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Abstract
For any bounded domains Ω in C

n , Deng, Guan and Zhang introduced the squeezing
function SΩ(z)which is a biholomorphic invariant of bounded domains. We show that
for n = 1, the squeezing function on an annulus Ar = {z ∈ C : r < |z| < 1} is given
by SAr (z) = max

{
|z|, r

|z|
}
for all 0 < r < 1. This disproves the conjectured formula

for the squeezing function proposed by Deng, Guan and Zhang and establishes (up to
biholomorphisms) the squeezing function for all doubly-connected domains inC other
than the punctured plane. It provides the first non-trivial formula for the squeezing
function for a wide class of plane domains and answers a question of Wold. Our main
tools used to prove this result are the Schottky–Klein prime function (following the
work of Crowdy) and a version of the Loewner differential equation on annuli due to
Komatu. We also show that these results can be used to obtain lower bounds on the
squeezing function for certain product domains in C

n .

Mathematics Subject Classification 30C35 · 30C75 · 32F45 · 32H02

1 Introduction

In 2012, Deng, Guan and Zhang [8] introduced the squeezing function of a bounded
domain Ω in C

n as follows. For any z ∈ Ω , let FΩ(z) be the collection of all embed-
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dings f from Ω to C
n such that f (z) = 0. Let B(0; r) = {z ∈ C

n : ‖z‖ < r} denote
the n-dimensional open ball centered at the origin 0 with radius r > 0. Then the
squeezing function SΩ(z) of Ω at z is defined to be

SΩ(z) = sup
f ∈FΩ(z)

{a
b

: B(0; a) ⊂ f (Ω) ⊂ B(0; b)
}

.

Remark 1. For the supremum in the definition of the squeezing function, we can
restrict the family FΩ(z) to the subfamily of functions f such that f (Ω) is
bounded.

2. For any λ �= 0, we have f ∈ FΩ(z) if and only if λ f ∈ FΩ(z). As a consequence,
we may assume that b = 1.

It is clear from the definition that the squeezing function on Ω is positive
and bounded above by 1. Also, it is invariant under biholomorphisms, that is,
Sg(Ω)(g(z)) = SΩ(z) for any biholomorphism g of Ω . If the squeezing function
of a domain Ω is bounded below by a positive constant, i.e., if there exists a positive
constant c such that SΩ(z) ≥ c > 0 for all z ∈ Ω , then the domain Ω is said to be
holomorphic homogeneous regular by Liu, Sun and Yau [23] or with uniform squeez-
ing property by Yeung [27]. The consideration of such domains appears naturally
when one applies the Bers embedding theorem to the Teichmüller space of genus g
hyperbolic Riemann surfaces.

The squeezing function is interesting because it provides some geometric informa-
tion about the domainΩ . For instance, Joo and Kim proved in [19] that ifΩ ⊂ C

2 is a
bounded domain with smooth pseudoconvex boundary and if p ∈ ∂Ω is of finite type
such that limΩ�z→p SΩ(z) = 1, then ∂Ω is strictly pseudoconvex at p. For another
instance, Zimmer showed in [28] and [29] that ifΩ ⊂ C

n is a bounded convex domain
withC2,α boundary and K is a compact subset ofΩ such that SΩ(z) ≥ 1−ε for every
z ∈ Ω \ K and for some positive constant ε = ε(n), then Ω is strictly pseudoconvex.
In addition to providing geometric information, the squeezing function is related to
some estimates of intrinsic metrics on Ω . For example, in [9], Deng, Guan and Zhang
showed that

SΩ(z)KΩ(z, v) ≤ CΩ(z, v) ≤ KΩ(z, v)

for any point z in Ω and for any tangent vector v ∈ TzΩ , where CΩ and KΩ denote
the Carathéodory seminorm and Kobayashi seminorm on Ω respectively. For other
properties and applications of squeezing functions, see [8,13–16,20,24,25,30].

Given a bounded domainΩ ⊂ C
n , it is then natural to ask whether one can estimate

or even compute the precise form for the squeezing function SΩ(z)onΩ . In [1],Arosio,
Fornæss, Shcherbina and Wold provided an estimate of SΩ(z) for Ω = P

1\K where
K is a Cantor set. In [8], Deng, Guan and Zhang showed that the squeezing functions
of classical symmetric domains are certain constants (using a result of Kubota in [22]);
they also showed that the squeezing function of the n-dimensional punctured unit ball
B(0; 1) \ {0} is given by SB(0;1)\{0}(z) = ‖z‖.

We now consider the n = 1 case, and introduce the following notation which will
be used in this paper. Dr = {z ∈ C : |z| < r}, the disk of radius r centered at 0,
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and D = D1; Cr = {z ∈ C : |z| = r}, the circle of radius r centered at 0; and
Ar = {z ∈ C : r < |z| < 1}, the annulus with inner radius r and outer radius 1.

By the Riemann mapping theorem, the simply-connected case is trivial: SD(z) ≡ 1
for any simply-connected domain D. In [8], Deng, Guan and Zhang considered the
squeezing function of an annulus Ar . They conjectured that for any z ∈ Ar with
|z| ≥ √

r > 0,

SAr (z) = σ−1
(
log

(1 + |z|)(1 − r)

(1 − |z|)(1 + r)

)

where

σ(z) = log
1 + |z|
1 − |z| .

In this paper, we will disprove this conjecture by establishing the formula for SAr (z).
This also answers a question asked by Wold about the precise form for SAr (z) in
his lecture given in the Mini-workshop on Complex Analysis and Geometry at the
Institute for Mathematical Sciences, NUS in May 2017.

Theorem 1 For 0 < r < 1, and r < |z| < 1,

SAr (z) = max

{
|z|, r

|z|
}

.

Remark 1. The case of the punctured disk A0 = D \ {0} follows by letting r → 0 so
that SA0(z) = |z|. This is the n = 1 case of the result of Deng, Guan and Zhang
for the punctured ball in C

n referred to above.
2. Since any doubly-connected domain (other than the punctured plane) is confor-

mally equivalent to Ar for some 0 ≤ r < 1, this result determines the squeezing
function in the doubly-connected case up to biholomorphisms.

Let us define

F̃r (z) = {
f ∈ FAr (z) : f (Ar ) ⊂ D, f (∂D) = ∂D

}
,

S̃r (z) = sup
f ∈F̃r (z)

{a : Da ⊂ f (Ar ) ⊂ D} .

By restricting FAr (z) to F̃Ar (z), we will see in Sect. 4 that Theorem 1 will follow if
we show that

S̃r (z) = |z|.

To do this, we will identify a candidate for the extremal function in F̃r (z). This will
be the conformal map from Ar onto a circularly slit disk, that is a domain of the form
D \ L where L is a proper subarc of the circle with radius R ∈ (0, 1) and center 0.
Through the results of Crowdy in [5] and [6], this conformal map can be expressed
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explicitly in terms of the Schottky–Klein prime function (see Theorem 4). It will be
shown that, in this case, the radius of the slit is |z|. Then the following theorem will
show that this conformal map is indeed extremal (which has been suggested by Wold
in his lecture just mentioned).

Theorem 2 Let Ẽ ⊂ D be a closed set with 0 /∈ Ẽ and there exists some constant
y > 0 such that |z| ≥ y for any z ∈ Ẽ . Furthermore assume thatΩ = D\ Ẽ is doubly
connected. If g is a conformal map of Ar onto Ω , for some r ∈ (0, 1), such that g
maps the ∂D onto ∂D, then we have

|g−1(0)| ≥ y.

