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Collective excitations in two-dimensional SU(N) Fermi gases with tunable spin
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We measure collective excitations of a harmonically trapped two-dimensional (2D) SU(N) Fermi gas of 173Yb
confined to a stack of layers formed by a one-dimensional optical lattice. Quadrupole and breathing modes
are excited and monitored in the collisionless regime | ln(kF a2D )| � 1 with tunable spin. We observe that the
quadrupole mode frequency decreases with increasing number of spin components due to the amplification of the
interaction effect by N in agreement with a theoretical prediction based on 2D kinetic equations. The breathing
mode frequency, however, is measured to be twice the dipole oscillation frequency regardless of N . We also
follow the evolution of collective excitations in the dimensional crossover from two to three dimensions and
characterize the damping rate of quadrupole and breathing modes for tunable SU(N) fermions, both of which
reveal the enhanced interparticle collisions for larger spin. Our result paves the way to investigate the collective
property of 2D SU(N) Fermi liquid with enlarged spin.
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Recent advances in ultracold alkaline earthlike atoms [1]
have opened new possibilities to investigate large spin physics
in fermionic systems with SU(N) symmetry [2]. The strong
decoupling of nuclear spin (I) from electronic angular mo-
mentum of these atoms leads to SU(N) symmetric interactions
with N = 1, . . . , 2I + 1 tunable by controlling their nuclear
spins. There have been growing interests in utilizing the
enlarged spin symmetry to simulate various quantum phe-
nomena ranging from SU(3) symmetric quantum chromody-
namics [3] to unconventional magnetisms [4–7]. In addition,
enhanced degeneracy arising from the spin symmetry is ex-
pected to result in topological order, which is analogous to
the quantum Hall effects in multivalley semiconductors [8,9].
To date, however, the on-going efforts on the experimental
realization of SU(N) degenerate quantum gases have been
focused on one-dimensional wires [10] and three-dimensional
(3D) optical lattices [11,12]. While there have been spectro-
scopic measurements of SU(N)-symmetric interactions [13],
signatures of higher spin symmetry in the context of collective
properties of atoms have not been identified in 2D settings.

Owing to the enhancement of quantum fluctuations, novel
features of 2D fermionic systems with spin-1/2 have been
widely studied such as the high mobility electrons in graphene
and high temperature superconductivity in cuprates. Ultracold
Fermi gases in an oblate optical trap generate a versatile
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platform to probe 2D physics by freezing out the motional
degrees of freedom along the tightly confined direction [14].
Since the early observations of 2D Fermi gas [15,16], most
studies have so far focused on the two-component Fermi
gas in 2D including the many-body pairing gap [17], the
evolution of pairing along dimensional crossover [18], and
the spin transport [19,20]. Multicomponent fermions with
higher spin symmetry can dramatically change the pairing
mechanism, which have been discussed in recent theoretical
studies [7,21,22]. Despite the emerging interest in the role of
enlarged spin symmetry in 2D, the experimental realization
has remained unexplored in fermionic systems.

In this work, we realize a stack of 2D SU(N) Fermi gases
in a one-dimensional (1D) optical lattice and investigate the
effect of spin multiplicity on the collective excitations with
fixed atom number per spin and scattering length. We find that
the higher spin multiplicity reduces the oscillation frequency
of quadrupole modes. The observed collective mode is in
good agreement with numerical calculations using kinetic
equations in 2D, which provides an experimental confirmation
of enhanced interaction effect in weakly interacting SU(N)
fermions. Furthermore, we explore a dimensional crossover
from 2D to 3D for tunable SU(N) systems. Lastly, we ex-
perimentally characterize the damping rate of the quadrupole
mode for different SU(N) fermions. Our work provides an
atomic 2D platform with SU(N) symmetry opening a possi-
bility to study an unconventional Fermi liquid.

The experiment begins with a laser cooled Fermi gas of
173Yb loaded into a crossed optical dipole trap (ODT) [23].
The crossed ODT is formed with a 1064 nm laser beam
along one axis and counterpropagating 532 nm beams with
two separately controllable polarizations along the other axis.
During the loading and evaporative cooling in the ODT, the
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FIG. 1. An array of two-dimensional SU(N) Fermi gases. (a) An
array of 2D pancake traps is realized by a 1D optical lattice potential
formed by counterpropagating 532 nm beams with a tunable relative
polarization. (b) During the evaporation cooling process, the polar-
ization angle θ between incident and reflected beams is 90◦, leading
to zero lattice depth. Subsequently, atoms are loaded into the lattice
adiabatically within 4.4 s right after evaporation cooling. By ramping
up 532 nm laser power, atoms are kept by the 1D lattice only. Also
a high lattice depth strongly suppresses tunneling. Both dipole and
quadrupole modes can be excited by a perturbation. (c) An in situ
absorption image is shown. (d) We measure in situ temperature of
2D fermions by obtaining the atomic density n(x) integrated over
the y direction near the center of the trap. We obtain T/T 2D

