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Abstract: Scheduling the recharging of electric vehicle fleets under different scenarios is an
important but open problem. One important scenario is that vehicles travel at different speeds in
different periods since traffic congestion is common in urban areas nowadays. Therefore, this
paper proposes a novel time-dependent electric vehicle routing problem with congestion tolls. If a
vehicle enters a peak period, a fixed congestion toll needs to be paid in this problem. A mixed
integer linear programming model is established and an adaptive large neighborhood search
(ALNS) heuristic is designed to solve the model. The model and solving method are validated and
evaluated extensively with benchmark instances. Results indicate that a certain level of congestion
tolls could prevent vehicles from entering peak periods and relieve road congestions significantly.
Furthermore, the ALNS heuristic could provide much better solutions for the problem than typical

optimization software such as Gurobi in much shorter running time.
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1. Introduction

Green logistics is an important research field. It was reported that transportation activities represent
about 22% of the total carbon emissions; road transportation is responsible for almost 75% of the
carbon emissions from transportation in the year of 2010 (refer to [1]). Freight transportation by

road has caused not only environmental but also social issues. For example, serious haze-fog days
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appeared widely in recent years in some countries including China. The emissions of trucks
contribute the cause of such a serious atmospheric problem, more or less. Additionally, freight
transportation has also aggravated traffic congestions in many cities, especially in morning and
evening peak periods. The Ministry of Industry and Information Technology of People’s Republic
of China issued in 2019 that the use of conventional internal combustion engine vehicles would be
forbidden in some cities and that the government is taking a series of measures to promote the
development of alternative fuel vehicles [2]. For instance, a highway network with recharging
stations has been built in the Beijing-Tianjin-Hebei zone.

Electric vehicles (EVs), as a major alternative fuel vehicle type, are becoming a hot point in the
field of green logistics. It is obvious that the operating process of EVs almost does not emit carbons.
The whole life-cycle really emits very few carbons if the generation of electricity is also clean.
However, development of EV industries is still restricted partially because of the limited travel
ranges and long recharging time of EVs [3]. Therefore, researchers are focusing on the design of
EV batteries and other technologies in the viewpoint of electric engineering (refer to [4-7]), the
locating of recharging stations (refer to [8-9]) and the scheduling as well as routing of EVs (refer

to [10]) in the viewpoint of operations research.

Few articles investigate electric vehicle routing problems (EVRPSs) considering both routing and
recharging of vehicles. For example, Schneider et al. [10] extended EVRP introducing time
window constraints resulting in EVRP with time windows (EVRPTW). They assumed that the
recharging time at a station is a function of the current battery level and the battery becomes full
when the vehicle departs from the station. However, this is unnecessary in most applications. The
articles addressing EVRP with partial recharges are even scarce. For instance, Keskin and Catay
[11] allowed EV batteries to be recharged to any level (up to capacity of the batteries) with a linear

rate.

Much attention has also been paid to traffic congestions. Vehicles travel at different speeds in
different road conditions due to the existence of congestions. For example, some articles presented
the shortest path problem on a time-dependent network (see, e.g., [12]). Tolling on the vehicles
that pass certain roads or enter certain areas has become very popular to relieve congestions and
to guide public transportation. For example, Liu et al. [13] studied a morning commute problem

with both household and individual travels in which tolls are collected on bottleneck roads. Similar



researches could also be found in, for example, [14].

However, most articles that address EVRPs assume that EVs travel at a given constant speed
between locations without considering traffic congestions (see Section 2 for a detailed review of
literature). To the best of our knowledge, the model introduced by Shao et al. [15] was the first
routing model that considers variable travel time. They considered soft time window and vehicle
capacity constraints. However, they did not consider partial recharging schemes and assumed a
fixed charging time in their model. Pourazarm et al. [16,17] took into account real-time traffic
information when arranging EV routes where each EV traveled from a fixed origin to a fixed
destination, which is beyond the scope of this research.

As a result, we introduce time-dependent travel speeds and congestion tolls into EVRPTW in this
paper, in which a fleet of EVs deliver freight to a set of geographically scattered customers. A
working day is divided into morning peak, off-peak, and evening peak periods. The speeds of EVs
in different periods are different. Each EV consumes a fixed amount of electricity per travel
distance and can be recharged to any level at a linear rate of time at recharging stations. If a vehicle
enters a peak period, a fixed toll is collected. The problem minimizes total transportation costs

including route duration related costs, recharging costs and congestion tolling costs.

The contributions made in this research could be summarized as follows. Firstly, time-dependent
travel speeds and congestion tolls are introduced into EVRPs. A time-dependent EVRP with
congestion tolls and time window constraints (TDEVRP-CT, for short) is mathematically modeled
as a mixed integer linear programming model. Secondly, an adaptive large neighborhood search
(ALNS) heuristic (refer to [11]) with an allocating algorithm of recharging amounts and an
adjusting algorithm of visit-beginning time is designed to solve the TDEVRP-CT. Thirdly, the
ALNS heuristic is validated with benchmark instances that were designed for EVRPTW and
compared with a typical optimization software Gurobi. Finally, several primary concluding
remarks are presented. The experimental results will indicate how the TDEVRP-CT help

decreasing the total cost by routing and scheduling EVs in different congestion scenarios.

The remainder of this paper is organized as follows. Section 2 reviews the related literature.
Sections 3 and 4 describe and mathematically model TDEVRP-CT, respectively. The ALNS
heuristic is designed in Section 5 and then validated and evaluated in Section 6. Section 7



concludes this paper finally.

2. Literature Review

This section reviews two streams of related literature. Firstly, the research addressing EVRP, as
the main topic of this research, is surveyed extensively. Secondly, we also briefly summarize the
variant of VRP that considers road congestions as well as time-dependent travel speeds.

2.1. The Electric VRP

We only summarize electric vehicle routing problems which focus on the recharging of EVs at the
operational level. The development and usage of EVs in applications also include the design of
batteries to enlarge their energy density, the unification of batteries for convenient battery swaps,
the centralized recharging strategy under battery swapping scenario (see, e.g., [18,19]), and the
location of recharging stations (see, e.g., [20]). However, these issues are relatively far from the

routing of EVs and hence beyond the scope of this article.

The research of EVRP belongs to the fields of green logistics since EVs are a type of alternative
fuel vehicles. Erdogan and Miller-Hooks [21] proposed a model of green-VRP (GVRP), which
minimizes the total travel distance of involved vehicles with the constraints of given refuelling
stations and restricted length of routes. They assumed that the refuelling time at a station is fixed
and the tank becomes full after each time of refuelling. Neither load capacity of vehicles nor time
window constraints at customers were considered. Two constructive heuristics as a modified
Clarke and Wright saving heuristic and a density-based clustering algorithm, and a customized
improvement technique were designed to solve GVRP. Moreover, Wang and Cheu [22] reported
the operations of an electric taxi fleet. The batteries consume at a given rate per distance and can

be recharged fully in a constant time at stations.