To prove this result, we will start with the case where Ẽ is a circular arc so that
Ω = D \ Ẽ is a circular slit disk. We will then grow a curve from the circular slit so
that Ẽ is now the union of the curve with the circular slit; the conformal maps onto
these domains Ω will then satisfy a version of the Loewner differential equation due
to Komatu (see [17,21]). Studying this differential equation will enable us to prove
Theorem 2. The remaining cases for E then follow by letting the length of the circular
slit tend to 0.

Finally, we obtain the following lower bound for the squeezing function on product
domains in C

n .

Theorem 3 Suppose that Ω ⊂ C
n and Ω = Ω1 × · · · Ωn where Ωi is a bounded

domain in C for each i . Then for z = (z1, · · · , zn) ∈ Ω , we have

SΩ(z) ≥
(
SΩ1(z1)

−2 + · · · + SΩn (zn)
−2

)−1/2
.

Remark The argument we use to prove the above theorem can be modified to obtain
a similar result when Ωi are not necessarily planar. In [8], Deng, Guan and Zhang
show that this inequality is attained in the case when each Ωi is a classical symmetric
domain.

Theorem 3 allows us to use the formula given in Theorem 1 for the squeezing func-
tion of a doubly-connected domain to get a lower bound on the squeezing function of
the product of several doubly-connected and simply-connected domains. For example,
considering Ω = Ar × D, Theorem 3 together with Theorem 1 yields

SAr×D(z) ≥

⎧⎪⎪⎨
⎪⎪⎩

r√
r2 + |z1|2

if r < |z1| ≤ √
r

|z1|√
1 + |z1|2

if
√
r ≤ |z1| < 1.

Obtaining the exact form for SAr×D(z) would be of interest.
The rest of the paper is organised as follows. Firstly, in Sect. 2, we review some

results and concepts that are necessary for this paper including the formula for the
conformal map of an annulus Ar to a circularly slit diskD\L in terms of the Schottky–
Klein prime function and a version of the Loewner differential equation that we will
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need. Then, in Sect. 3, we give a proof for Theorem 2; the proof of Theorem 1 is
provided in Sect. 4 andwe prove Theorem3 in Sect. 5. Finally, we discuss themultiply-
connected cases in Sect. 6.

2 Preliminary results

2.1 Basic definitions and notations

Throughout this paper, we will make use of the following definitions and notations:

– For z ∈ C
n and r > 0, B(z; r) denotes the open ball centered at z with radius

r . When n = 1, we also set Dr = B(0; r) and in particular, D = B(0; 1). Then
Cr = ∂Dr .

– Let p > 0 and r = e−p so that 0 < r < 1. Then Ar denotes the annulus centered
at 0 with inner radius r and outer radius 1. In this case, Ar is said be of modulus
p.

– Let Ω be a doubly-connected domain in C. The modulus p of Ω is defined to be
the unique positive real number p such that there exists a biholomorphism φ from
Ω to Ar where r = e−p.

– By a (doubly-connected) circularly slit disk, we refer to a domain of the formD\L
where L is a proper closed subarc of the circle with radius R ∈ (0, 1).

– For any set E ⊂ C, ∂E denotes the topological boundary of E in C.
– Let γ : I → C be a curve where I is an interval in R. We will write γ I instead of

γ (I ) for notational simplicity.
– We assume that the argument function Arg takes values in [0, 2π).

2.2 The Schottky–Klein prime function

The Schottky–Klein prime function ω(z, y) on the annulus Ar is defined by

ω(z, y) = (z − y)
∞∏
n=1

(z − r2n y)(y − r2nz)

(z − r2nz)(y − r2n y)
for z, y ∈ C \ {0}. (1)

Moreover, ω(z, y) satisfies the following symmetry properties (see [2,6] or [18]):

ω(z−1, y−1) = −ω(z, y)

zy
(2)

and

ω(r−2z, y) = r z ω(z, y)

y
. (3)

Recall from the previous section that a circularly slit disk is a domain of the formD\L
where L is a proper subarc of the circle with radius R ∈ (0, 1) and center 0. In [6],
Crowdy established the following result.
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Theorem 4 Let y be a point in Ar and define

f (z, y) = ω(z, y)

|y|ω(z, y−1)
for z, y ∈ Ar . (4)

Then f (·, y) is a conformal map from Ar onto a circularly slit disk with f (∂D) = ∂D

and y is mapped to 0.

See also [7]. Theorem 4 allows us to compute the radius of the circular arc in f (Ar ).
For any z = reiθ , we have

| f (z, y)|2 = f (z, y) f (z, y)

=
(

ω(z, y)

|y|ω(z, y−1)

) (
ω(z, y)

|y|ω(z, y−1)

)

= 1

|y|2
(

ω(z, y)

ω(z, y−1)

) (
ω(r2z−1, y)

ω(r2z−1, y−1)

)
.

Using (2) and (3),

| f (z, y)|2 = 1

|y|2
(

ω(z, y)

ω(z, y−1)

)(
r−2zy ω(r−2z, y−1)

r−2zy−1 ω(r−2z, y)

)

=
(

ω(z, y)

ω(z, y−1)

) (
r zy ω(z, y−1)

r zy−1 ω(r−2z, y)

)

= |y|2.

This shows that the radius of the circular arc in f (Ar ) is |y| and, in particular, it does
not depend on r . Note that if φ is a conformal map from a circularly slit disk Ω1 to
another circularly slit disk Ω2 such that φ maps ∂D to ∂D and φ(0) = 0, then φ must
be a rotation (Lemma 6.3 in [4]). We restate this result as the following lemma.

Lemma 1 For any annulus Ar and for any circularly slit disk Ω whose arc has radius
y, if f is a conformal map which maps Ar onto Ω with f (∂D) = ∂D, then we have

| f −1(0)| = y.

Remark We thank the referee for informing us that Lemma 1 is the same as Lemma 3
of [26]. Our proof of the above lemma is different from that of Lemma 3 in [26].

When y is positive, we have the following lemma.

Lemma 2 Let Ω = D \ L be a circularly slit disk such that L is symmetric across the
real axis, that is, z ∈ L if and only if z ∈ L. Let y be a point on an annulus Ar such
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that r < y < 1. Let g : Ar → Ω be the conformal map from Ar onto Ω such that
g(y) = 0 and g(∂D) = ∂D. Then for any z ∈ Ar ,

g(z) = g(z).

In particular, if p1 and p2 denote the two end points of L and π1, π2 ∈ Cr denote the
two points on the inner boundary of Ar such that g(π1) = p1 and g(π2) = p2; then
we have π1 = π2.

Proof Consider the map G defined by G(z) = g(z). Then G is a conformal map of Ar

ontoΩ withG(∂D) = ∂D andG(y) = 0.Hence,G−1◦g is a conformal automorphism
of Ar that fixes y and does not interchange the boundary components. Since any such
conformal automorphism of an annulus is the identity mapping, this implies that
G−1 ◦ g is the identity and so g(z) = g(z) on Ar . Let {pi,n} ⊂ Ω be sequences of
points such that p2,n = p1,n and lim

n→∞ pi,n = pi . Define πi,n = g−1(pi,n) ∈ Ar for

i = 1, 2. It follows that for each n ∈ N,

g(π2,n) = p2,n = p1,n = g(π1,n) = g(π1,n).

Since g is conformal, we have π1,n = π2,n for each n ∈ N. Note that lim
n→∞ πi,n = πi .