F from
the Fermi-Dirac distribution (gray curve) in contrast to the Gaussian
distribution (blue curve).

polarizations of the 532 nm beams are perpendicular to each
other to suppress interference effects. We create a SU(N �
6) Fermi gas with tunable spin by optically blasting the
unwanted spin components during the evaporative cooling
process [24]. Since we start from equal spin distribution,
the blasting method automatically achieves fixed number of
atoms per each spin state. The procedure results in a tunable
spin mixture (e.g., N = 1, . . ., 6) with atom number N0 � 104

per spin state at the temperature of T 3D/T 3D
F = 0.2(1), where

the Fermi temperature is T 3D
F � 150 nK in a 3D trap with trap

frequencies of (ωx, ωy, ωz ) = 2π × (120, 120, 30) Hz.
After the preparation of a 3D degenerate Fermi gas, we

adjust the polarizations of the 532 nm ODT beams parallel
to each other and create an array of 2D traps as shown in
Fig. 1(a). For the purpose, we use a rotational wave plate,
allowing us to gradually tune the dimensionality from 3D to
2D with an optical lattice potential of V (z) = V0 sin2(2πz/d ),
where d = 532 nm. The lattice depth is calibrated by lattice
modulation spectroscopy. The lattice loading process consists
of two steps [see Fig. 1(b)]. First, we rotate the relative

polarization of counterpropagating 532 nm beams from per-
pendicular to parallel over 4.4 s resulting in the lattice depth
of V0 ∼ 5Er , where Er = h × 4.08 kHz is the recoil energy
and h is the Planck constant. Additional confinement along
the z direction is applied to minimize the number of pancakes
populated during the lattice loading process, which improved
trap homogeneity. Next, we ramp up the lattice depth to the
final value of V0 = 53Er within 250 ms, during which the axial
confinement along the z direction is switched off. Finally, the
sample is adiabatically loaded into the lattice with minimal
heating. At this lattice depth, each pancake trap is indepen-
dent with negligible tunneling energy J � h × 0.09 Hz. In
each pancake, trapping frequencies are (ωx, ωy, ωz ) � 2π ×
(185, 185, 59 000) Hz. The measured anisotropy ε = |ωx −
ωy|/2ωr was less than 0.01, where the radial trapping fre-
quency is defined as ωr = √

ωxωy � 2π × 185 Hz.
We initially investigate the property of the 2D gas by

comparing the temperature with the axial confinement of
the lattice potential. We measure in situ temperature of the
Fermi gas in the lattice by fitting to the column density
n(x) [see Figs. 1(c) and 1(d)]. The column density n(x) =
−

√
m√

2π h̄2β3/2ωr
Li3/2(−ze−β m

2 ω2
r x2

) and the fugacity z = eβμ are

related to the temperature by T/T 2D
F = 1/

√−2Li2(−z) where
Li is the PolyLog function. In the lattice, we obtain T � 60 nK
or T/T 2D

F � 0.42, where kBT 2D
F = h̄ωr

√
2N2d and N2d � 100

is the number of atoms per spin in each pancake near the
center of the trap. As the condition EF , kBT � h̄ωz is fulfilled,
the majority of the atoms occupy only the ground level of the
harmonic oscillator.

Our main result is the observation of a change in
quadrupole mode of the 2D Fermi gas with spin multiplicity
N = 1, . . . , 6. Collective modes of trapped fermions have
been widely used to reveal interaction effects, as shown
in experiments with two-component Fermi gases in 2D
[25–27]. In 2D, an interaction parameter is given by g2D =
g3D(

√
2π lz + a3D ln(Bh̄ωz/2πEF ))−1 with B = 0.915 [28].

Here lz = √
h̄/mωz is a harmonic oscillator length along

the tightly confined direction and g3D = 4π h̄2a3D/m is a
3D interaction parameter with the s-wave scattering length
a3D. Correspondingly, the 2D scattering length is given by
a2D = √

π/Blz exp(−√
π/2lz/a3D) [14]. For our experimen-

tal parameters, the collective excitations are well described
in the collisionless regime with the dimensionless param-
eter | ln(kF a2D)| � 1. For a two-component Fermi gas at
T = 0, this leads to a shift of quadrupole frequency as
ωq/ωd = √

2(2 + χ )/(1 + χ ) � (2 − χ/2) [29], where χ =
− ln−1(kF a2D) = g2D

m
2π h̄2 > 0.

