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The paper examines the elastic fields of displacements and stresses for a nonhomogeneous elastic half-space where the elastic
parameters have a linear variation over a finite depth beyond which it is constant. The circular loading area is subjected to a
uniform inclined load. The numerical method is developed by applying the fundamental solution of a layered elastic solid and
integrating numerically it over the loading area. As a result, only the loading area needs to be discretized in using the proposed
numerical method. Numerical examples of calculation of displacements are conducted, and excellent agreement with the existing
closed-form solutions is obtained. The results obtained are used to understand the elastic fields induced by different types of loads

in a nonhomogeneous medium.

1. Introduction

The nonhomogeneity of materials is a common phenome-
non that can be observed in many natural and engineering
materials. Naturally, soil and in situ rock media exhibit
strong spatial variations in their properties because of their
natural formation process. The nonhomogeneity problem in
geomechanics has applications to many problems of tech-
nological importance. There have been numerous efforts
attempting to understand the influence of nonhomogeneity
on the response of an elastic half-space induced by various
loads [1-3]. Due to the mathematical difficulties associated
with the geomechanics of nonhomogeneity, the majority of
the relevant investigations available in the literature make
some assumptions on the elastic properties of materials and
the distribution forms of loads.

Considering the influence of gravity on the natural for-
mation process of soils and rocks, the elastic properties of
geomaterials are assumed to vary in the depth direction and

keep constant along the other two directions perpendicular to
the depth direction. It is generally assumed that the shear
modulus varies continuously with depth in power law, linear,
hyperbolic, and exponential functions [4-8]. For easy anal-
ysis, it is further assumed that Poisson’s ratio keeps constant
with depth. Actually, depth-dependent nonhomogeneity is
distributed in a much complex form and an effective ana-
lyzing approach can model arbitrary variations with depth.

In this paper, the elastic fields induced by an inclined
circular load in a nonhomogeneous elastic half-space, shown
in Figure 1, are analyzed. The problem of interior loading in
a nonhomogeneous half-space has applications in geo-
mechanics. Selvadurai and Katebi [9] analyzed the problem
of the application of an axisymmetric circular load at the
interior of a nonhomogeneous isotropic half-space. Here, we
extend the study to include the influence of a non-
axisymmetric circular load, that is, an inclined load at the
interior of a nonhomogeneous isotropic half-space. In
particular, the variations of elastic modulus and Poisson’s
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F1GUREe 1: Inclined load at the interior of a nonhomogeneous elastic
half-space.

ratio with depth are considered. The numerical method used
for analysis is developed by applying the fundamental so-
lution of layered elastic solids [10-17] and integrating it over
the loading area. The adaptive numerical quadrature and
parallel computation techniques are used to evaluate the
integrals over the elements on the discretized area. Nu-
merical results are presented in order to show the influence
of nonhomogeneity in an elastic half-space on the elastic
fields induced by different types of loads.

2. Numerical Method of Analyzing a
Nonhomogeneous Half-Space

2.1. Basic Equations. The fundamental solution of a multi-
layered solid developed by Yue [10] is the analytical solution for
the elastostatic field in a layered solid of infinite extent due to the
action of concentrated point loads. The dissimilar homogeneous
layers adhere to an elastic solid of upper semi-infinite extent and
another elastic solid of lower semi-infinite extent. The interface
between any two connected dissimilar layers is fully bonded and
the layer number is an arbitrary nonnegative integer. Since
2000, Xiao and Yue [18] have incorporated this fundamental
solution into the BEMs for the analysis of the fracture me-
chanics in layered solids and found the solutions for many
specific problems of interests in science and technology. The
fundamental solution of infinite multilayered media is also
suitable for the layered media of semi-infinite extent. In this
case, the elastic modulus of the upper semi-infinite medium has
an extremely small value, such as E, = 1.0 x 107> MPa, and
Poisson’s ratio of the medium v, = 0.3.

As shown in Figure 1, a nonhomogeneous half-space is
subjected to internal loads in the x, y, and/or z directions.
Using the fundamental solution [10], the displacements and
stresses at any point of the nonhomogeneous medium are
described as

1 (Q) = Luiz (Q, Pty (P)dS(P), (1)

7,(Q = [ 7@ P (PSP, @)
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where P and Q are, respectively, the source and field points of
the fundamental solution; u; (Q, P) and al 2 (Q, P) are the
kernel functions of the displacements and stresses of a layered
medium presented by Yue [10]; t; (P) is the traction of the
source point P; and the integral domain S is the loading area.

2.2. Numerical Scheme

2.2.1. The Discretization of the Loading Area. The loading
area S is discretized into ne quadrilateral elements
§=37S,. For the convenience of calculation, iso-
parametric element is used. All discrete elements in the
loading domain correspond to a standard element. On the
boundary, the variable node element is adopted for the
convenience of discretization. Here, variable node iso-
parametric elements with 4-8 nodes are selected, and the
form is shown in Figure 2. Only four corner elements are
linear elements, and eight nodes are quadratic elements.