Hence we conclude that π1 = π2. ��

2.3 Approximating by slit domains

Let D be the collection of doubly-connected domains Ω so that Ω ⊂ Ar for some
r > 0 and ∂D be one of the boundary components of Ω . Let {Ωn} be a sequence in
D. Define the kernel Ω of the sequence {Ωn} as follows:
– If there exists some Ω∗ ∈ D such that Ω∗ ⊂

∞⋂
n=1

Ωn , then the kernel Ω is defined

to be themaximal doubly-connected domain inD such that for any compact subset
K of Ω , there exists an N ∈ N so that K ⊂ Ωn whenever n > N ;

– otherwise, the kernel Ω is defined to be ∂D.

Then a sequence {Ωn} converges to Ω in the sense of kernel convergence, if Ω is the
kernel of every subsequence of {Ωn}. Let {Ωn} be a sequence of doubly-connected
domains inD. Since every doubly-connected domain of finite modulus is conformally
equivalent to an annulus Ar for some r ∈ (0, 1), there exists a sequence {ψn} of
conformal maps such that ψn maps Arn onto Ωn and ψn is normalized appropriately.
A version of the Carathéodory kernel convergence theorem for doubly-connected
domains will show that the kernel convergence of {Ωn} implies local uniform conver-
gence of {ψn}. This is Theorem 7.1 in [17]. We restate this result in a form which we
will need later.

Theorem 5 Suppose that r > 0 and r < y < 1. Let {Ωn} be a sequence of doubly
connected domains in D such that y ∈ ⋂∞

n=1 Ωn. Let {rn} be a sequence with r <

rn < 1 for n ≥ 1 such that there exists a conformal map Φn of Ωn onto Arn satisfying
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Φn(y) > 0 and Φn(∂D) = ∂D for every n. Then the kernel convergence of Ωn to a
doubly connected domain Ω in D implies that the sequence {rn} converges to r and
that the sequence {Φn} converges locally uniformly to a conformal map Φ of Ω onto
Ar satisfying Φ(y) > 0 and Φ(∂D) = ∂D.

Theorem 5 can be obtained from Theorem 7.1 in [17] by renormalising the conformal
maps. This theorem leads to the following proposition.

Proposition 1 Let E ⊂ Ar be a closed set such that Ar \ E is doubly connected and
E ∩ Cr �= ∅. Assume there exists some y ∈ Ar \ E with y > 0 and let Φ be the
conformal map from Ar \ E onto some annulus Ar ′ normalized such that Φ(y) > 0
and Φ(∂D) = ∂D.

1. Suppose that ∂E∩ Ar is a Jordan arc. Then we can find a Jordan arc γ : [0, T ) →
Ar \ {y} satisfying γ (0) ∈ Cr and γ (0, T ) ⊂ Ar and an increasing function
q : [0, T ) → [r , r ′] with q(0) = r and q(T ) = r ′ such that the conformal maps
Φt of Ar \ γ (0, t] onto Aq(t) with Φt (y) > 0 and Φt (∂D) = ∂D satisfy Φt → Φ

locally uniformly as t → T .
2. For the cases where ∂E ∩ Ar is not a Jordan arc, we can find an increasing

sequence {qn} with r < qn < 1 for all n and qn → r ′ as n → ∞; a sequence
of Jordan arcs Γn ⊂ Ar \ {y} which starts from Cr ; conformal maps Φn which
map Ar \ Γn onto the annulus Aqn with Φn(y) > 0 and Φn(∂D) = ∂D such that
Φn → Φ locally uniformly as n → ∞.

Proof For part 1, suppose that ∂E ∩ Cr �= ∅, then we can find a Jordan arc γ :
[0, T ] → Ar such that |γ (0)| = r and γ (0, T ) = ∂E ∩ Ar Otherwise, ∂E ∩Cr = ∅.
Then E is bounded by Cr and a closed curve in Ar . In this case, we define a Jordan
arc γ : [0, T ] → Ar such that γ [0, T1] is the straight line segment in E from a point
in Cr to a point in ∂E for some 0 < T1 < T and γ [T1, T ) = ∂E ∩ Ar . We define
Ωt = Ar \ γ (0, t]. The conformal equivalence of any doubly-connected domains to
an annulus implies that there exists an increasing function q : [0, T ] → [r , r ′] with
q(0) = r and q(T ) = r ′ and a family of conformal maps Φt of Ωt onto Aq(t) with
Φt (y) > 0 and Φt (∂D) = ∂D. Then as t → T , Ωt → Ar \ E in the sense of kernel
convergence. Hence, by Theorem 5, the sequence {Φt } converges locally uniformly
to a conformal map Φ of Ar \ E onto Ar ′ such that Φ(y) > 0 and Φ(∂D) = ∂D. This
proves part 1.

For part 2, since Ar \ E is doubly connected, there exists an annulus As and a
conformal map f of As onto Ar \ E for some s > 0 such that f (∂D) = ∂D. For any
0 < δ < 1 − s, we let

Eδ = f ({z ∈ As : s < |z| < s + δ}).

Also, when δ is small enough, we have y /∈ Eδ . Since f is conformal, ∂Eδ ∩ Ar =
f (Cs+δ) is an analytic Jordan arc. So part 1 of the proposition applies to Ar \ Eδ .
That is, we can find a Jordan arc γδ : [0, T ) → Ar \ {y} satisfying γδ(0) ∈ Cr and
γδ(0, T ) ⊂ Ar and an increasing function qδ : [0, T ) → [r , r ′] with qδ(0) = r
and qδ(T ) = r ′

δ such that the conformal maps Φδ
t of Ar \ γδ(0, t] onto Aqδ(t) with
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Φδ
t (y) > 0 and Φδ

t (∂D) = ∂D satisfy Φδ
t → Φδ locally uniformly as t → T . Letting

δ → 0, and applying a diagonal argument we get the desired result. More precisely,
let {tn} ⊂ [0, T ) be an increasing sequence and the desired result will follow by letting
Γn = γ1/n(tn) and Φn = Φ

1/n
tn . ��

The simply-connected version of this proposition is given in Theorem 3.2 in [11].
This proposition allows us to consider slit domains in the proof of Theorem 2 via a
Loewner-type differential equation which is introduced in the next section. This is
analogous to the approach to solving various coefficient problems for univalent func-
tions on D (including the De Branges-Bieberbach Theorem); see [11] and references
therein.

2.4 The Loewner-type differential equation in annuli

In this section, we introduce the Loewner differential equation which is a differential
equation for the conformal maps (normalized and parametrized appropriately) onto
a slit domain. We first introduce the classical setting in annuli, where the slit grows
from the outer boundary.

For p > 0 , define r = e−p and rt = e−p+t . Suppose that γ : [0, T ] → Ar

is a Jordan arc satisfying γ (0) ∈ ∂D and γ (0, T ] ⊂ Ar , such that Ar \ γ (0, t] has
modulus p− t . Then there exists a family of conformal maps φt : Ar \γ (0, t] → Art ,
continuously differentiable in t , such that

α(t) := φt (γ (t)) ∈ ∂D

and φt (z) satisfies the Komatu’s version of the Loewner Differential Equation on an
annulus (see [17]),

∂tφt (z) = φt (z)Krt (φt (z), α(t)). (5)

Here, for α ∈ ∂D and r > 0, Kr (z, α) is the Villat’s kernel, defined by Kr (z, α) =
Kr

( z
α

)
, where

Kr (z) = lim
N→∞

N∑
n=−N

r2n + z

r2n − z
.