Schneider et al. [10] proposed EVRPTW extending GVRP. EVRPTW differs from GVRP mainly
in the following aspects. Firstly, each vehicle has a limited load capacity. Secondly, each customer
has a positive demand and a time window during which the service must start. Thirdly, the
recharging time at a station depends on the battery level when the EV arrives at the station.
Furthermore, Schneider et al. [10] also assumed that a battery becomes full when the EV departs
from a station and the recharging rate is linear and fixed. On the other hand, EVRP is also similar

to but differs from the multi-depot vehicle routing problem with inter-depot routes (MDVRPI)



described in [23]. The main difference between them is that, although the vehicles also need to
visit some depots (i.e., recharging stations) during the visits of customers, the renewed amount at
a depot does not depend on the demand but on the current battery level. Schneider et al. [24]
unified EVRP and MDVRPI by using different service times in different intermediate facilities,
specifically speaking, recharging time at stations or loading time at intermediate depots. They
presented a hybrid algorithm of a variable neighborhood search heuristic and a tabu search
heuristic to solve EVRPTW. Their method is validated with benchmark instances of GVRP as well
as new instances generated from the data of [25].

Quite few articles addressing EVRP allow partial recharges. Conrad and Figliozzi [26] introduced
a recharging VRP in which EVs can be recharged at some customers. The recharging time at
customers is constant. The battery level after recharging depends on a given choice of recharge:
full or partial. For the partial recharge case, EVs are recharged to a certain level such as eighty
percent. Felipe et al. [27] extended GVRP in another way by allowing partial recharges using
multiple power options. They considered load capacity constraints and route duration limits but
not time window constraints at customers. They formulated the problem mathematically and
presented several algorithms as constructive algorithms, determinate local search algorithms, and
a simulated annealing algorithm to solve the problem. Kocet al. [28] simultaneously considered
the locating of recharging stations and the routing of vehicles by allowing several companies
jointly investing in and using recharging stations. They considered route duration limits but still
not time window constraints at customers. They formulated the problem as a 0-1 mixed integer
linear program and constructed a hybrid algorithm of ALNS and the mathematical program to

solve the problem.

Quite recently, Keskin and Catay [11] reported an EVRPTW with a partial recharge scheme. They
assumed that each EV has a load capacity constraint and each customer has a time window as well
as a demand. A battery can be recharged at a given rate at stations to any level up to its battery
capacity. They also solved the problem based on the ALNS framework. Their article is the most
similar one in existing research to this paper. This paper differs from their article mainly in the
following aspects. Firstly, they assumed that travel speeds are given as a constant while we divide
the working day into several time periods (i.e., morning peak, evening peak, and off-peak) and

travel speed differs from period to period. Secondly, they minimized the total travel distance while



we minimize the total operating costs including route duration costs, recharging costs and
congestion toll costs. Qiao and Karabasoglu [29] showed that the least-cost paths might be
different from the shortest-distance or shortest-time paths when arranging the trip from a fixed
origin to a fixed destination, which suggested that the research with a cost-based-objective is
meaningful. Thirdly, our solving heuristic based on the ALNS framework differs from theirs
especially in the decoding, feasibility and optimality of solutions due to the different problem

definition.

2.2. Congestions and Time-dependent Speeds in VRP

This subsection briefly summarizes the topic of time-dependent travel speeds as well as road
congestions in VRP. Note that this topic was introduced into the routing and recharging of EVs
but not the main topic of this research. Therefore, we only survey the corresponding literature very

briefly but do not present a complete review of this large topic.

Road congestions considered in VRP are caused by two types of reasons. The first type of reason
is non-periodic and / or unpredictable events such as accidents, breakdowns of vehicles, bad
weather events. The traveling speeds of vehicles in this scenario are usually denoted as stochastic
variables. For example, Tas et al. [30] presented a VRP with stochastic travel times. They built
two versions of mathematical models as with or without service time at customers, and solved the

problem using tabu search and ALNS heuristic.

The second type of reason is periodic and predictable events such as the heavy traffic in morning
or evening peak periods. Compared to the first type of reason, this type of reason results in much
more traffic delays and transportation costs [31, 32]. The speeds of vehicles in this scenario are
usually denoted as time-dependent. For example, Malandraki and Daskin [33] introduced a time-
dependent VRP in which travel times are calculated using piecewise functions. Ichoua et al. [34]
investigated a vehicle dispatching problem with time-dependent travel speeds. Since Ichoua et al.
[34], most articles addressing time-dependent VRP satisfy a first-in-first-out (FIFO) property. The
FIFO property indicates that if a vehicle starts from a location i earlier, it definitely arrives at a
location j earlier. Furthermore, Xiao and Konak [35]-[36] studied a variant of GVRPs with time-

dependent travel speeds minimizing carbon emissions as (one of) the objective functions.

Few articles consider congestion tolls when studying VRPs. For example, Wen and Eglese [37]



presented a VRP considering congestion tolls and designed a heuristic to solve it. In their model,
they minimized the total costs including fuel costs, driver costs and congestion tolls. If a vehicle
enters a congestion-controlled zone at any time, a fixed toll is paid. Differently from [37], we
assume that if a vehicle enters a peak period, a fixed toll is paid. To the best of our knowledge, the
articles addressing time-dependency and congestion tolls aforementioned do not consider the

routing and recharging of EVs.

3. Problem Description

TDEVRP-CT considered in this paper can be described as follows. A homogeneous fleet of EVs
provide delivery services in a local area. The logistic company possesses a depot, indexed as 0,
and several recharging stations, say F, in the area. Note that the EVs can also be recharged at the
depot. Each EV parks at the depot initially and returns to the depot finally. Each of the depot and
stations, say i € F U {0}, has a time window [e;, [;](e; < ;) representing its opening hours. Each

EV has a load capacity (in volume) C and a battery capacity Q.

Assume that each vehicle consumes an amount of electricity  per unit distance of traveling. In
real scenario, the electricity consumption of an EV depends on a large number of factors including
total weight of the vehicle, road condition, traveling speed, and the weather condition according
to [38]. It is too complicated to calculate the electricity consumption exactly and hence most factors
aforementioned are seldom used when considering the scheduling and routing of EVs. For example,
Goeke and Schneider [39] and Lin et al. [40] consider the weight of vehicles but not the driving
behaviors such as acceleration and brake. Moreover, the last-mile delivery of small packages is a
typical scenario of the TDEVRP-CT. The weight of packages is neglectable compared to the
weight of the vehicles (see, e.g., [41]) while the total weight of a vehicle is the most important
factor among all affecting factors. This is the reason for which we assume a linear consumption

rate.

