
Zero-one-inflated simplex regression models for the
analysis of continuous proportion data

Pengyi LIUa, Kam Chuen YUENa, Liu-Cang WUb,
Guo-Liang TIANc and Tao LIc,∗

aDepartment of Statistics and Actuarial Science, The University of Hong Kong,

Pokfulam Road, Hong Kong, P. R. China

bFaculty of Science, Kunming University of Science and Technology,

Kunming 650093, Yunnan Province, P. R. China

cDepartment of Mathematics, Southern University of Science and Technology,

Shenzhen 518055, Guangdong Province, P. R. China

∗Corresponding author’s email: lit6@sustc.edu.cn

4 May 2018, Gary, SII Version

Abstract. Continuous data restricted in the closed unit interval [0,1] often appear in various

fields. Neither the beta distribution nor the simplex distribution provides a satisfactory

fitting for such data, since the densities of the two distributions are defined only in the open

interval (0,1). To model continuous proportional data with excessive zeros and excessive ones,

it is the first time that we propose a zero-one-inflated simplex (ZOIS) distribution, which can

be viewed as a mixture of the Bernoulli distribution and the simplex distribution. Besides,

we introduce a new minorization–maximization (MM) algorithm to calculate the maximum

likelihood estimates (MLEs) of parameters in the simplex distribution without covariates.

Likelihood-based inference methods for the ZOIS regression model are also provided. Some

simulation studies are performed and the hospital stay data of Barcelona in 1988 and 1990

are analyzed to illustrate the proposed methods.

Keywords: Continuous proportion data; MM algorithm; Simplex distribution; stochastic

representation; Zero-one-inflated simplex distribution.
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1. Introduction

Many scientific studies in different disciplines yield outcomes in the form of percentages,

fractions, rates or proportions that are measured continuously in intervals (0,1), [0,1), (0,1]

or [0,1]. Different strategies have been proposed for modeling such continuous proportion-

al data. To fit continuous observations restricted on the open interval (0,1), some authors

considered the beta distribution as one of such tools, since its density has various shapes:

left-skewed, right-skewed, “U”, “J”, inverted “J”, and uniform depending on the values of

the two parameters (see Johnson et al., 1995, §25.1). Beta regression models have been stud-

ied by Paolino(2001), Kieschnick and McCullough (2003), Ferrari and Cribari-Neto (2004),

Smithson and Verkuilen (2006), Korhonen et al. (2007), Espinheira et al. (2008a, 2008b),

Simas et al. (2010), Ferrari and Pinheiro (2011), and so on. Recently, Ospina and Ferrari

(2010) proposed mixed continuous-discrete inflated beta distributions to model data observed

on [0,1), (0,1] or [0,1]. Ospina and Ferrari (2012) proposes a general class of regression models

for continuous proportions when the data contain zeros or ones.

Alternatively, as a non-exponential family member, the simplex distribution of Barndorff-

Nielsen and Jørgensen (1991) can also be utilized to model continuous proportional data

confined in the open interval (0,1). Simulation studies of Zhang and Qiu (2014) showed that

the simplex regression model has a better robustness of against violation in some distribu-

tional assumptions than the beta regression model. In addition, since the beta distribution

is a member of the exponential family distributions, it is not appropriate to use a beta dis-

tribution to model data from a non-exponential family distribution. Based on these facts,

in this paper, we consider the simplex model instead of the beta model.

By employing the simplex distribution, Song and Tan (2000) developed a marginal model

for analyzing an eye surgery longitudinal proportional data. Song et al. (2004) further

modeled heterogeneous dispersion in marginal models. Qiu and Song (2008) proposed a

simplex mixed-effects models for longitudinal proportional data. Zhang and Wei (2008)

considered maximum likelihood estimation of simplex distribution nonlinear mixed models

via the stochastic approximation algorithm. Recently, Zhao et al. (2014) considered the
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Bayesian estimation of simplex distribution nonlinear mixed models for longitudinal data.

In practice, usually, proportional data include a non-negligible number of zeros and ones.

For these situations, neither the beta distribution nor the simplex distribution provides a

satisfactory fitting for such data, since the densities of the two distributions are defined

only in the open interval (0,1). To model continuous proportional data with excessive zeros

and excessive ones, it is the first time that we propose a so-called zero-one-inflated simplex

(ZOIS) distribution, which can be viewed as a mixture of the Bernoulli distribution and

the simplex distribution. Besides, we provide a new minorization–maximization (MM) al-

gorithm to calculate the maximum likelihood estimate (MLE) of the mean parameter in the

simplex distribution. Two stochastic representations (SRs) of the ZOIS random variable are

introduced to facilitate the likelihood-based statistical inferences.

The rest of this paper is organized as follows. In Section 2, we first present a simple

simulation procedure to generate i.i.d. random samples from the simplex distribution (see

Appendix), then provide an MM algorithm to calculate MLEs of parameters in the simplex

distribution, and introduce a ZOIS distribution via two SRs. In Section 3, likelihood-based

inference methods for the ZOIS distribution without covariates and the ZOIS regression

model are given. Some simulation studies are performed in Section 4. In Section 5, we

analyze the hospital stay data of Barcelona in 1988 and 1990, respectively, to illustrate the

proposed methods. A discussion is given in Section 6.