For our purposes, we need a version of Loewner-type differential equations where
the curve grows from the inner boundary circle of Ar0 . LetCr0 be the circle centered at
0 with radius r0. Suppose that γ : [0, T ] → Ar0 is a Jordan arc satisfying γ (0) ∈ Cr0
and γ (0, T ] ⊂ Ar0 such that Ar0 \ γ (0, t] has modulus p − t . Define the inversion

map ρt (z) = rt
z
which is a conformal automorphism of Art that interchanges inner

boundary and outer boundary of Art . Hence ρt ◦ γ is a Jordan arc satisfying the
conditions given at the beginning of this subsection and for this Jordan arc ρt ◦ γ , let
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φt be the corresponding conformal map satisfying (5). Then we define

Φt (z) := ρt ◦ φt ◦ ρ−1
0 (z) = rt

φt

(
r0
z

) .

Clearly Φt is a conformal map from Ar0 \ γ (0, t] onto Art with Φt (γ (t)) ∈ Crt . By
the chain rule, Φt satisfies the differential equation

∂tΦt (z) = Φt (z)

(
1 − Krt

(
rt

Φt (z)
, e−iβ(t)

))

where β(t) satisfies Φt (γ (t)) = rt eiβ(t) ∈ Art .
Let y0 > 0 be a fixed point in Ar0 . By composing Φt with a suitable rotation, we

can normalize Φt such that yt := Φt (y0) > 0 for any t . Then Φt satisfies

∂tΦt (z) = Φt (z)

(
1 − Krt

(
rt

Φt (z)
, e−iβ(t)

)
+ i J (rt , yt , β(t))

)

= Φt (z)

(
1 − lim

N→∞

N∑
n=−N

r2n−1
t Φt (z) + eiβ(t)

r2n−1
t Φt (z) − eiβ(t)

+ i J (rt , yt , β(t))

)
(6)

for some function J (rt , yt , β(t)). Notice that the normalization accounts for multiply-
ing a rotation factor to Φt at each time t . So the function J (rt , yt , β(t)) is real-valued.
Also, since yt > 0 for any t , we have

∂t Im (log yt ) = 0

and hence we have

J (rt , yt , β(t)) = Im

[
Krt

(
rt
yt

, e−iβ(t)
)]

.

We call the function β(t) the Loewner driving function of the curve γ . We now define

Q(r , y, θ, w) : = 1 − lim
N→∞

N∑
n=−N

r2n−1w + eiθ

r2n−1w − eiθ
+ i J (r , y, θ),

R(r , θ;w) : = Re [Q(r , y, θ, w)] , r > 0

and

I (r , y, θ;w) := Im [Q(r , y, θ, w)] , r > 0, y > 0.

Hence

∂tΦt (z)

Φt (z)
= Q(rt , yt , β(t),Φt (z)) = R(rt , β(t),Φt (z)) + i I (rt , yt , β(t),Φt (z))
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Substituting z = y0 in the above equation and noting that yt = Φt (y0) > 0, we get

∂t log yt = P(rt , yt , β(t)) (7)

where

P(r , y, θ) := R(r , θ, y) = Re

[
1 − lim

N→∞

N∑
n=−N

r2n−1y + eiθ

r2n−1y − eiθ

]

for 0 < r < y < 1.

2.5 Multi-slit Loewner-type differential equation

In this subsection, we will develop a version of the Loewner differential equation for
multiple slits on an annulus.

Write r0 = e−p. Let y0 be a point in Ar0 , γ1 : [0, T1] → Ar0 and γ2 : [0, T2] →
Ar0 be Jordan arcs such that γ1[0, T1] ∩ γ2[0, T2] = ∅. Moreover, γ1 and γ2 are
parametrized such that Ar0 \ (γ1(0, t1] ∪ γ2(0, t2]) has modulus p − |τ |, where τ =
(t1, t2) and |τ | := t1 + t2.

We now make the following construction which is illustrated in Fig. 1.

– Let y(0,0) := y0.
– Let Φ̃(t1,0) be the conformal map of Ar0 \ γ1(0, t1] onto Art1

with ỹ(t1,0) :=
Φ̃(t1,0)(y(0,0)) > 0.

– Let Φ̂(0,t2) be the conformal map of Ar0 \ γ2(0, t2] onto Art2
with ŷ(0,t2) :=

Φ̂(0,t2)(y(0,0)) > 0.
– Let Φ̃τ be the conformal map of Art2

\ γ̂1(0, t1] onto Ar|τ | with ỹτ = Φ̃τ (ŷ(0,t2)) >

0. Here γ̂1 = Φ̂(0,t2)◦γ1 is the image of γ1(0, t1] under Φ̂(0,t2). Note that because of
the conformal invariance and the fact that Ar0 \ (γ1(0, t1] ∪ γ2(0, t2]) has modulus
p − |τ |, we have Art2

\ γ̂1(0, t1] has modulus p − |τ |.
– Let Φ̂τ be the conformal map of Art1

\ γ̃2(0, t2] onto Ar|τ | with ŷτ = Φ̂τ (ỹ(t1,0)) >

0. Here γ̃2 = Φ̃(t1,0)◦γ2 is the image of γ2(0, t2] under Φ̃(t1,0). Note that because of
the conformal invariance and the fact that Ar0 \ (γ1(0, t1] ∪ γ2(0, t2]) has modulus
p − |τ |, we have Art1

\ γ̃2(0, t2] has modulus p − |τ |.
– Let Φτ be the conformal map of Ar0 \ (γ1(0, t1] ∪ γ2(0, t2]) onto Ar|τ | with yτ :=

Φτ (y(0,0)).
– Let r|τ |eiξ1(τ ) = Φτ (γ1(t1)) and r|τ |eiξ2(τ ) = Φτ (γ2(t2)).

Note that the only conformal automorphism of an annulus which fixes a point and
does not interchange the boundary components is the identity mapping. Hence, we
have

Φτ = Φ̂τ ◦ Φ̃(t1,0) = Φ̃τ ◦ Φ̂(0,t2) (8)
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Fig. 1 Construction of two slit Loewner differential equation

and

yτ = Φτ (y(0,0)) = Φ̂τ (ỹ(t1,0)) = Φ̃τ (ŷ(0,t2)).

Then Φ̃τ satisfies (6)

∂t1Φ̃τ (w) = Φ̃τ (w)Q(r|τ |, yτ , ξ1(τ ), Φ̃τ (w)).

By substituting w = Φ̂(0,t2)(z) and w = ŷ(0,t2) respectively, and by (8) we have

∂t1Φτ (z) = Φτ (z)Q(r|τ |, yτ , ξ1(τ ),Φτ (z))

and

∂t1 log yτ = P(r|τ |, yτ , ξ1(τ )). (9)

Similarly, Φ̂τ also satisfies (6),

∂t2Φ̂τ (w) = Φ̂τ (w)Q(r|τ |, yτ , ξ2(τ ), Φ̂τ (w)).
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Substituting w = Φ̃(t1,0)(z) and w = ỹ(t1,0) respectively, we have

∂t2Φτ (z) = Φτ (w)Q(r|τ |, yτ , ξ2(τ ),Φτ (w))

and

∂t2 log yτ = P(r|τ |, yτ , ξ2(τ )). (10)

Now letγ3 : [0, T3] → Ar0 be another Jordan arc such thatγ3(0, T3]∩γ2(0, T2] = ∅
and γ3(0, T3] ∩ γ1(0, T1] = ∅. Moreover, γ1, γ2 and γ3 are parametrized such that
Ar0 \ (γ1(0, t1] ∪ γ2(0, t2] ∪ γ3(0, t3]) has modulus p−|τ |, where τ = (t1, t2, t3) and
|τ | = t1 + t2 + t3. A similar construction to the above allows us to find a family of
conformal maps