We further assume that any vehicle can be recharged at a rate g at any station. Actually, the
recharging speed decreases significantly as the level approaches the last 10% of a battery. However,
it is usually unnecessary to recharge the batteries completely fully especially in the scenarios where
partial recharges are allowed. Therefore, linear recharging rate or piecewise linear recharging rate
is widely used (see, e.g., [28,42]).



When departing from the depot, each EV has a full battery, i.e. a level of Q. The EV fleet needs to
finish the delivery services to a set of customers, say V, in a scheduling horizon. Each customer
i € V has a demand d; (0 < d; < (), a desired time window [e;, [;] (e; < [;) during which the
service has to start, and a service duration s;. When visiting a station, an EV does not need to be
recharged to a full battery level, but only to such a level that it is enough to complete its services.
After finishing its services, an EV could return to the depot with any non-negative battery level
because the depot can also be used for charge. Let the distance between any two locations i and j

bed;;,i€EVUFU{0},j EVUFU/{0}.

The scheduling horizon is normally a working day. Considering different traffic conditions in
different time periods, the scheduling horizon was divided into 3 time periods. The starting and
ending times of the kth period are E; and L, respectively, k = 1, 2, 3. The first, second, and third
periods are the morning peak, off-peak, and evening peak, respectively. Considering the time
continuity, we have L, = E, and L, = E5. The speeds of vehicles differ from period to period.
EVs travel at an average speed of vy, in a period k. Moreover, once an EV enters the morning or
evening peak period, the driver should pay a congestion toll of f. (a given constant). If an EV
enters both peak periods, the driver pays a double congestion toll, i.e., 2f,. The scenario that EVs

travel at night is beyond the scope of this study.

The aim of this problem is to determine a set of routes and the departure times at locations
minimizing the total operating costs. Each route starts from the depot, visits a sequence of
customers and stations, and finally returns to the depot, satisfying the constraints of load capacity
and battery capacity of vehicles, and the time windows at variant locations. Note that the depot
time window implicitly limits the route durations, i.e., the working time of drivers. As commonly

done for VRPs with time window constraints (refer to [10, 11]), we assume that the EVs are enough.

The total operating costs consist of three parts. The first part depends on the total durations of all
routes including the traveling time, servicing time, recharging time, and waiting time. The cost of
this part is denoted as f,; (a given constant) per time unit. The second part is the recharging cost,
including a fixed and a variable cost component. The fixed cost is paid each recharge that is
denoted as v (a given constant) per cycle, corresponding to the cost of battery degradation. The

variable cost of a recharge is proportional to the amount of electricity recharged, indicated as f, (a



given constant) per unit. The third part is the total tolls of all drivers.

4. Model Formulation
This section formulates the problem TDEVRP-CT as a graph firstly and then as a mathematical
model.

4.1. Graphical Formulation

It is not easy to directly formulate the starting and returning times of vehicles because different
vehicles have different starting / returning times (refer to [43]). Therefore, we duplicate the depot
as twice the number of vehicles resulting in two node sets 05 and OF. Each node i € 05
corresponds to the start from the depot of a vehicle. Each node i € OF corresponds to the return to
the depot of a vehicle. Each node i € 05 U OR has the same location as the depot. Similarly, the
recharging stations are also duplicated. The number of duplicated nodes of station i € F, say n;, is
the time that station i might be visited. Let the set of these duplicated nodes of stations be F’. Note
that n; should be set as small as possible so as to reduce the size of the model, but large enough to
not restrict the time of beneficial visits of station i. See Section 6.2 for more details about the

setting of n; (a similar method can also be found in [21]).
A directed graph G = (N, A) could formulate TDEVRP-CT, where
N=05UORUF UV
is the node set, and
A={(,j)i € NS5, jeNRi=+j}

is the arc set, where NS =05 U F'uV and N® = 0R U F' uV. Each node i € N has a time
window [e;, [;] and a demand d;, where d; = 0 for i € V. Each customer node i € V has a service

time s;. Each arc (i, j) has a distance d;;.

4.2. Variables
The decision variables used in the model are defined as follows:

Xij: lifarc (i,j) € Ais chosen, or 0 otherwise

xijx-  Llifarc (i,j) € Ais chosen in period k(= 1,2, 3), or 0 otherwise



d;ji.  traveled distance of arc (i,j) € A in period k(= 1,2,3)
Th: service beginning time at node i € N

l

P! departure time (i.e., service ending time) from node i € NS

We also introduce the following auxiliary variables to build the model.

tijx.  traveled time of arc (i,j) € A in period k(= 1,2,3)
qft: battery level when arriving at node i € N

q?: battery level when departing from node i € F’

cREM: remaining load level when arriving at node i € N
A3 1 if vehicle i € 05 enters the morning peak period, or 0 otherwise
AR 1 if vehicle i € OR enters the evening peak period, or 0 otherwise

4.3. Objective Function
The objective function of the mathematical model that formulates TDEVRP-CT is

minfd(z r{‘—Zr?)H@Z(CI?—Qf‘)JFUZ zxi,-

ieoR ieos ieF’ ieNS jeF'

+fc(z 254 Z Af)

ieoS ieoR

(1)

where the first part formulates the route duration costs, the second and third parts formulate the
recharging costs, and the fourth part formulates the congestion tolls.
4.4. Constraints for Degrees of Nodes

The model has a series of basic constraints which limit the times for which the nodes are visited

as follows:

Z xij=1, iev (2)
JENR

inj—ZXﬁ=0, iEVUFI (3)
jENR jENS

lejgl, lEF,UOS (4)

JENR



ijiSL i € OR (5)

JENS
IDIRTEDIPIEL 0
i€OS jJEVUFT ieoR jevuF/

Constraints (2) and (3) ensure that each customer is visited exactly once. Specifically, Constraint
(2) states that one arc leaves each customer node meanwhile Constraint (3) states that the number
of arcs entering a customer node equals to the number of arcs leaving the customer node. In
addition, Constraint (3) also guarantees this point for duplicated station nodes. Constraint (4)
ensures that each node i € F’ U 09 is visited at most once. Similarly, Constraint (5) states that each

node i € O is visited at most once. Constraint (6) ensures the consistency of the involved vehicles.

4.5. Constraints for Period Consistency
The following constraints handle the consistency between time periods, which are a little similar
to those in [35].