In global and local coordinate systems, there are the
following transform relationships of coordinate and traction
values within an element:

4t08

= Y N, (&nx,
a=1

4t08

= Z Na (E» ’1)1‘?,
a=1

(3)

where N, is the shape function of the element at node « and
x{ and t{ are, respectively, the coordinate and traction values
of the element at node a.

Considering equations (1) and (2) with (3), we have the
following discretized forms:

ne 4to8

1
w@=Y Y & P)j | wi@pNJdEan @

e=1 a=1

ne 4to8

1
0, Q=Y (P )j | oi@pNdEa ©

e=1 a=1

where ] is the Jacobian determinant.
The interpolation function of the quadrilateral element is

Na(f,n)zé(l—fz)(unan), a=5,7,
Na(f,ﬂ)=%(l—n2)(1+£a£), a=6,8,
Ny(Em =N 3 (Ny+No),
. (6)
Nz(f,ﬂ)=N2 —5(N5+N6),
NS(E’YI)zN:; _%(N6+N7),
Ny(&n) = 1(N7+N8)
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FIGURE 2: The isoparametric element. (a) Linear element with 4 nodes. (b) The quadrilateral element with 8 nodes.

where NG =1/4)AQ+EH(1+n,m),a=1,2,3,4,
and (£, 7,) is the local coordinate component at node a. For
the variable node element, the nodes in the four edges can be
available or not. In this case, the interpolation function
corresponding to the missing nodes in the edge can be taken
as 0.

2.2.2. Numerical Integration. 'The integrals of equations (4)
and (5) may be calculated by using the regular Gaussian
quadrature. If the field point Q is located at the integral
element and Q = P% the singular integrals of equations (4)
and (5) appear and can be computed by, respectively,
applying a linear coordinate transformation and an indirect
method. When the field point Q is not located on the
loading area and the distance r between the points P and Q
has a small value, the kernel functions u; and o3 in
equations (4) and (5) have sharp variations. An adaptive
integration approach for this so-called nearly singular
integral is developed through dividing the integrating el-
ement into subelements according to the ratio of the length
of an element to the distance from a field point to the
element.

In the following, the linear coordinate transformation
for the weakly singular integral in equation (4) is
presented.

The coordinates of any point in the triangle can be
expressed as

L, (51’ ’71)£aa

Il
M-

1

i)
Il

(7)

'S

n Lo (&m)n’.
1

o

The triangle area is transformed into a square area
-1<¢,<1and -1<#, <1 by the coordinate change of the
linear element shown in Figure 2(a). Since the transfor-
mation is linear, the relationship between &, 7 and &,,7, is
established by linear interpolation function:

3
n
@ J; ®
® 5 o—>
(b)
Ly(&m) = i (1-&)(1-m)
Ly(§,m) = i (1+&)(1-m)
(8)

—

Ly(&m) = 1 (1+&) (1 +m),

Ly(&m) = i (1-&)(1+m),

Taking the singular point appearing in corner node 1 and
middle node 5 in the edge as an example, the transformation
relationship between coordinate systems is established, as
shown in Figure 3.

When the singular point is at node 1, the element is
divided into two triangles: to triangle 1-3-4,

E= (L +L)E + LE+LE =2 (14 8) (1) - 1,

(9a)
n=(L + Lz)’71 + 113’73 + L4”I4 =1 (9b)
a_f % L 1 0
PRI o o5 | |0
on, on 2
1
=5(1 +1,) = o(r),
and to triangle 1-2-3,
E= (L + L) + L&+ L,E =, (11a)

1
n=(L, ‘”:2)’71 +L3’72L4’73:z (1-&) (1+n,)-1,
(11b)
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FIGURE 3: Singularity at node lor node 5.

]1=%(1+111):o(r). (12)

When the singular point is at node 5, the element is
divided into three triangles: to triangle 5-4-1,

E:(Ll+L2)E5+L3£4+L4£1:—%(1+111), (13a)

1
n=(L, +L2)’75+L3’14+L4’11 =3 (1+&,) (1+1,)-1,

(13b)
]lzi(1+ql)=o(r), (14)

to triangle 5-2-3,
fz(Ll+L2)E5+L3EZ+L4E3=%(1+;11), (15a)
ﬂ=Uﬁ+Lﬁn5+Lyf+Luf=%(1—€J(1+m)—h
(15b)
Ji=; (1) =o(r), (16)

and to triangle 5-3-4,
1
gz(Ll+L2)£5+L3E3+L4E4:551(1+;11), (17a)

n=(Ly+ L) + Ly + Ly =1, (17b)

]lzé(lﬂyz):o(r). (18)

In the same way, it is not difficult to write out the co-
ordinate transformation relationship when the singular
point appears in other nodes.