To model the collective dynamics, we employ the kinetic
equation for semiclassical distribution function fαβ (r, p),
where α, β = 1, 2, . . . , N label the spin components. Assum-
ing no off-diagonal coherence during the collective motion,
fαβ (r, p) = fα (r, p)δαβ , and taking into account the mean-
field terms, the kinetic equation takes the form

∂ fα (r, p)

∂t
+ p · ∇r fα − ∇r(V + Vmf ) · ∇p fα = Icol (1)

where Vmf (r) = g2D
∑

β 	=α nβ (r) encapsulates the effects of
interaction in 2D, the collisional integral Icol and V (r) the
external trap. In obtaining solutions to Eq. (1), we use the
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scaling form for fα (r, p) as detailed in the Supplemental
Material [30]. In this formulation, the effect of spin multi-
plicity enters Vmf (r) as a multiplicative constant and conse-
quently, the modification to quadruple mode frequency scales
approximately linearly with N as 2ωd − ωq ∝ (N − 1)g2D

for our experimental conditions, which corresponds to the
collisionless regime (Icol = 0) with ln(kF a2D) = −4.3. This
quadrupole frequency shift amplified by spin multiplicity is
generic even in 3D.

To induce collective excitations in our experiment, we
abruptly increase the radial trap frequency by 10% as shown
in Fig. 1(b). The sudden increase of the lattice depth in-
duces multiple collective modes (e.g., dipole, breathing, and
quadrupole modes) simultaneously due to the change of grav-
itational sag during the excitation. Subsequently, collective
oscillations are monitored up to 150 ms by turning off the trap
at different times followed by a 8 ms time-of-flight expansion.
Absorption images of the atomic cloud are taken by the
resonant 399 nm 1S0-1P1 optical transition.

In order to identify different collective modes induced
simultaneously, we determine the center-of-mass position and
the width of the cloud in the x and y direction, wx and wy,
respectively. We calibrate the dipole frequency ωd from the
center-of-mass position in the y direction [Fig. 2(a)]. The
quadrupole and breathing mode frequencies are then obtained
by taking wx/wy and

√
wxwy, respectively [Fig. 2(a)]. The

observed quadrupole modes [see Fig. 2(a)] show oscillations
near twice the frequency of the dipole mode [31] with more
pronounced decay rate, which will be discussed later. We
measure an extremely small decay rate of the dipole mode
frequency �d/ωd < 0.0006 due to the minimal trap anhar-
monicity reflected in small trap anisotropy ε. Consequently,
the dipole mode is precisely determined within 0.5% or ωd =
2π × 185(1) Hz.

In Fig. 2(b), we plot the ratio of ωq/ωd , which provides
direct access to the interaction effect in SU(N) gases, for
various spin multiplicities. We find a clear deviation of ωq/ωd

away from 2 as the spin multiplicity increases, consistent with
the theoretical expectation based on kinetic theory, 2ωd −
ωq ∝ (N − 1)g2D which only takes into account mean field
effects. The theoretical curve shown as a solid line is based
on numerical solutions of the kinetic equation (1) in the
mean-field approximation and are in reasonable agreement
with observations considering experimental uncertainty. We
also measure the breathing mode by geometric averaging of
wx and wy. In contrast to the quadrupole mode, the breathing
mode does not depend on spin multiplicity being consistent
with the classical scale invariance in a weakly interacting gas
[25,32], while quantum anomaly, the breakdown of classical
scale invariance, has recently been observed in the strongly
interacting regime [26,27].

In Fig. 3, we investigate the SU(N) dependent quadrupole
mode frequencies along the dimensional crossover from 2D
to 3D, by controlling the lattice depth V0. In the 2D limit
where the interlayer coupling is not taken into account,
the quadrupole mode frequency can be estimated in the
mean-field regime as a function of the lattice depth, ωq ∝
2ωd − (N − 1)g2D where g2D ∝ V 1/4

0 ignoring the term with
a3D, as indicated by the blue region in Fig. 3. The ob-
served quadrupole frequency is reasonably consistent with 2D
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FIG. 2. Measurement of quadrupole and breathing mode fre-
quencies. (a) Oscillations showing dipole (top), quadrupole (mid),
and breathing (bottom) modes for a SU(6) gas after the perturbation.
To ensure the trap is completely deformed after the sudden increase
of the 532 nm lattice power, we monitor the collective oscilla-
tions starting from 0.5 ms after the quench. (b) The ratio between
quadrupole and dipole modes ωq/ωd (solid cirlce) is monitored for
a different number of spin components N with atom number being
fixed per spin in comparison with theoretical prediction (solid curve).
The shaded region indicates the uncertainty on the theoretical values
resulting from the experimental uncertainty. For comparison, we
measure the breathing mode (open circle) by measuring the width of
the cloud wr = √

wxwy subtracted by the equilibrium width w0. The
error bar includes statistical and systematic errors of measurements.