3
dijXij = Z dijx =0, (,j))EA @
k=1
Xij — X 2 0, (iL,j))eEAKk=1,23 )
3
Xij — Z Xijk <0, (i,j)eA )
k=1
dije —dijxije <0,  (,))€Ak=123 (10)
Xiji — Mdgj <0, (i,j)) €A k=123 (11)

Here, Constraint (7) indicates that the total distance traveled in all periods should be equal to the

distance of an arc (i, j) if the arc is visited, i.e., x;; = 1; or zero otherwise. Constraints (8) and (9)
connect the variables x;; and x; . Specifically, Constraint (8) ensures that if such a period k that
x;j = 1 exists, we have x;; = 1. Meanwhile, Constraint (9) states that if x;; = 0 for all k =
1,2,3,ie,Y3_, xijr = 0, we have x;; = 0. Constraints (10) and (11) formulate the consistency
of x;j, and d; .. In detail, the traveled distance of arc (i, j) in period k is at most its full distance
d;j if x;; = 1 or zero otherwise in Constraint (10). Constraint (11) states that an either smaller or

larger distance must be traveled, that is to say, d;;; must be larger than zero, if the arc is selected



to be traveled in period k, i.e., x;;, = 1, where M is a large enough constant.

4.6. Constraints for Time Continuity

The following constraints formulate the time continuity of the model.

diji/ Vi = tijk < Ly — E, (iL,j))EA k=123 (12)
P+t <L+ Ls(1—xij), () €Ak=123 (13)
Ep +tije <t + La(1 —xi), (L)) €A k=123 (14)
3
Tl-D +Ztijk ST]A+L3(1—xU~), (l,]) €A (15)
k=1
+s;<tP, i€V (16)
f+(ef —a')/g<tP<l, i€F (17)
e,<tf<l, i€NR (18)
e, <t’, €0 (19)

Constraint (12) calculates the traveled time of an arc (i, ) ina given period as t;;; = d;jx /v, and
limits its scale by the length of the period. If x;;, = 1, Constraint (13) becomes 0 + tijk < Ly,
i.e., the departure time at node i plus the travel time in period k cannot exceed the ending time of
that period. If x;;; = 0, Constraint (13) is relaxed automatically because the ending time of the
third period, i.e., L3, is large enough. Similarly, as in Constraint (13), Constraint (14) formulates
the relationship between the starting time of a period k plus the traveled time of an arc in that
period, and the service beginning time at node j. Constraint (15) ensures that if an arc (i,j) is
selected, the departing time at node i plus the total traveling time in all periods cannot exceed the
arrival time at node j. Constraint (16) guarantees the service time according to the arrival time and
departure time at a customer node. Similarly, Constraint (17) calculates the battery level of an EV
according to the arrival time and departure time at a station node. Constraint (18) is the time
window constraint for service beginning time of node i € N®. Note that Constraints (17) and (18)
form the double-side time window constraints for node i € F'. Constraint (19) states the left side

of time window for departure time of node i € 0° omitting the unnecessary right side.

4.7. Constraints for Load and Battery Level



The following constraints state the consistency of the remaining capacity and battery level.

0< CjREM < CLREM - dl-xl-j + C(l - xij), (l,]) €A (20)
0<ctM<c, €0’ (21)
3
0<qf<¢q? —rz dijk +2Q(1—x;;),(i,j)) € Aandi € F’ (22)
k=1
3
0 < g sq{‘—erijk+2Q(1—xij),(i,j) €Adand i €VUOS (23)
k=1
0<qf<qP<Q i€F (24)

Specifically, Constraint (20) formulates the remaining load level along routes using a similar
method as in (13)-(15). The remaining capacity of an EV is changed by d; after it travels from
node i to node j. Constraint (21) limits the initial capacity when an EV starts from a depot.
Constraint (22) states that the battery level when an EV departs from node i minus the consumed
electricity should equal to the battery level when it arrives at node j. Remembering that an EV has
the same battery level when it departs from a node i € V U 0S as it arrives at that node, we have
Constraint (23). Constraint (24) bounds the battery level when an EV arrives at and departs from

a station node.

4.8. Constraints for Whether Entering Peak Periods

The following constraints determine whether a vehicle enters a peak period.

A= xj =t /L, 1€0° (25)
JEVUF!
AfZTiA/E?)— Z in, iEOR (26)
JEVUF'!

We have Y jeyur x;; = 1 if a vehicle departs from node i. If the departure time is earlier than the
ending time of the first period, that is, 7 /L, < 1, A7 should be larger than a positive number. Its
binary attribute forces it to be 1 according to Constraint (25). Otherwise, 7 /L, > 1, A7 should be
larger than a negative number. The objective function forces it to be 0. Similarly, Constraint (26)
ensures that a vehicle enters the evening peak period if and only if it arrives at the depot later
than E5.



4.9. Constraints for Variable Type
Finally, the following constraints describe the type and range of variables, where necessary.

xl-j € {0,1}, xijk € {0,1}, dijk = 0, (l,]) € A,k = 1, 2,3 (27)
2 €{01},27€{01}, €05 jeor (28)

4.10. NP-hard Property
Theorem 1: The problem of TDEVRP-CT is NP-hard.

Proof: TDEVRP-CT degenerates to the vehicle routing problem with time windows (VRPTW) if
the battery capacity Q is infinitely large. Savelsbergh [44] reported that VRPTW is NP-hard. As a
result, we can conclude that TDEVRP-CT is NP-hard. o

5. An Adaptive Large Neighborhood Search Heuristic

The model presented in Section 4 is a mixed-integer linear programming (MILP) model. Due to
its NP-hard property, existing optimization software such as Gurobi can only be used to solve
small-sized instances of TDEVRP-CT. Therefore, we propose an ALNS heuristic to solve the

problem.

ALNS is an extension of the large neighborhood search (LNS) framework put forward by Shaw
[45]. In order to escape from a local optimum solution, Shaw [45] made large changes to a current
solution instead of making very small changes as could be seen in most metaheuristics. Ropke and
Pisinger [46] improved the LNS framework applying the removal and insertion operators
adaptively. Recently, ALNS has been successfully applied to solve variant VRPs, see, e.g., [11],
[47]-[51].

The ALNS heuristic generates an initial solution firstly. It updates the solution iteratively until a
given number of iterations is reached. During each iteration, several nodes i € N are removed from
the current solution and then inserted back resulting in a new solution. The acceptance criterion of
simulated annealing is used to accept or reject the generated new solution. That is, a new solution
is accepted if it is better than the best-so-far solution, or accepted with a dynamic probability

otherwise. The selection of removal algorithms and insertion algorithms is based on a roulette



wheel mechanism, in which the weights of the removal / insertion algorithms are updated
according to their performance dynamically. Main idea and framework of the ALNS heuristic
aforementioned could also be found in [11]. Therefore, we only present the differences compared
to the method of [11] hereafter in this section.