2.3. Parallel Computing and Discretization of the Nonho-
mogeneous Layer. Since the integrals in equations (4) and
(5) for each element are independent of the other, parallel
computing can be implemented by the proposed numerical
method. Here, a straight approach is to use OpenMP di-
rectives to parallelize the internal loop, which controls el-
ement iterations. For details of OpenMP method and
implementation, please refer to [19].

By using the proposed numerical method for the analysis
of a nonhomogeneous half-space exhibiting arbitrary varia-
tions in depth, the half-space is discretized into a large number
of homogeneous layers. The nonhomogeneous layer in a half-
space is closely approximated by n bonded layers of elastic
homogeneous media. Each layer has the elastic modulus and
Poisson’s ratio equal to the values at the lower depth of the
layer. A homogeneous material bonded with the nonhomo-
geneous layer is considered as a semi-infinite domain.

3. Numerical Verification

Selvadurai and Katebi [9] analyzed the undrained behavior
of a nonhomogeneous elastic medium induced by a uniform
vertical load. It was assumed that the variation of shear
modulus with the depth was described by the expressions
G(2) = Gye* (z<d) and G (z) = G, (z > d) and Poisson’s
ratio v=0.5. We reexamine the problems by verifying the
accuracy of the proposed method and choosing the dis-
cretized mesh on the loading area.

The circular loading area (radius a) is discretized into the
four meshes with eight-noded elements, which have, re-
spectively, 390 elements and 1235 nodes, 1589 elements and
4896 nodes, 2439 elements and 7478 nodes, and 6172 ele-
ments and 18773 nodes. As shown in Figure 4, the non-
homogeneous half-space with A =0.1 is discretized into 100
homogeneous elastic layers and the displacements and
stresses induced by the vertical uniform load f, at h=a are
presented for the approximation by depth-dependent var-
iations of the elastic parameters.

Figure 5 shows the vertical displacement of the points
along the vertical axis passing through the center of the
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FIGURE 4: Approximation of the continuous depth variation of the
shear modulus by a layered system of 100 piecewise homogeneous
layers for A = 0.1 and h/a=1.
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FIGURE 5: Variation of the displacement u,(0, 0, z) for different
meshes.

loading area for different meshes. It can be found that the
vertical displacements obtained by using the four meshes are
much close to each other. With comparison to the analytical
results by Selvadurai and Katebi [9], the displacements above
the loading plane z > a have small errors and the ones below
the loading plane have relatively large errors. For 0 <z < 54,
the largest absolute error of u,(0,0,z)/f, is 0.001 and ap-
pears at z = a. Figure 6 illustrates the vertical stress o, at the
points close to the loading plane for different meshes. It is
known that the loading f, causes a jump discontinuity of the
stress 0, across the loading plane and the jump at the center
of the loading area is equal tof,. For two points with a
distance of 0.003a from the loading surface for Meshes 3 and

Uzz/fz
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0.95 T T T T T T
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0.98 A
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z/a
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1.03 ~
1.04 A
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—o— Mesh 1 (390 elements and 1235 nodes)
—o— Mesh 2 (1589 elements and 4896 nodes)
—a— Mesh 3 (2439 elements and 7478 nodes)
—v— Mesh 4 (6172 elements and 18773 nodes)

FIGURE 6: Variations of 0, at the points close to the loading plane
for different meshes.

4, the jumps at the center of the loading surface are 0.9934 f,
and 0.99743 f , respectively, and have the absolute errors of
0.0066f, and 0.00257f,, respectively. These calculation
errors are induced by nearly singular integrals and it is
difficult to completely eliminate the errors by the subelement
method above. Thus, we choose Mesh 4 to perform the
following analysis and present the results of points with a
distance greater than or equal to 0.003a from the loading
surface.

4. Numerical Evaluations and Examples

4.1. Elastic Parameters of a Nonhomogeneous Medium. In
order to consider the variation of Poisson’s ratio with depth,
a simple linear fit has been completed for the data by Pan [3],
who investigated the depth variation of the geotechnical
properties of sand soil, clay loam, clay, and soft soil. The
variations of the elastic modulus and Poisson’s ratio for sand
soil are presented as follows:

E(z) = Eo(1 +m,z), (19)
v(2) = v, (1 +m,z),

where E, = 53.09 MPa, m; = 0.5065, v, = 0.3469,
m, = 0.0123, and the SI unit of z is meters (m). The thickness
of the sand soil is d =12 m. For z>d, the elastic properties
keep constant; that is, E(z>d)=E;(l+m;d) and
v(z=d) = v, (1 + m,d). It is considered that the depth of the
nonhomogeneous medium is equal to the radius of the
circular loading area; that is, d=a.