Φτ : Ar0 \ (γ1(0, t1] ∪ γ2(0, t2] ∪ γ3(0, t3]) → Ar|τ |

with yτ := Φτ (y(0,0,0)) > 0, where y(0,0,0) = y0. These satisfy

∂ti Φτ (z) = Φτ (w)Q(r|τ |, yτ , ξi (τ ),Φτ (w))

and

∂ti log yτ = P(r|τ |, yτ , ξi (τ ))

for i = 1, 2, 3. Moreover, suppose that t1, t2, t3 are real-valued functions of s, that is
t1 = t1(s), t2 = t2(s) and t3 = t3(s). By the chain rule, Φτ and yτ satisfies

∂s logΦτ (z) =
3∑

i=1

(∂s ti )Q
(
r|τ |, yτ , ξi (τ ),Φτ (z)

)
(11)

and

∂s log yτ =
3∑

i=1

(∂s ti )P(r|τ |, yτ , ξi (τ )) (12)

3 Proof of Theorem 2

3.1 Idea of the Proof

Suppose that y > 0. Let E ⊂ D be a closed set with 0 /∈ E and |z| ≥ y for all z ∈ E .
Let g be a conformal map of an annulus Ar onto D \ E . By further composing with a
rotation we can assume that g−1(0) > 0. We need to show that g−1(0) ≥ y.
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We first consider the case where E is the union of a circular arc L (with radius y
centred at 0) and a Jordan arc starting from L . Proposition 1 will allow us to obtain
the general case by an approximation argument.

Denote by f the conformal map of the annulus Ar0 onto a circularly slit domain
D\L which maps a point y ∈ Ar0 with y > 0 to 0. Let γ̃ be a Jordan arc growing from
the circular arc L . In other words, γ̃ : [0, T ] → D is a Jordan arc satisfying γ̃ (0) ∈ L
and γ̃ (0, T ] ⊂ Ω , such that Ω \ γ̃ (0, t] has modulus − log rt = −(log r0) − t . Now,
we let γ = f −1 ◦ γ̃ . Let y0 = y and we then define yt and β(t) as in Sect. 2.4.

Now let ft be the conformal map of the annulus Art onto a circularly slit domain
D \ Lt , where Lt is a circular arc, which maps the point yt ∈ Art to 0. The maps ft
can each be extended continuously to the inner circle Crt of Art and ft maps Crt onto
the circular arc Lt . The preimages under ft of the two endpoints of the circular arc Lt

then partition Crt into two circular arcs which are symmetric under the transformation
z �→ z according to Lemma 2. We call these circular arcs Γ +

t and Γ −
t respectively,

where Γ +
t is the circular arc which intersects the negative real axis.

It can be shown thatβ(t) ∈ Γ +
t for all t ∈ [0, T ] implies that yt is strictly increasing.

Similarly, β(t) ∈ Γ −
t for all t ∈ [0, T ] implies that yt is strictly decreasing.

It would thus be sufficient to show that if |γ̃ (t)| > y, then β(t) ∈ Γ +
t for all

t ∈ [0, T ]. However, in general, this may not be the case. The idea of our method is
as follows: Since |γ̃ (t)| > y, we can extend the length of L to a longer circular arc L∗

0
without ever intersecting γ̃ . As the curve γ̃ grows from L∗

0, we simultaneously shrink
L∗
0 to L

∗
t such that at time T , L∗

T coincides with L . By choosing a suitable rate at which
L∗
t shrinks to L from each end of the circular arc L∗

0, we will be able to show that the
preimage of 0 at each t , y∗

t , is now strictly increasing. This will prove the desired result
since y∗

T = yT (as L∗
T = L ) and y∗

0 = y0. The second equality follows from the fact
that extending the length of L to get L∗

0 does not change the preimage of 0 by Lemma
1. It is for this part of the argument that we will need to use the three-slit Loewner
differential equation from Sect. 2.5: the three slits will be the curve γ , the circular arc
in the clockwise direction and the circular arc in the anticlockwise direction.

The rest of this section provides the formal construction of the above argument.

3.2 Properties of P(r, y,�) in the Loewner-type differential equation

In this subsection, we study properties of the differential equation in (7). The following
lemma gives some properties of P(r , y, θ) that we will need.

Lemma 3 For y ∈ (r , 1), we have

1. P(r , y, θ) = P(r , y, 2π − θ) for θ ∈ [0, 2π ].
2. P(r , y, θ) is increasing in θ for θ ∈ [0, π ].
3. P(r , y, θ) is decreasing in θ for θ ∈ [π, 2π ].
Proof As y > 0, we can see that

1 − lim
N→∞

N∑
n=−N

r2n−1y + ei(2π−θ)

r2n−1y − ei(2π−θ)
= 1 − lim

N→∞

N∑
n=−N

r2n−1y + eiθ

r2n−1y − eiθ
.
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Taking real parts of the above equation proves part 1.
To prove part 2, we write r = e−p, p > 0 and define

A(z; p) =
∞∏
k=1

(
1 − e−2kp

) (
1 − e−(2k−1)p+i z

) (
1 − e−(2k−1)p−i z

)
(13)

This function A is related to the Jacobi theta function ϑ4 defined in Sect. 13.19 of [12].
Direct calculations show that

P(r , y, θ) = 2Im

(
A′(θ + i ln y; p)
A(θ + i ln y; p)

)

where A′(z; p) = ∂z A(z; p). It then follows that

∂θ P(r , y, θ) = 2Im

(
A′′(θ + i ln y; p)A(θ + i ln y; p) − (

A′(θ + i ln y; p))2
(A(θ + i ln y; p))2

)
.

Define

G1(z; p) = A′′(z; p)A(z; p) − (
A′(z; p))2

(A(z; p))2 .

Observe from equation (13) that

A′(z + 2π; p)
A(z + 2π; p) = A′(z; p)

A(z; p)
and

A′(z + 2i p; p)
A(z + 2i p; p) = −i + A′(z; p)

A(z; p) .

Differentiating the above two equations (with respect to z), it follows that

G1(z; p) = G1(z + 2π; p) = G1(z + 2i p; p)

and hence G1 is an elliptic function (of z) with periods 2π and 2i p. Note that G1 has
poles of order 2 at z = 2nπ + (2m − 1)i p for any n,m ∈ Z and these are the only
poles of G1. Let ℘ be the Weierstrass’s ℘ function with period 2π and 2i p. It follows
that there exists an constant c1 such that G2(z) := G1(z; p) − c1℘(z + i p) has no
pole on C. Thus G2(z) = c2 for some constant c2 by the Liouville’s theorem. This
means that we have

G1(z; p) = c1℘(z + i p) + c2
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for some constant c1, c2. By considering the Laurent series expansions of G1 and ℘

and comparing coeffients, we have c1 = −1 and c2 is real, that is,

G1(z; p) = −℘ (z + i p) + c

for some real constant c. (For details, see the demonstration by Dixit and Solynin [10]
for equation (3.3) of [10].) Hence,

∂θ P(r , y, θ) = −2Im (℘ (z + i p)) .