5.1. Initial Solution

The initial solution is obtained by sequential inserting the customers to a current route. The solution
construction begins with an empty route. The insertion costs of all unassigned customer nodes to
all possible existing positions of the route are determined. The best customer node is selected and
inserted at the best position. If necessary, a station node i € F is inserted using the Greedy Station
Insertion algorithm. That is to say, insert the best station between the first customer node at which
the battery level becomes negative and its preceding node. If this insertion is infeasible, insert the
station on the preceding arc similarly. If no customer node can be inserted, the current route is
finalized and a new empty route is constructed. Such a procedure is repeated until all customer

nodes have been assigned.
5.2. Removal / Insertion Algorithms

The removal algorithms include two classes as: customer removal and station removal. The
customer removal algorithms used in the ALNS heuristic are Random Removal, Worst-Distance
Removal, Shaw Removal, Random Route Removal, and Greedy Route Removal. For these
customer removal algorithms, we use two more options as (a) removing customer with preceding
station and (b) removing customer with succeeding station in addition to the default option as
removing customer only. The station removal algorithms used in this research are Random Station
Removal, Worst-Distance Station Removal, and Worst-Charge Usage Station Removal. See [11]
for a detailed description of the aforementioned removal algorithms and their options.

Similarly, the insertion algorithms also include two classes: customer insertion and station
insertion. The customer insertion algorithms are Greedy Insertion, Regret-2 Insertion, and Regret-
3 Insertion. When calculating performance of the customer insertion algorithms, two options as (a)
without noise, i.e., actual cost, and (b) with noises, are used (refer to [52]). The performance of
operators with noises is defined as the actual cost plus 0.2Af;(Ls — E;), where 1 is a random

number between —1 and 1. The station insertion algorithms include Greedy Station Insertion,



Greedy Station Insertion with Comparison, and Best Station Insertion. See [11] for a detailed
description of these insertion algorithms. In addition to the three station insertion algorithms
aforementioned, we propose a so-called Multiple Greedy Station Insertion. That is, if inserting one
station to a route cannot make it feasible, the Greedy Insertion is repeated until the route is feasible.
See Section 5.3 for calculation of (actual) insertion cost of a node as well as the determination of

charged amount at a station.
5.3. Decoding, Feasibility, and Optimality of Solutions

The removal / insertion algorithms presented above handle node sequences only. A node sequence,
I.e., aroute, corresponds to the visiting of customer nodes and the recharging at stations of a vehicle.
Besides node sequences, a solution of TDEVRP-CT also consists of the arrival time, departure
time, and remaining load capacity at customer nodes as well as the recharging amount of electricity
at stations. This section presents the determination of such information, i.e., feasibility and
optimality of a route. Such determination process is executed for each route of a solution. Note

that the feasibility and optimality of a route are discussed along with the decoding of the route.

Due to the difference in the mathematical model especially in the objective function (1), calculation
of the insertion cost of a node to a route differs from that in [11], which is the main difference
between the ALNS in [11] and the ALNS illustrated here.

5.3.1 Insertion of customer nodes

Checking the constraints of load capacity and time windows are relatively easy. Therefore, we
mainly discuss the constraint of battery level given that the constraints of load capacity and time

windows are satisfied. The main steps of inserting a customer node to a route are as follows.

Step 1: If the battery level when an EV arrives at some nodes in the current route is negative, let

the first one among such nodes be i, go to Step 2; otherwise, go to Step 5.

Step 2: If a station node, say j, exists before i in the current route and the battery has enough

capacity when the EV departs from node j, go to Step 3; otherwise, go to Step 4.

Step 3: Try to increase the recharging amount at node j (see Section 5.3.3)). If the route fails to

become feasible, go to Step 4; otherwise go to Step 5.



Step 4: Try to insert a station node using the Greedy Station Insertion algorithm. If the route fails
to become feasible, the insertion of the customer node is infeasible, return; otherwise, go to Step
5.

Step 5: Adjust service-beginning time in the route (see Section 5.3.4)).

5.3.2 Insertion of station nodes
The insertion of a station node before a node i of a route depends on cases.

Case 1: There is no station node before node i in the route. Select the best station among those
which are reachable from the preceding node of i and insert it to the given position. If the route is
feasible with respect to the time window constraints, try to allocate the recharging amount at the
station (see Section 5.3.3)) and then adjust the service-beginning time (see Section 5.3.4)). The
insertion is infeasible either if it violates the time window constraints or if the allocation of

recharging amount fails.

Case 2: One or more station nodes exist before node i in the route. Try to allocate the recharging
amounts at the existing stations (see Section 5.3.3)) in order to make the route feasible. If this
allocation fails to make the route feasible, the handling under Case 1 is executed; otherwise, the

adjusting of service-beginning time is executed (see Section 5.3.4)).

5.3.3 Allocation of recharging amounts

Notice that a battery-infeasible route might become feasible without inserting stations. Now we
try to make an infeasible route feasible without modifying the sequence of nodes. Whether the load
capacity constraint is satisfied depends only on the customer nodes in the route. As a result, here
we always assume that the load capacity constraint holds. In addition, the arrival and departure

times at each node satisfy its time window constraint initially.

Therefore, we get the following main idea of the allocation of recharging amounts. Firstly, an EV
should depart the customer nodes as early as possible initially so that it has enough time to recharge
its battery. Secondly, an EV should be recharged as much as possible at stations so that it could
travel a long distance. Thirdly, the time window constraint at any node cannot be violated. Fourthly,

the battery level at any time can neither be negative nor higher than its battery capacity (specifically,



when the EV departs from a station node). Such an allocation succeeds if it makes a route feasible

or fails otherwise.

5.3.4 Adjustment of service-beginning time

Now we are ready to adjust the service-beginning time at nodes in a feasible route so as to minimize
operating cost of the vehicle. The summation of the operating costs of all involved EVs results in
the objective value in (1). Remember that an EV should depart from the depot as early as possible
in the allocation of recharging amounts as well as in the insertion of nodes aforementioned. Such
an early departure might cause waits at some other nodes. We delay the departure time at the depot
and the service-beginning times at the nodes as much as possible on the condition that the vehicle
returns to the depot at the earliest time. The aim of this delay is to avoid waiting at nodes if possible.

