium- 

sized instances in Section 6.2. The average running time is 12.46 minutes, 107.66 times larger than 

the average running time of the small- and medium- sized instances. 

Table 2 Results on small- and medium- sized instance 

Instance 
Gurobi 

#Veh. 
ALNS 

Obj. CPU(s) Obj. CPU(s) Obj. Improvement % 

C101-5D 215.06 9.61 2 215.06 1.29 0.00 

C103-5D 174.15 4.88 1 174.15 1.53 0.00 

C206-5D 221.26 22.03 1 221.26 1.83 0.00 

C208-5D 167.31 77.87 1 167.31 1.40 0.00 

R104-5D 33.95 2.09 2 33.95 1.05 0.00 

R105-5D 40.10 1.36 2 40.10 0.82 0.00 



R202-5D 41.77 412.55 1 41.77 1.64 0.00 

R203-5D 52.10 806.56 1 52.10 2.50 0.00 

RC105-5D 63.21 7.00 2 63.21 0.95 0.00 

RC108-5D 61.13 8.49 2 61.13 1.01 0.00 

RC204-5D 49.32 7200.00 1 47.87 2.07 3.03 

RC208-5D 45.16 278.60 1 45.16 1.82 0.00 

C101-10D 406.26 463.99 3 406.26 1.79  0.00 

C104-10D 279.23 7200.00 2 279.23 8.44  0.00 

C202-10D 505.44 7200.00 1 505.44 6.51 0.00 

C205-10D 434.64 451.04 2 434.64 2.97  0.00 

R102-10D 96.14 7200.00 3 94.07 2.20  0.00 

R103-10D 62.43 7200.00 2 62.07 0.58  5.39 

R201-10D 95.61 521.84 1 95.61 4.02  0.00 

R203-10D 94.10 7200.00 1 93.81 0.31  2.38 

RC102-10D 104.59 7200.00 4 99.62 4.99  0.00 

RC108-10D 87.03 7200.00 3 86.56 0.54  6.83 

RC201-10D 139.34 7200.00 2 139.34 3.79  20.74 

RC205-10D 119.16 7200.00 2 119.16 3.86  2.76 

C103-15D 471.48 7200.00 3 432.87 9.60 8.92  

C106-15D 374.42 7200.00 3 367.32 5.24 1.93  

C202-15D 628.56 7200.00 2 625.99 14.86 0.41  

C208-15D 479.02 7200.00 2 435.03 6.32 10.11  

R102-15D NA 7200.00 5 115.81 2.70 NA 

R105-15D 99.95 7200.00 4 99.95 2.67 0.00  

R202-15D 181.58 7200.00 2 161.38 22.85 12.52  

R209-15D NA 7200.00 1 111.71 17.91 NA 

RC103-15D NA 7200.00 4 107.54 3.35 NA 

RC108-15D NA 7200.00 3 102.13 3.38 NA 

RC202-15D 198.72 7200.00 2 154.83 9.70 28.35 

RC204-15D NA 7200.00 1 128.87 91.18 NA 
a Gurobi cannot provide a feasible solution in the given time limit 7200 seconds. 

 

The detailed results of this evaluation are presented in the Appendix. Table 3 reports the statistical 

information of the results, where column #Veh. is the number of vehicles involved in the solution 

and #Veh.-C is the number of vehicles that enter the congestion periods in total. Besides the 

objective values Obj., the cost related to the congestion, the total route durations and the cost 

related to the recharging (See (1)), are also reported in Columns Obj.-C, Obj.-D and Obj.-E, 

respectively.  

Table 3 Statistical results of the large-sized instances 

𝑓𝑐 #Veh. #Veh.-C Obj.-C Obj.-E Obj.-D Obj. 

0 362 223 0 480.39 24893.21 25373.63 

5 367 124 765 494.72 24974.41 26234.74 



20 369 99 2320 518.69 25165.34 27974.00 

 

Several remarks could be concluded from the results. Firstly, as the value of 𝑓𝑐 increases from 0 to 

5 and then to 20, the total congestion tolls increase, and it also pushes the total route durations to 

increase, in almost all instances. Table 3 summarizes the results in this viewpoint. The total 

congestion tolls, the recharging costs, the route duration- related costs and the objective values are 

increased by 203.270%, 4.85%, 0.76% and 6.63%, respectively, as 𝑓𝑐 increases from 5 to 20. This 

is expected. 