Note that ℘ maps the interior of the rectangle R with vertices z1 = 0, z2 = −i p, z3 =
π − i p and z4 = π conformally into the lower half plane H = {z ∈ C : Im(z) < 0}
and maps ∂R injectively onto the real line (See for example, Sect. 13.25 of [12]).
Then, for any fixed p = − ln r , for any θ ∈ (0, π) and for any y ∈ (r , 1), we have
z = θ + i ln y lies inside the interior of R and hence ∂θ P(r , y, θ) > 0. Also, when
θ = 0 or θ = π , z = θ + i ln y lies on ∂R and hence ∂θ P(r , y, θ) = 0. This proves
part 2. Part 3 follows from part 1 and part 2. ��
As a consequence of Lemma 3, we have the following lemma.

Lemma 4 Let y ∈ (r , 1). Suppose θ1, θ2 ∈ [0, 2π) satisfy |π − θ1| ≤ |π − θ2|. Then
we have

P(r , y, θ1) ≥ P(r , y, θ2).

Proof When π ≤ θ1 ≤ θ2 ≤ 2π or 0 ≤ θ2 ≤ θ1 ≤ π , this result is a direct
consequence of parts 2 and 3 of Lemma 3. The remaining cases reduce to the above
using part 1 in Lemma 3. ��

3.3 The key result

LetΩ be a circularly slit diskD\L where L is a circular arc centered at 0 with radius y0
for some y0 ∈ (0, 1). Let f be a conformal map of Ar0 onto Ω such that | f (z)| → y0
as |z| → r0. By Lemma 1, we have | f −1(0)| = y0. By composing f with a rotation
if necessary, we can assume without loss of generality that f −1(0) = y0. Suppose
that γ̃ : [0, T ] → D is a Jordan arc satisfying γ̃ (0) ∈ L and γ̃ (0, T ] ⊂ Ω , such that
Ω \ γ̃ (0, t] has modulus −(log r0) − t and let γ = f −1 ◦ γ̃ .

Let γ+ : [0, T+] → Ar0 be the Jordan arc such that f ◦γ+ starts from an endpoint of
the circular arc L and extends L along the circular arc in the anticlockwise direction, i.e.
| f ◦γ+(t)| = y0 for all t ∈ [0, T+] and f ◦γ+[0, T+]∩L = f ◦γ+(0). Similarly, letγ− :
[0, T−] → Ar0 be the Jordan arc such that f ◦γ− starts from an endpoint of the circular
arc L and extends L along the circular arc in the clockwise direction, i.e. | f ◦γ−(t)| =
y0 for all t ∈ [0, T−] and f ◦ γ−[0, T−] ∩ L = f ◦ γ−(0) �= f ◦ γ+(0). Moreover,
γ , γ− and γ+ are parametrized such that Ar0 \ (γ (0, t1] ∪ γ+(0, t2] ∪ γ−(0, t3]) has
modulus p − |τ |, where τ = (t1, t2, t3) and |τ | = t1 + t2 + t3.

Since, by assumption, |γ̃ (t)| > y0 for all t ∈ (0, T ], we have that γ̃ does not
intersect the circle of radius y0. Hence γ (0, T ] ∩ γ−(0, T−] = ∅ and γ (0, T ] ∩
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γ+(0, T+] = ∅. We can also assume that γ−[0, T−] ∩ γ+[0, T+] = ∅. Define r|τ | and
the conformal maps

Φτ : Ar0 \ (γ (0, t1] ∪ γ+(0, t2] ∪ γ−(0, t3]) → Ar|τ |

as in Sect. 2.5 where the three curves are γ, γ−, γ+. Let yτ = Φτ (y0). In particular,
for τ = (0, 0, 0)

y(0,0,0) = Φ(0,0,0)(y0) = id(y0) = y0.

Also let β(τ) = Arg (Φτ (γ (t1))) ∈ [0, 2π), ξ+(τ ) = Arg (Φτ (γ+(t2))) ∈ [0, 2π),
ξ−(τ ) = Arg (Φτ (γ−(t3))) ∈ [0, 2π). Now suppose that a(s) is a real-valued differ-
entiable function for s ∈ [0, T ] such that ∂sa(s) ∈ [0, 1] for all s ∈ [0, T ]. From now
on, we assume that τ is a function of s of the form,

τ(s) = (s, t+(s), t−(s)) (14)

for s ∈ [0, T ] where t+(s) = (T − a(T )) − (s − a(s)) and t−(s) = a(T ) − a(s)
so that |τ(s)| ≡ T . This construction is illustrated in Fig. 2. Since ∂sa(s) ∈ [0, 1],
both a(s) and s − a(s) are non-decreasing and hence t+(s), t−(s) are non-negative
and non-increasing for s ∈ [0, T ].

The function a(s) affects the rate that the circular arc

L ∪ γ+[0, T+] ∪ γ−[0, T−]

is shrinking from the clockwise end and the anticlockwise end. In the following lemma,
we will choose a particular function a(s) that will enable us to apply Lemma 4.

Lemma 5 There exists a real-valued differentiable function a∗(s) with 0 ≤ ∂sa∗(s) ≤
1 and a∗(0) ≥ 0 such that, defining τ(s) as in equation (14) with a(s) = a∗(s), we
have

2π − ξ+(τ (s)) = ξ−(τ (s))

for all s ∈ [0, T ].
Proof Recall equation (11),

∂s logΦτ (z) =
3∑

i=1

(∂s ti )Q
(
r|τ |, yτ , ξi (τ ),Φτ (z)

)
.

As |τ(s)| = T and noting that s, t+(s), t−(s) are real-valued, taking imaginary parts
on both sides of this equation yields

∂sArg
(
Φτ(s)(z)

) = H
(
rT , yτ(s), Φτ(s)(z), θ(s), ∂sa(s)

)
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Fig. 2 Construction of Φτ

where θ(s) = (β(τ(s)), ξ+(τ (s)), ξ−(τ (s))) and

H(r , y, w, θ, λ) = I (r , y, w, θ1) − (1 − λ)I (r , y, w, θ2) − λI (r , y, w, θ3)

for θ = (θ1, θ2, θ3).
First of all, notice that when s = 0,

Ω0 = D \ (L ∪ ( f ◦ γ+(0, t+(0)]) ∪ ( f ◦ γ−(0, t−(0)]))

is a circularly slit domain and rT eiξ+(τ (0)) and rT eiξ−(τ (0)) will be mapped to the
end points f (γ+(t+(0))), f (γ−(t−(0))) of the circular slit under the conformal map
f ◦ Φ−1

τ(0). By applying a rotation to Ω0, Lemma 2 implies that

ξ+(τ (0)) = 2π − ξ−(τ (0)).

Suppose that ε > 0 is sufficiently small and s ∈ (0, T−ε]. Note that both γ+(t+(s+
ε)) and γ−(t−(s + ε) have two preimages under Φτ(s), We define u(s) and v(s) to be
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the preimage under Φ−1
τ(s) of γ+(t+(s + ε)) and γ−(t−(s + ε) respectively such that

Arg(u(s)),Arg(v(s)) ∈ (ξ−(τ (s)), ξ+(τ (s))) ⊂ [0, 2π).