In such scenario, the departure time from the depot is denoted as 7£P.
Case 1: The EV waits at some nodes when departing the depot at 722,

Proposition 1: If the EV still waits at some nodes with departure time 72 , then t£2 corresponds

to the minimum route duration.

Proof: Let the first one among the waiting nodes be i. There exists a node before i whose service-
beginning time is the right side of its time window. Otherwise, the EV still can postpone the
departure time, which contradicts the construction of tZP. Thus, 2P is the latest allowed

departure time. We can conclude that Z2 corresponds to the minimum route duration. o

Following Lemma 1, the operating cost can be calculated according to the departure time 722 from

the depot, the earliest return time to the depot, and whether it enters peak periods.

Case 2: The EV does not wait at any node. We also try to delay the departure time at the depot.
However, the aim of this delay is to avoid entering peak periods if possible. Let this latest departure
time of an EV be tP. The vehicle selects the best departure time at the depot in the range

of [tEP, 7LP]. The selecting criterion is to minimize its operating cost.

6. Validation and Evaluation
This section validates and evaluates the modeling and solving methodology of TDEVRP-CT.
Specifically, Section 6.1 presents experiment setting and parameter tuning. Sections 6.2 and 6.3



evaluate the methodology with small-and medium-sized instances, and large-sized instances,

respectively.

6.1 Experimental Setting and Parameter Tuning

The ALNS heuristic presented in Section 5 was coded in C++. As a comparison, small- and
medium- sized instances of the MILP model were also solved using Gurobi version 6.5.2
embedded by the Matlab toolbox YALMIP. All experiments were carried out on a personal
computer with 3.2 GHz Intel 15 CPU and 4 GB of RAM.

The division of the scheduling horizon into periods, the speeds of vehicles in periods, and the cost
coefficients in the objective function were generated based on the instances for EVRPTW in [10],
which is available at http://evrptw.wiwi.uni-frankfurt.de. For instances of Type C1, C2, R2, and
RC2, the scheduling horizon was divided into three periods using the ratio vector [0.1, 0.8, 0.1].
The average speeds in the three periods are 0.65, 1, and 0.55, respectively. For example, the
horizon in Instance C101-5D is 1236, where the letter 'D' at the end of instance names in this paper
denotes the time-dependent property. Therefore, the morning peak is [0,123.6],i.e., E; =0, L; =
E, =123.6,L, = E5 = 1112.4,and L; = 1236. As a contrast, for instances of Type R1 and RC1,
the horizon was divided into two periods using the ratio vector [0.1, 0.9] because they are short.
The first period is the (morning) peak period with an average speed 0.75. The second period is off-
peak with a speed 1. Based on the salary standard as 10 euro per hour and the recharging fees given
in literature [27], the cost coefficients are generated as: f; = 0.167€/min, f. =5€, f, =
0.0098€/km and v = 1€.

The maximum number of iterations of the ALNS heuristic was set to be 25,000, as in most ALNS
algorithms [11, 47, 49]. The lower bound and upper bound for the number of customers to be
removed were set as 0.1|V| and 0.4|V|, respectively, where |V| denotes the size of V. Similarly,
the upper bound for the number of stations to be removed was set as 0.35 times the number of
stations used in the current solution. The tuning methodology of the other key parameters of the
ALNS heuristic is the same as in [11], and has been widely used in literature such as [46]. Six
instances, i.e., C106D, R106D, R107D, RC101D, RC104D, RC105D, were selected for parameter
tuning. The initial value of each parameter was set as the optimum value of the corresponding
parameter in [11]. The tuning results as well as the corresponding symbols used in [11] are shown
in Table 1.



Table 1 Tuning results of parameters

Parameter (Symbol used in [11]) Value
Score of the best-so-far solution in the performance of algorithms (a;) 25
Score of the better solution in the performance of algorithms (o) 20
Score of the worse solution in the performance of algorithms (o3) 21
Roulette wheel parameter when updating weights of algorithms (p) 0.25
Cooling rate of the temperature (¢) 0.9994
Initial temperature control parameter of the acceptance criteria (u) 0.4
First Shaw parameter in Shaw Removal (¢,) 0.5
Second Shaw parameter in Shaw Removal (¢5) 13
Third Shaw parameter in Shaw Removal (¢3) 0.15
Fourth Shaw parameter in Shaw Removal (¢,) 0.25
Shaw removal determinism factor in Shaw Removal (1) 6
Worst removal determinism factor in Worst-Distance Removal (k) 4

# of iterations between which adaptive weights of customer algorithms are updated (N;) 200

# of iterations between which adaptive weights of station algorithms are updated (Ns) 5500

# of iterations between which station algorithms are performed (Ngz) 60

# of iterations between which Random Route Removal is performed (Ngg) 2000

# of consecutive iterations during which Random Route Removal is performed (ngg) 500
Upper bound in Random Route Removal (m,.) 0.3

6.2 Experiments on Small- and Medium- Sized Instances

All 36 small- and medium- sized instances, each of which consists of 5, 10, or 15 customers, are
solved. The instances were solved using the ALNS heuristic as well as directly by Gurobi. When
an instance is solved directly, the time limit of Gurobi was set as 7200 seconds. Remember that
the number of duplicated depots and that of each station should be determined before we solve the
MILP model directly. The size of 05, which is also the size of OF, is determined as follows. We
initially set it as the number of involved EVs in the corresponding instance in [11] and try to solve
the model. If the model is reported to be infeasible or Gurobi cannot find even a feasible solution
in the given time, we enlarge the two sets 05 and OR by 1. Such a procedure is repeated until a
feasible solution is reported. However, we stop enlarging the sets if the size of them reaches the
number of EVs in the solution given by the ALNS heuristic. The number of duplicated stations is
determined similarly. We initially set n; as |05| for each station i € F and try to solve the model.
If all duplicated nodes of a station i are used, we increase n; by 1. If more than one duplicated
nodes of a station i are not used, we decrease n; by 1. That is, one of the duplicated nodes of each

station is not used finally.



Table 2 presents results of the two solution methods. It can be observed that Gurobi finds a solution
for each of 31 instances and fails to give feasible solutions for the other 5 instances in the given
time limit. Among the 31 instances, Gurobi obtains the optimum solutions for 14 instances before
the time limit reaches. As a comparison, the ALNS heuristic obtains a solution for each of the 36
instances very quickly, in several seconds for most instances. For the 14 instances which optimum
solutions have been found by Gurobi, the ALNS heuristic provides the same solution (with the
same objective values). Among the instances which feasible but not optimum solutions are
obtained by Gurobi, the ALNS heuristic provides a better solution than Gurobi for 12 instances.
The average improvement is 6.16% (see the last column). For all instances which solutions
(optimum or feasible) have been obtained by Gurobi, the number of involved vehicles in the
solutions provided by the two methods is the same (see the column "#Veh."). As a result, the ALNS
heuristic can provide the optimum solutions for smaller-sized instances or better solutions for
medium-sized instances in a much shorter time than the software Gurobi. This validates the ALNS

heuristic.