Secondly, it can be observed that as 𝑓𝑐 increases, less vehicles enter peak periods although the total 

duration might also increase. If no congestion toll is collected, i.e., 𝑓𝑐 = 0, then 223 out of 362 

vehicles enter peak periods totally in the 29 instances. 

However, if 𝑓𝑐 = 5, only 124 vehicles enter peak periods although 367 vehicles are involved. The 

number of vehicles that enter peak periods decreases to 98 if 𝑓𝑐 = 20  (See Table 3). This 

phenomenon is notable especially for Type C instances. For 6 out of 9 Type C instances, the times 

for which vehicles enter peak periods decreases as 𝑓𝑐 increases from 0 to 5. The average relative 

decreasement is 16.36%. Instance C109D gives the maximum decreasement as 60%. If 𝑓𝑐 = 0, the 

vehicle enters peak periods for 5 times. However, if 𝑓𝑐 = 5, the vehicle enters peak periods only 

twice (See Column Times-C in Table A1). The result that 𝑓𝑐 continues to increase is similar but 

not that significantly as the result that 𝑓𝑐 increase from 0 to 5. The vehicles enter peak periods for 

less times when 𝑓𝑐 increases from 5 to 20 in 6 out of 9 C-typed instances. This validates the motion 

of gathering a certain amount of congestion tolls to relieve congestions. 

7. Conclusions and Future Research  

This paper addresses TDEVRP-CT in which the scheduling horizon is divided into several periods, 

speeds of EVs differ from period to period, and congestion tolls are collected if a vehicle enters a 

peak period. A MILP model is established to formulate the problem. An ALNS heuristic is 

designed to solve the problem and validated with benchmark instances. 

Results indicate that the ALNS heuristic could provide much better solutions than typical existing 

optimization software such as Gurobi in a much shorter running time. A certain amount of 

congestion tolls is able to decrease the number of vehicles entering peak periods and to relieve 

congestions. Therefore, this research is valuable and referable in both academic and industrial 



fields. It can help logistic companies in routing and scheduling EVs to control the cost and to 

relieve traffic congestions. 

Limitations of this research are as follows. We implicitly assume that the recharging poles at each 

station are enough. Therefore, the possible waiting of EVs at stations are not considered in this 

research. Secondly, we define the operating costs including the congestion tolls-related costs as 

the optimization criterion without considering the building costs of stations. Finally, the ALNS 

heuristic cannot guarantee the optimality of solutions but only provides near optimum solutions. 

This research could be followed in several ways. For example, how to handle the scenarios that 

some roads are accessible only within certain time periods? What will happen if congestion tolls 

are collected based on zones, or on both periods and zones? What will happen if the waiting time 

at the recharging stations is introduced into the model? These are all interesting topics. 

 

Appendix 

Table A1 reports the results of the evaluation for large-sized instances. Besides the objective values, 

the cost related to the total route durations, and the cost related to the recharging (See (1)), are also 

reported in Columns Obj.-D and Obj.-E, respectively. Furthermore, Column Times-C lists the total 

times that vehicles enter peak periods. Column #Veh. presents the number of vehicles involved in 

the solution.  

Table A1 Results for large-sized instances 

Ins.  𝑓𝑐 Obj. Obj.-D Obj.-E #Veh. Times-C CPU (min) 