Again, by applying a rotation to Ω0, Lemma 2 implies that

Arg(u(0)) = 2π − Arg(v(0)). (15)

Then by the chain rule,

∂sArg (u(s))

= H(rT , yτ(s), u(s), θ(s), ∂sa(s)) + Im

[
Φ ′

τ(s)(γ+(t+(s + ε)))

Φτ(s)(γ+(t+(s + ε)))
∂s[γ+(t+(s + ε))]

]

∂sArg (v(s))

= H(rT , yτ(s), v(s), θ(s), ∂sa(s)) + Im

[
Φ ′

τ(s)(γ−(t−(s + ε)))

Φτ(s)(γ−(t−(s + ε)))
∂s[γ−(t−(s + ε))]

]

Note that Φτ(s)(z) is locally 2 to 1 at γ+(t+(s)) and γ−(t−(s)). Hence,
Φ ′

τ(s)(γ+(t+(s))) = 0 and Φ ′
τ(s)(γ−(t−(s))) = 0. So for small enough ε,

Φ ′
τ(s)(γ+(t+(s+ε))) andΦ ′

τ(s)(γ−(t−(s+ε))) are bounded.Also, note thatΦτ(s)(z) �=
0 near γ−(0, t−(s)] ∪ γ+(0, t+(s)]. Thus,

Im

[
Φ ′

τ(s)(γ+(t+(s + ε)))

Φτ(s)(γ+(t+(s + ε)))
∂s[γ+(t+(s + ε))]

]

and

Im

[
Φ ′

τ(s)(γ−(t−(s + ε)))

Φτ(s)(γ−(t−(s + ε)))
∂s[γ−(t−(s + ε))]

]

are bounded.
Also, note that H(r , y, w, θ, λ) is continuous with respect to each variable for

w �= reiθ1 , reiθ2 , reiθ3 .
When λ = 0, H(r , y, w, θ, 0) is bounded near w = reiθ3 , and has a simple pole

at w = reiθ2 . The pole at w = reiθ2 arises from the expression Im
(

w+reiθ2
w−reiθ2

)
coming

from the term −I (r , y, w, θ2) in the definition of H(r , y, w, θ, λ). In particular, the
pole at w = reiθ2 has residue 2. Hence, for any given M > 0, we can find some ε > 0
such that H(rT , yτ(s), u(s), θ(s), 0) < −M since Arg(u(s)) ∈ (ξ−(τ (s)), ξ+(τ (s)))
so thatArg(u(s)) approaches the pole atArg(w) = ξ+(τ (s)) from the left. This implies
that, when a(s) = 0,

∂sArg (u(s)) + ∂sArg (v(s)) → −∞ as ε → 0
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Similarly, when λ = 1, H(r , y, w, θ, 1) is bounded near w = reiθ2 , and has a
simple pole at w = reiθ3 . Again, the pole at w = reiθ3 has residue 2. Hence, for any
given M > 0, we can find some ε > 0 such that H(rT , yτ(s), v(s), θ(s), 0) > M
since Arg(v(s)) ∈ (ξ−(τ (s)), ξ+(τ (s))) so that Arg(v(s)) approaches the pole at
Arg(w) = ξ−(τ (s)) from the right. This implies that, when a(s) = 1,

∂sArg (u(s)) + ∂sArg (v(s)) → ∞ as ε → 0

Consequently, the intermediate value theorem implies that, for each s ∈ [0, T ], we
can find λε(s) ∈ [0, 1] such that

∂sArg (u(s)) + ∂sArg (v(s)) = 0

Hence, with

a(s) =
∫ s

0
λε(s)ds,

and using equation (15), we have

Arg (u(s)) = 2π − Arg (v(s)) for all s. (16)

Letλ∗(s) be the pointwise limit ofλε(s) as ε → 0. For all s ∈ [0, T ], 0 ≤ λε(s) ≤ 1
and hence 0 ≤ λ∗(s) ≤ 1.Moreover,λ∗(s) is integrable by the dominated convergence
theorem. Define

a∗(s) =
∫ s

0
λ∗(s)ds.

Then with a(s) = a∗(s) and using equation (16), we have

ξ+(τ (s)) = 2π − ξ−(τ (s)) for all s.

��
As a consequence of Lemma 5, we obtain the following key result.

Proposition 2 If |γ̃ (t)| > y0 for all t ∈ (0, T ], we have yT > y0.

Proof Let a(s) = a∗(s) where a∗(s) is given in Lemma 5. When s = 0, we have

yτ(0) = y0

by Lemma 1 as L ∪ f ◦γ+[0, T −a(T )+a(0)]∪ f ◦γ−[0, a(T )−a(0)] is a circular
arc. When s = T , we have y(T ,0,0) = yT . So it suffices to show that ∂s log yτ(s) > 0.
By construction, we have

2π − ξ−(τ (s)) = ξ+(τ (s))
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for all s ∈ [0, T ]. Note that we have |π−β(τ(0))| < |π−ξ−(τ (0))| = |π−ξ+(τ (0))|.
It follows that |π − β(τ(s))| < |π − ξ−(τ (s))| = |π − ξ+(τ (s))| for all s ∈ [0, T ].
Now note that equation (12) can be rewritten as

∂s log yτ(s) = (1 − ∂sa)
(
P(rT , yτ(s), β(τ (s))) − P(rT , yτ(s), ξ+(τ (s)))

)

+ ∂sa
(
P(rT , yτ(s), β(τ (s))) − P(rT , yτ(s), ξ−(τ (s)))

)

As 0 ≤ ∂sa(s) ≤ 1 for all s ∈ [0, T ], Lemma 4 implies that

∂s log yτ(s) > 0

Then the result follows. ��

The above proposition allows us to prove Theorem 2.

Proof of Theorem 2. Define Emin = {z ∈ E : |z| ≤ |w| for any w ∈ E}. So Emin con-
sists of all the points in E closest to the origin. Thus, Emin is the union of circular
arc(s) with the same radius y0 ≥ y and clearly Emin ⊂ ∂E . Note that either Emin = E
or Emin � E .

If Emin = E , then the connected set E is a circular arc centered at 0. In this situation,
Lemma 1 implies that |g−1(0)| = y0.

If Emin � E , then there are two subcases: either there exists a connected component
L of Emin containing more than one point or Emin is a set of disconnected points.

Suppose that there is a connected component L of Emin containing more than one
point. We first assume that E \ L is a Jordan arc γ̃ . Then we can find 0 < r0 < 1 such
that Ar0 has the same modulus as the domain D \ L . Let y0 > r0 and let f (·, y0) be
the conformal map of Ar0 onto D \ L with f (y0, y0) = 0. Define γ : [0, T ] → Ar0
to be the Jordan arc such that γ (0) ∈ Cr and the image of γ (0, T ] under f (·, y0) is
γ̃ . In addition, γ is parametrized such that Ar0 \ γ (0, t] has modulus −(log r0) + t .
We define yt as in Sect. 2.4, namely yt = Φt (y0) where Φt is a conformal map
from Ar0 \ γ (0, t] onto Art . Note that ΦT = Φτ(T ) and hence yT = yτ(T ). Then by
Proposition 2, yT > y0. Since g−1(0) = yT , we have |g−1(0)| > y0. The case where
E \ L is not a Jordan arc follows from part 2 of Proposition 1.

The final case where Emin is a set of disconnected points follows from the previous
case by letting the arc length of L shrink to 0.

In all cases, |g−1(0)| ≥ y0 ≥ y. ��

4 Proof of themain result

Recall that the squeezing function is defined to be

SAr (z) = sup
f ∈FAr (z)

{a : Da ⊂ f (Ω) ⊂ D} .
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where

FAr (z) = { f : f is a conformal map from Ar to C such that f (z) = 0.} .

To simplify notation, we write Sr (z) = SAr (z) and Fr (z) = FAr (z). We have the
following corollary of Theorem 2.

Corollary 1 Let

F̃r (z) = { f ∈ Fr (z) : f (Ar ) ⊂ D, f (∂D) = ∂D}

and define

S̃r (z) = sup
f ∈F̃r (z)

{a : Da ⊂ f (Ω)} .