4.2. The Elastic Fields Induced by Inclined Loads Located at a
Given Depth. It is assumed that the circular loading area
(radius a) is located at the depth /= a and is subjected to an
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inclined load py, which has an angle 0 with the loading plane.
Here, we present only the results along the vertical axis
passing the center of the loading area. For comparison, two
cases of the depth-dependent and depth-independent var-
iations of Poisson’s ratio are analyzed.

Figure 7 illustrates the displacements u, and u, at the
point (x, y,z) = (0,0, z) induced by the inclined load p,
for different loading angles. Because of symmetry, the
displacement u, at the point (x, y,z) = (0,0,2) is equal to
zero. It can be found that the variation of Poisson’s ratio
with depth exerts an influence on the distribution of the
displacements. The influence of Poisson’s ratio is more
obvious on the vertical displacement u,. Furthermore, the
horizontal displacement u, becomes small with the
loading angle 0 increasing and is equal to zero for 6=90".
The vertical displacements u, increase with the loading
angle 0 increasing and arrive at the maximum values at
0=90".

Figure 8 illustrates the variations of the stresses o,,,
042> 0,y and o, at the point (x, y,2) = (0,0, 2) induced by
the inclined load p,, from different loading angles. Because
of symmetry, the stresses o,, and o0, at the point
(x,y,2) = (0,0,z) are equal to zero. From Figure 6, we
have the following observations:

(1) All the stresses tend to zero with the distance from
the loading plane increasing and have jumps across
the loading plane.

(2) The variation of Poisson’s ratio with depth exerts an
influence on the distribution of the stresses. The

influence of Poisson’s ratio is more obvious on the

normal stresses o,,, 0,,, and 0.

(3) With the loading angle increasing, the absolute
values of o,, decrease and the ones of ¢,,, and g,
increase below the loading plane. Above the loading
plane, the variations of the three normal stresses with
the loading angle are different in different depths.
The absolute values of o,, decrease with the loading
angle increasing and o,, = 0 for 8=90".

4.3. 'The Elastic Fields Induced by Inclined Loads Located at
Different Depths. It is assumed that the circular loading area
(radius a) is located at different depths (h =0, 2a, 3a, and 5a)
and is subjected to an inclined loadp,, which has an angle
0=45" with the loading plane. Here, we use the depth-in-
dependent model of elastic modulus and Poisson’s ratio and
present only the results along the vertical axis passing
through the center of the loading area.

Figure 9 illustrates the displacements u, and wu,at the
point (x, y,z) = (0,0, z) induced by the inclined load p,. It
can be found that, for each loading depth, the maximum
values of u, and u, appear at the loading plane. And the
maximum values of u, and u, decrease with the loading
depth increasing. Furthermore, the displacements u, and u,
for h=0 are much larger than the ones for other loading
depths. At z=5a, the displacements of u, and u, for h=5a
are larger than the ones for other loading depths.

Figure 10 illustrates the variations of the stresses 0., 0.,
0,y and o, at the point (x, y,2) = (0,0, z) with the loading
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depth. It can be found that all the jumps of the stresses
appear at the loading planes. Apart from the loading plane,
all the stresses approach zero. Furthermore, except for h =0,
the jumps of the four stresses move to the right of this figure
with the loading depth increasing. This may be related to the
thickness of the medium above the loading plane and the
loading direction.

5. Conclusions

The problem of the inclined loadings within a nonhomoge-
neous elastic half-space can serve as a much useful model for
examining the response of geological media. In the past
analysis, it is generally assumed that the elastic shear modulus
of a nonhomogeneous half-space varies with depth and
Poisson’s ratio keeps constant with depth. In this paper, it is
emphasized that Poisson’s ratio of a nonhomogeneous me-
dium also varies with depth and the loadings have any angle
with the loading plane. The results illustrate that the non-
homogeneity of an elastic half-space exerts an obvious influ-
ence on the stress and displacement fields. The proposed
numerical method can also be used to examine more com-
plicated variations of the elastic parameters with depth.

Abbreviations

P, Q:

Source and field points of the fundamental
solution

u; (Q,P): Kernel functions of the displacements of a
layered medium
ai’;.k (Q, P): Kernel functions of the stresses of a layered

medium

t; (P): Traction of the source point P

S: Integral domain, loading area

N, Shape function of the element at node «

xf, Coordinate and traction values of the
element at node o

&y Local coordinate component at node «

J: Jacobian determinant

a: Radius of the circular loading area

v Poisson’s ratio

E: Elastic modulus

0: Load angle with the loading plane

Po: Inclined load

(04,0, 0,;): Stresses induced by the inclined load p,

(4 uy,uy):  Displacements induced by the inclined load
Po

Go: Shear modulus

A Constant.
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