C101D 0 1884.03 1870.50 13.53 12 17 13.01  

 5 1970.52 1872.03 13.49 12 17 13.71  

 20 2230.17 1895.65 14.52 12 16 13.54  

C102D 0 1886.22 1872.97 13.24 11 15 11.86  

 5 1963.76 1877.63 11.13 11 15 12.94  

 20 2178.97 1905.30 13.68 11 13 11.36  

C103D 0 1867.56 1856.38 11.18 10 17 13.93  

 5 1954.58 1863.27 11.31 10 16 13.90  

 20 2004.17 1834.29 9.88 11 8 14.65  

C104D 0 1767.12 1759.77 7.35 10 11 22.43  

 5 1820.90 1762.49 8.41 10 10 21.67  



 20 1975.52 1767.07 8.45 10 10 22.35  

C105D 0 1852.82 1840.56 12.25 11 12 10.22  

 5 1915.89 1842.66 13.24 11 12 10.25  

 20 2061.96 1869.25 12.71 11 9 10.22  

C106D 0 1832.17 1821.07 11.10 11 8 11.48  

 5 1872.17 1821.07 11.10 11 8 11.47  

 20 1978.85 1826.66 12.19 11 7 11.24  

C107D 0 1827.04 1816.92 10.11 11 9 11.31  

 5 1866.83 1815.12 11.11 11 8 11.08  

 20 1970.30 1819.12 11.17 11 7 11.73  

C108D 0 1877.35 1863.68 13.67 10 16 12.81  

 5 1846.34 1815.16 11.18 11 4 12.82  

 20 1903.39 1812.23 11.16 11 4 12.82  

C109D 0 1766.77 1759.31 7.46 11 5 14.74  

 5 1785.82 1766.27 9.55 11 2 15.54  

 20 1832.79 1782.96 9.83 11 2 15.34  

R101D 0 571.19 539.98 31.21 18 10 10.67  

 5 629.68 547.04 32.64 18 10 10.94  

 20 771.41 539.18 32.24 18 10 11.11  

R102D 0 508.80 483.33 25.47 16 9 10.74  

 5 550.21 484.97 25.24 16 8 10.74  

 20 678.39 489.86 28.54 16 8 10.86  

R103D 0 450.63 426.00 24.63 13 9 12.75  

 5 463.11 422.82 20.28 14 4 12.86  

 20 525.10 424.74 20.36 14 4 12.33  

R104D 0 388.07 373.22 14.84 12 7 15.41  

 5 409.17 376.21 12.96 12 4 15.49  

 20 457.18 382.02 15.16 12 3 15.19  

R105D 0 467.87 447.03 20.84 15 10 10.38  

 5 498.35 459.10 24.25 15 3 10.68  

 20 552.03 464.57 27.46 15 3 10.91  

R106D 0 451.84 429.31 22.53 14 8 11.77  

 5 476.39 438.61 22.78 14 3 11.43  

 20 511.25 446.22 25.03 14 2 11.43  

R107D 0 402.11 384.77 17.34 12 7 12.74  

 5 417.75 393.00 19.75 12 1 13.00  

 20 440.09 400.06 20.03 12 1 12.95  

R108D 0 395.96 377.41 18.55 11 7 15.68  

 5 437.01 387.09 19.92 11 6 16.67  



 20 397.45 381.03 16.42 12 0 16.98  

R109D 0 417.42 399.80 17.62 13 3 11.77  

 5 431.97 407.95 19.03 13 1 11.64  

 20 435.68 414.40 21.28 13 0 11.99  

R110D 0 392.03 377.98 14.05 12 4 13.10  

 5 399.07 381.84 17.23 12 0 13.68  

 20 397.03 380.82 16.21 12 0 15.07  

R111D 0 396.37 380.16 16.22 12 4 13.35  

 5 408.10 389.49 18.61 12 0 13.87  

 20 408.10 389.49 18.61 12 0 14.08  

R112D 0 381.36 366.27 15.09 11 7 16.28  

 5 380.54 364.80 15.74 12 0 16.70  

 20 383.40 366.59 16.81 12 0 16.83  

RC101D 0 517.08 495.30 21.77 16 10 8.78  

 5 544.42 501.33 23.08 16 4 8.78  

 20 580.73 514.45 26.28 16 2 8.82  

RC102D 0 482.17 463.00 19.17 15 9 9.07  

 5 504.91 475.42 19.49 15 2 9.08  

 20 525.73 482.91 22.82 15 1 9.10  

RC103D 0 435.49 419.07 16.43 13 7 9.55  

 5 455.17 423.65 16.51 13 3 9.58  

 20 489.27 448.73 20.55 13 1 9.63  

RC104D 0 415.24 398.77 16.47 11 9 10.09  

 5 415.67 399.44 16.23 12 0 12.88  

 20 414.10 398.01 16.09 12 0 12.03  

RC105D 0 470.85 451.02 19.83 14 7 10.04  

 5 499.00 453.23 20.77 14 5 9.87  

 20 552.43 451.50 20.92 14 4 9.76  

RC106D 0 448.84 430.48 18.36 14 6 9.65  

 5 462.06 437.37 19.69 14 1 9.81  

 20 462.13 443.28 18.86 14 0 9.80  

RC107D 0 414.57 399.57 15.00 12 7 11.07  

 5 448.40 402.25 16.15 12 6 10.51  

 20 449.38 441.79 17.59 12 1 10.56  

RC108D 0 404.66 389.58 15.08 11 8 11.28  

 5 406.95 393.10 13.85 12 0 12.45  

 20 407.00 393.16 13.84 12 0 11.45  
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