6.3 Experiments on Large-Sized Instances

We further evaluate the methodology based on large-sized instances in this subsection. Focus of
the evaluation is the impact of congestion tolls. Twenty-nine instances, each of which consists of
100 customers and 21 recharging stations, were selected. We set f; = 0.167 in all instances. The
value of f. in each instance was set as 0 and then as 20 in addition to the default value of 5 as in
Section 6.1. For each of the 87(= 29 x 3) instances, the ALNS heuristic is repeated for 5 times
independently and the best solution among the 5 repeats are reported. Unsurprisingly, the running
time of the ALNS heuristic is much longer than the time when solving the small- and medium-
sized instances in Section 6.2. The average running time is 12.46 minutes, 107.66 times larger than

the average running time of the small- and medium- sized instances.

Table 2 Results on small- and medium- sized instance

Inst Gurobi #Veh ALNS
nstance Ohj. CPU(s) e Obj. CPU(s) Obj. Improvement %
C101-5D 215.06 9.61 2 215.06 1.29 0.00
C103-5D 174.15 4.88 1 174.15 1.53 0.00
C206-5D 221.26 22.03 1 221.26 1.83 0.00
C208-5D 167.31 77.87 1 167.31 1.40 0.00
R104-5D 33.95 2.09 2 33.95 1.05 0.00
R105-5D 40.10 1.36 2 40.10 0.82 0.00



R202-5D 41.77 412.55 1 41.77 1.64 0.00
R203-5D 52.10 806.56 1 52.10 2.50 0.00
RC105-5D 63.21 7.00 2 63.21 0.95 0.00
RC108-5D 61.13 8.49 2 61.13 1.01 0.00
RC204-5D 49.32 7200.00 1 47.87 2.07 3.03
RC208-5D 45.16 278.60 1 45.16 1.82 0.00
C101-10D 406.26 463.99 3 406.26 1.79 0.00
C104-10D 279.23 7200.00 2 279.23 8.44 0.00
C202-10D 505.44 7200.00 1 505.44 6.51 0.00
C205-10D 434.64 451.04 2 434.64 2.97 0.00
R102-10D 96.14 7200.00 3 94.07 2.20 0.00
R103-10D 62.43 7200.00 2 62.07 0.58 5.39
R201-10D 95.61 521.84 1 95.61 4.02 0.00
R203-10D 94.10 7200.00 1 93.81 0.31 2.38
RC102-10D 104.59 7200.00 4 99.62 4.99 0.00
RC108-10D 87.03 7200.00 3 86.56 0.54 6.83
RC201-10D 139.34 7200.00 2 139.34 3.79 20.74
RC205-10D 119.16 7200.00 2 119.16 3.86 2.76
C103-15D 471.48 7200.00 3 432.87 9.60 8.92
C106-15D 374.42 7200.00 3 367.32 5.24 1.93
C202-15D 628.56 7200.00 2 625.99 14.86 0.41
C208-15D 479.02 7200.00 2 435.03 6.32 10.11
R102-15D NA 7200.00 5 115.81 2.70 NA
R105-15D 99.95 7200.00 4 99.95 2.67 0.00
R202-15D 181.58 7200.00 2 161.38 22.85 12.52
R209-15D NA 7200.00 1 111.71 17.91 NA
RC103-15D NA 7200.00 4 107.54 3.35 NA
RC108-15D NA 7200.00 3 102.13 3.38 NA
RC202-15D 198.72 7200.00 2 154.83 9.70 28.35
RC204-15D NA 7200.00 1 128.87 91.18 NA

2 Gurobi cannot provide a feasible solution in the given time limit 7200 seconds.

The detailed results of this evaluation are presented in the Appendix. Table 3 reports the statistical

information of the results, where column #Veh. is the number of vehicles involved in the solution

and #Veh.-C is the number of vehicles that enter the congestion periods in total. Besides the

objective values Obj., the cost related to the congestion, the total route durations and the cost

related to the recharging (See (1)), are also reported in Columns Obj.-C, Obj.-D and Obj.-E,

respectively.

Table 3 Statistical results of the large-sized instances

£, #Veh. #Veh.-C Obj.-C Obj-E  Obj.-D Obj.
0 362 223 0 48039 2489321 25373.63
5 367 124 765 49472 2497441 26234.74



20 369 99 2320 518.69 25165.34 27974.00

Several remarks could be concluded from the results. Firstly, as the value of f. increases from 0 to
5 and then to 20, the total congestion tolls increase, and it also pushes the total route durations to
increase, in almost all instances. Table 3 summarizes the results in this viewpoint. The total
congestion tolls, the recharging costs, the route duration- related costs and the objective values are
increased by 203.270%, 4.85%, 0.76% and 6.63%, respectively, as f increases from 5 to 20. This

IS expected.

Secondly, it can be observed that as f, increases, less vehicles enter peak periods although the total
duration might also increase. If no congestion toll is collected, i.e., f, = 0, then 223 out of 362

vehicles enter peak periods totally in the 29 instances.

However, if f, = 5, only 124 vehicles enter peak periods although 367 vehicles are involved. The
number of vehicles that enter peak periods decreases to 98 if f, = 20 (See Table 3). This
phenomenon is notable especially for Type C instances. For 6 out of 9 Type C instances, the times
for which vehicles enter peak periods decreases as f. increases from 0 to 5. The average relative
decreasement is 16.36%. Instance C109D gives the maximum decreasement as 60%. If f. = 0, the
vehicle enters peak periods for 5 times. However, if f. = 5, the vehicle enters peak periods only
twice (See Column Times-C in Table Al). The result that f. continues to increase is similar but
not that significantly as the result that £, increase from 0 to 5. The vehicles enter peak periods for
less times when £, increases from 5 to 20 in 6 out of 9 C-typed instances. This validates the motion

of gathering a certain amount of congestion tolls to relieve congestions.

7. Conclusions and Future Research

This paper addresses TDEVRP-CT in which the scheduling horizon is divided into several periods,
speeds of EVs differ from period to period, and congestion tolls are collected if a vehicle enters a
peak period. A MILP model is established to formulate the problem. An ALNS heuristic is
designed to solve the problem and validated with benchmark instances.