prediction even in the intermediate lattice depth where the
Fermi energy is comparable to the lattice depth. In the 3D
limit, however, we observe that ωq/ωd approaches 2 as the
trapping geometry becomes closer to the 3D regime of kBT �
h̄ωz due to the small interaction parameter g3D as shown in
Fig. 3 (red shaded region). As a reference, ωq/ωd is also
monitored for the noninteracting spin-polarized Fermi gas
[i.e., SU(1)], which remains around 2 throughout the same
range of trapping parameters. Our results highlight the role
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FIG. 3. Dimensional crossover from 2D to 3D. We measure the
change in quadrupole mode of SU(1) and SU(6) Fermi gases to
find the signature of dimensional crossover. The Fermi gas becomes
increasingly confined to a stack of 2D layers as we increase the lattice
depth of 1D optical lattice. In contrast to noninteracting fermions
[triangle, SU(1)] with the quadrupole mode being close to 2ωd (gray
line), decreasing the dimensionality leads to reduced frequency of
quadrupole mode for SU(6) fermions (circle) due to amplification of
the interaction effect. The blue and red solid lines indicate theoretical
prediction in 2D and 3D, respectively. The shaded region indicates
the uncertainty on the theoretical values resulting from the experi-
mental uncertainty. The error bar includes statistical and systematic
errors of measurements.

of lower dimensions for amplification of negligibly small
interaction effects. To fully calculate the collective mode in
the crossover regime, however, the interlayer coupling needs
to be further considered.

Finally, we turn our attention to the damping process of
the collective excitation in a 2D SU(N) Fermi gas. Figure 4
shows the evolution of the quadrupole and breathing mode
amplitude for SU(1), SU(2), and SU(6) gases at the lattice
depth of 53Er . As spin multiplicity increases, quadrupole
oscillations exhibit more obvious damping effect. This phe-
nomenon can be explained by noticing that in a SU(N) Fermi
gas, the relaxation of the quadrupole mode is determined by
the appropriate damping of moment χ = ∑

i(x
2
i,σ − y2

i,σ ) with
xiσ and yiσ gives the position of the particle i with spin σ . The
rate of damping for χ is proportional to the collision integral
〈χ Icol〉 [33,34]. Within the simplest assumption in which fα is
independent of α, Icol is proportional to (N − 1) and this leads
to larger collision integral and consequently, a faster decay.
On the other hand, the breathing mode suffers much less
damping as function of spin multiplicity due to vanishingly
small bulk viscosity in our system. The damping of collective
modes could become a useful tool for the detection of the
Kondo scattering and pairing states, if a two orbital system
is implemented [35,36].
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FIG. 4. Damping of quadrupole and breathing modes for dif-
ferent spin multiplicity N . After inducing collective excitations, we
monitor the amplitude of the oscillation up to 100 ms hold time. We
extract the damping rate by fitting the oscillation amplitude with an
exponential decay curve with zero amplitude fixed at long hold time.
In the inset, we show the damping rates of quadrupole and breathing
modes for different spin multiplicity N . Here, the error bar indicates
the fit error.

We further note that the implementation of optical Fesh-
bach resonances (OFR) can enhance the atomic interactions
[37,38]. Despite the atomic loss and the slightly broken SU(N)
symmetry induced by the OFR beam, we expect the SU(N)
symmetry can be effectively maintained within tens of ms
with minimal nuclear spin relaxation rate [39], during which
the collective mode can be investigated. Pushing the SU(N)
symmetric interaction closer to the strongly interacting case
of | ln(kF a2D)| � 1 and searching for its effect in collective
modes is one possible extension of our work.

In conclusion, we realize a two-dimensional Fermi gas
with tunable spin and detect its SU(N) symmetric interaction
effects using collective excitations. Various collective modes
are investigated revealing the decrease in the ratio of quadru-
ple to dipole mode frequency with N in good agreement with
mean-field prediction, while the ratio of breathing to dipole
mode frequency stayed constant. We also follow the evolution
of collective modes in the dimensional crossover from 2D to
3D and measure their damping rates in 2D. Quantum anomaly
[26,27] in 2D SU(N) fermions would be an interesting topic
for future studies. In addition, possible extensions of our work
can be considered in the context of a two-orbital system in
2D [40].
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