Then

S̃r (z) = |z|.

Proof The conformal map f of Ar onto a circularly slit disk with z mapping to 0 is in
F̃r (z). Lemma 1 implies that S̃r (z) ≥ |z|.

Now suppose that we can find f ∗ ∈ F̃r (z) such that Da∗ ⊂ f ∗(Ar ) for some
a∗ > |z|. Let E be the bounded component of the complement of f ∗(Ar ) in C.
Then |w| ≥ a∗ for all w ∈ E . Theorem 2 implies that, |( f ∗)−1(0)| ≥ a∗ which is a
contradiction since ( f ∗)−1(0) = z. ��

It now remains to prove Theorem 1. For any bounded doubly-connected domainΩ ,
∂Ω has two connected components: we denote the component that separates Ω from
∞ (i.e. the outer boundary) by ∂oΩ; we denote the other component (i.e. the inner
boundary) by ∂ iΩ . We decompose the family Fr (z) into two disjoint subfamilies

F1
r (z) = {

f ∈ Fr (z) : f (∂D) = ∂o f (Ar )
}

and

F2
r (z) =

{
f ∈ Fr (z) : f (∂D) = ∂ i f (Ar )

}
.

F1
r (z) consists of functions that map outer boundary to outer boundary;F2

r (z) consists
of functions that interchange inner and outer boundary. We will consider a squeezing
function on each subfamily separately. Define

S1r (z) = sup
f ∈F1

r (z)
{a : Da ⊂ f (Ar ) ⊂ D}
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and

S2r (z) = sup
f ∈F2

r (z)
{a : Da ⊂ f (Ar ) ⊂ D} .

Then the squeezing function satisfies Sr (z) = max{S1r (z), S2r (z)}.
Lemma 6

S1r (z) = S2r

(
r

z

)

Proof This follows from the fact that f ∈ F1
r (z) if any only if f ◦ ρ ∈ F2

r ( rz ) where
ρ(z) = r

z . ��

Proof of Theorem 1. By Corollary 1 and Lemma 6, it is sufficient to prove that S1r (z) =
S̃r (z). First we note that F̃r (z) ⊂ F1

r (z) and hence S̃r (z) ≤ S1r (z).
Since F1

r (z) is a normal family of holomorphic functions, it follows easily that we
can replace the sup in the definition of S1r (z)with max. Let f ∈ F1

r (z) be any function
that attains this maximum with corresponding a i.e.

Da ⊂ f (Ar ) ⊂ D and a = S1r (z).

We denote by Ω the simply-connected domain satisfying 0 ∈ Ω and ∂Ω = ∂o f (Ar ).
Note that Da ⊂ Ω ⊂ D. By the Riemann mapping theorem, we can find a conformal
map g of D onto Ω such that g(0) = 0. Let F = g−1 ◦ f . Then F ∈ F̃r (z) and

Da ⊂ f (Ar ) ⇒ g−1(Da) ⊂ F(Ar ).

In addition, gmaps the unit disk into itself and so by the Schwarz lemma, g(Da) ⊂ Da .
Combining this with the above, we deduce that

Da ⊂ g−1(Da) ⊂ F(Ar ).

Hence a ≤ sup{ρ : Dρ ⊂ F(Ar )} which implies that S1r (z) ≤ S̃r (z). Therefore
S1r (z) = S̃r (z) as required. ��

5 The squeezing function on product domains in C
n

It remains to prove Theorem 3.

Proof of Theorem 3 The squeezing function is scale invariant and hence in the defini-
tion of the squeezing function SΩi (zi ), we can restrict the family FΩi (zi ) to

Fb
Ωi

(zi ) = { f ∈ FΩi (zi ) : | f (w)| < 1 for all w ∈ Ωi }.
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Since Fb
Ωi

(zi ) is a normal family, one can easily show that there is a function fi
in Fb

Ωi
(zi ) attaining the supremum in the definition of SΩi (zi ). By scaling, we can

assume also that sup{| fi (w)| : w ∈ Ωi } = 1. Consider λi = S−1
Ωi

(zi ) and g(w) =
(g1(w1), · · · , gn(wn)) where gi = λi fi . Since gi are holomorphic and injective for
all i , g(w) is a holomorphic embedding of Ω into C

n . Also, fi (zi ) = 0 for each i
and thus g ∈ FΩ(z). Moreover, since fi attains the supremum in SΩi (zi ), we have
D

λ−1
i

⊂ fi (Ωi ) ⊂ D and hence D ⊂ gi (Ωi ) ⊂ Dλi . It follows that

D
n ⊂ g(Ω) ⊂ Dλ1 × · · · × Dλn .

However, B(0; 1) ⊂ D
n and Dλ1 × · · · × Dλn ⊂ B(0;Λ) where

Λ =
√

λ21 + · · · + λ2n .

Hence

B(0; 1) ⊂ g(Ω) ⊂ B(0;Λ)

and we deduce that

SΩ(z) ≥ 1

Λ
=

(
S−2
Ω1

(z1) + · · · + S−2
Ωn

(zn)
)−1/2

.

��

6 The squeezing function onmultiply-connected domains

We now discuss some future directions regarding the squeezing function on planar
domains of higher connectivity.

Let Ω ⊂ C be a finitely connected domain with disjoint boundary components
γ0, γ1, · · · γn . As a corollary of conformal equivalence for finitely connected regions
[4], every finitely connected domain with non-degenerate boundary components is
conformally equivalent to a circular domain, (i.e., the unit disk with smaller disks
removed). Thus we can assume that γ0 is the unit circle and γ1, . . . , γn are circles
contained inside the unit disk. In light of our results, for a fixed z ∈ Ω , we propose
that the function which attains the maximum in the extremal problem

sup
f ∈FΩ(z)

{a
b

: Da ⊂ f (Ω) ⊂ Db

}
.

is given by the conformal map ofΩ onto a circularly slit disk of the same connectivity
(i.e. the unit disk with proper arcs of circles centered at 0 removed).

For j = 1, . . . , n, let μ j be a Möbius transformation that interchanges γ j and the
unit circle ∂D and let Ω j = μ j (Ω). We also let μ0 be the identity mapping and
Ω0 = Ω . Then, for j = 0, . . . , n, let f j denote the conformal map of Ω j onto a
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circularly slit disk with f j (μ j (z)) = 0 and let Rad(Ω j ) be the minimum of the radii
of the circular arcs in f j (Ω j ). Note that Rad(Ω j ) does not depend on the choice of
μ j or f j (by Theorem 6.2 in [4]). We make the following conjecture regarding the
squeezing function on Ω .

Conjecture SΩ(z) = max{Rad(Ω j ) : j = 0, 1, · · · , n}.
The Schottky–Klein prime function ω(·, ·) can be defined on domains of connectivity
n in terms of the Schottky Group of Ω (see [6]). By [5], the same expression in
Theorem 4,

f (·, z) = ω(·, z)
|z|ω(·, z−1)

gives the formula for the conformal map of Ω onto a circularly slit disk mapping z to
0. In addition, an expression for Rad(Ω) is also given in [5].

Recently, Böhm and Lauf [3] have obtained an expression for a version of the
Loewner differential equation on n-connected circularly slit disks. Using Crowdy’s
version of the Schwarz-Christoffel formula for multiply-connected domains (given in
[5]), it should be possible to express the Loewner differential equation in terms of the
Schottky–Klein prime function. It is anticipated that the methods in our paper could
then be used to prove this conjecture.
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