Results indicate that the ALNS heuristic could provide much better solutions than typical existing
optimization software such as Gurobi in a much shorter running time. A certain amount of
congestion tolls is able to decrease the number of vehicles entering peak periods and to relieve

congestions. Therefore, this research is valuable and referable in both academic and industrial



fields. It can help logistic companies in routing and scheduling EVs to control the cost and to

relieve traffic congestions.

Limitations of this research are as follows. We implicitly assume that the recharging poles at each
station are enough. Therefore, the possible waiting of EVs at stations are not considered in this
research. Secondly, we define the operating costs including the congestion tolls-related costs as
the optimization criterion without considering the building costs of stations. Finally, the ALNS

heuristic cannot guarantee the optimality of solutions but only provides near optimum solutions.

This research could be followed in several ways. For example, how to handle the scenarios that
some roads are accessible only within certain time periods? What will happen if congestion tolls
are collected based on zones, or on both periods and zones? What will happen if the waiting time

at the recharging stations is introduced into the model? These are all interesting topics.

Appendix

Table Al reports the results of the evaluation for large-sized instances. Besides the objective values,
the cost related to the total route durations, and the cost related to the recharging (See (1)), are also
reported in Columns Obj.-D and Obj.-E, respectively. Furthermore, Column Times-C lists the total

times that vehicles enter peak periods. Column #Veh. presents the number of vehicles involved in

the solution.
Table Al Results for large-sized instances

Ins. fe Obj. Obj.-D Obj.-E #Veh. Times-C CPU (min)
C101D 0 1884.03 1870.50 13.53 12 17 13.01
5 1970.52 1872.03 13.49 12 17 13.71

20 2230.17 1895.65 14.52 12 16 13.54

C102D 0 1886.22 1872.97 13.24 11 15 11.86
5 1963.76 1877.63 11.13 11 15 12.94

20 2178.97 1905.30 13.68 11 13 11.36

C103D 0 1867.56 1856.38 11.18 10 17 13.93
5 1954.58 1863.27 11.31 10 16 13.90

20 2004.17 1834.29 9.88 11 8 14.65

C104D 0 1767.12 1759.77 7.35 10 11 22.43

5 1820.90 1762.49 8.41 10 10 21.67



20 1975.52 1767.07 8.45 10 10 22.35
C105D 0 1852.82 1840.56 12.25 1 12 10.22
5 1915.89 1842.66 13.24 11 12 10.25

20 2061.96 1869.25 12.71 1 9 10.22

C106D 0 1832.17 1821.07 11.10 1 8 11.48
5 1872.17 1821.07 11.10 1 8 11.47

20 1978.85 1826.66 12.19 1 7 11.24

C107D 0 1827.04 1816.92 10.11 1 9 1131
5 1866.83 1815.12 11.11 11 8 11.08

20 1970.30 1819.12 11.17 11 7 11.73

C108D 0 1877.35 1863.68 13.67 10 16 12.81
5 1846.34 1815.16 11.18 1 4 12.82

20 1903.39 1812.23 11.16 11 4 12.82

C109D 0 1766.77 1759.31 7.46 11 5 14.74
5 1785.82 1766.27 9.55 1 2 15.54

20 1832.79 1782.96 9.83 11 2 15.34

RI01D 0 571.19 539.98 31.21 18 10 10.67
5 629.68 547.04 32.64 18 10 10.94

20 771.41 539.18 32.24 18 10 11.11

R102D 0 508.80 48333 25.47 16 9 10.74
5 550.21 484.97 25.24 16 8 10.74

20 678.39 489.86 28.54 16 8 10.86

R103D 0 450.63 426.00 24.63 13 9 12.75
5 463.11 422.82 20.28 14 4 12.86

20 525.10 424.74 20.36 14 4 12.33

R104D 0 388.07 373.22 14.84 12 7 15.41
5 409.17 376.21 12.96 12 4 15.49

20 457.18 382.02 15.16 12 3 15.19

R105D 0 467.87 447.03 20.84 15 10 10.38
5 498.35 459.10 24.25 15 3 10.68

20 552.03 464.57 27.46 15 3 10.91

R106D 0 451.84 42931 22.53 14 8 11.77
5 476.39 438.61 22.78 14 3 11.43

20 511.25 446.22 25.03 14 2 11.43

R107D 0 402.11 384.77 17.34 12 7 12.74
5 417.75 393.00 19.75 12 1 13.00

20 440.09 400.06 20.03 12 1 12.95

R108D 0 395.96 377.41 18.55 11 7 15.68
5 437.01 387.09 19.92 1 6 16.67



20 397.45 381.03 16.42 12 0 16.98
R109D 0 417.42 399.80 17.62 13 3 11.77
5 431.97 407.95 19.03 13 1 11.64

20 435.68 414.40 21.28 13 0 11.99

R110D 0 392.03 377.98 14.05 12 4 13.10
5 399.07 381.84 17.23 12 0 13.68

20 397.03 380.82 16.21 12 0 15.07

RIIID 0 396.37 380.16 16.22 12 4 13.35
5 408.10 389.49 18.61 12 0 13.87

20 408.10 389.49 18.61 12 0 14.08

R112D 0 381.36 366.27 15.09 1 7 16.28
5 380.54 364.80 15.74 12 0 16.70

20 383.40 366.59 16.81 12 0 16.83

RCI101D 0 517.08 49530 21.77 16 10 8.78
5 544.42 501.33 23.08 16 4 8.78

20 580.73 514.45 26.28 16 2 8.82

RC102D 0 48217 463.00 19.17 15 9 9.07
5 504.91 475.42 19.49 15 2 9.08

20 525.73 482.91 22.82 15 1 9.10

RC103D 0 435.49 419.07 16.43 13 7 9.55
5 455.17 423.65 16.51 13 3 9.58

20 489.27 448.73 20.55 13 1 9.63

RC104D 0 415.24 398.77 16.47 11 9 10.09
5 415.67 399.44 16.23 12 0 12.88

20 414.10 398.01 16.09 12 0 12.03

RC105D 0 470.85 451.02 19.83 14 7 10.04
5 499.00 453.23 20.77 14 5 9.87

20 552.43 451.50 20.92 14 4 9.76

RC106D 0 448 84 430.48 18.36 14 6 9.65
5 462.06 437.37 19.69 14 1 9.81

20 462.13 443.28 18.86 14 0 9.80

RC107D 0 41457 399.57 15.00 12 7 11.07
5 448.40 402.25 16.15 12 6 10.51

20 44938 441.79 17.59 12 1 10.56

RC108D 0 404.66 389.58 15.08 1 8 11.28
5 406.95 393.10 13.85 12 0 12.45

20 407.00 393.16 13.84 12 0 11.45
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