2. Zero-one-inflated simplex model

2.1 The simplex distribution

A continuous random variable X taking values in the open unit interval (0, 1) is said to follow

the simplex distribution (Barndorff-Nielsen & Jørgensen, 1991), denoted by X ∼ S−(µ, σ2),

if its probability density function (pdf) is given by

f(x;µ, σ2) = [2πσ2x3(1− x)3]−
1
2 exp

[
−d(x;µ)

2σ2

]
, x ∈ (0, 1), (2.1)
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where µ ∈ (0, 1) is the mean parameter, σ2 (> 0) is the dispersion parameter, and

d(x;µ) =̂
(x− µ)2

x(1− x)µ2(1− µ)2
(2.2)

is the unit deviance. The mean and variance of X are given by

E(X) = µ,

Var(X) = µ(1− µ)− 1√
2σ2

exp

[
1

2σ2µ2(1− µ2)

]
Γ

(
1

2
,

1

2σ2µ2(1− σ)2

)
, (2.3)

where Γ(a, b) =
∫∞
b
ta−1e−t dt denotes the upper incomplete gamma function.

To generate i.i.d. random samples from the simplex distribution (2.1), in Appendix A.3,

we introduce a simple simulation procedure, which is closely related with the inverse Gaussian

distribution (Appendix A.1) and the inverse Gaussian mixture distribution (Appendix A.2).

2.2 MLEs of parameters in the simplex distribution
via an MM algorithm

Let X1, . . . , Xn
iid∼ S−(µ, σ2), {xi}ni=1 be the corresponding realizations of {Xi}ni=1, and Yobs =

{xi}ni=1 denote the observed data. The log-likelihood function of the unknown parameters

(µ, σ2) is given by

`(µ, σ2|Yobs) = −n
2

log(σ2)− 1

2σ2
D(µ|Yobs) + constant,

where

D(µ|Yobs) =
1

µ2(1− µ)2

n∑
i=1

(xi − µ)2

xi(1− xi)
. (2.4)

The aim is to calculate the maximum likelihood estimates (MLEs) of the parameters (µ, σ2).

The MLE of µ is

µ̂ = arg max
µ∈(0,1)

[
−D(µ|Yobs)

]
= arg min

µ∈(0,1)
D(µ|Yobs)

= arg min
µ∈(0,1)

log[D(µ|Yobs)] = arg max
µ∈(0,1)

{
− log[D(µ|Yobs)]

}
,

where

log[D(µ|Yobs)] = −2[log(µ) + log(1− µ)] + log

[
n∑
i=1

(xi − µ)2

xi(1− xi)

]
.
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Define

z =
n∑
i=1

(xi − µ)2

xi(1− xi)
and z(t) =

n∑
i=1

(xi − µ(t))2

xi(1− xi)
, (2.5)

where µ(t) denotes the t-th approximate of the MLE µ̂. By using the supporting hyperplane

inequality

− log(z) > 1− log(z(t))− z

z(t)
,

we can construct a Q function as

Q(µ|µ(t)) = 1− log(z(t)) + 2[log(µ) + log(1− µ)]− 1

z(t)

n∑
i=1

(xi − µ)2

xi(1− xi)
(2.6)

such that Q(µ|µ(t)) minorizes − log[D(µ|Yobs)] at the point µ = µ(t); i.e.,

Q(µ|µ(t)) 6 − log[D(µ|Yobs)] ∀ µ, µ(t) ∈ (0, 1) and

Q(µ(t)|µ(t)) = − log[D(µ(t)|Yobs)].

According to the MM principle (Lange et al., 2000), the (t+ 1)-th approximate of the MLE

µ̂ is given by

µ(t+1) = arg max
µ∈(0,1)

Q(µ|µ(t)).

Letting dQ(µ|µ(t))/ dµ = 0, we can obtain µ(t+1) as the real root of the cubic equation

a(t)µ3 − (a(t) + b(t))µ2 + (b(t) − 2)µ+ 1 = 0, (2.7)

where

a(t) =
1

z(t)

n∑
i=1

1

xi(1− xi)
and b(t) =

1

z(t)

n∑
i=1

1

1− xi
.

and z(t) is specified by (2.5). In practice, we can take the initial value µ(0) = 0.5.

On the other hand, letting ∂`(µ, σ2|Yobs)/∂σ2 = 0, we can obtain the MLE of σ2 as

σ̂2 =
1

nµ̂2(1− µ̂)2

n∑
i=1

(xi − µ̂)2

xi(1− xi)
. (2.8)

5



2.3 Zero-one-inflated simplex distribution

Continuous data restricted in the closed unit interval [0,1] often appear in various fields. To

model such continuous proportion data with extra zeros and ones, in this paper, we propose

a so-called zero-one-inflated simplex (ZOIS) distribution, which can be viewed as a mixture

of the Bernoulli distribution and the simplex distribution.

2.3.1 The first stochastic representation

Specifically, a continuous random variable Y with support [0, 1] is said to follow the ZOIS

distribution, denoted by Y ∼ ZOIS(π, ρ, µ, σ2), if its pdf is

zois(y; π, ρ, µ, σ2) =

 π · ρy(1− ρ)1−y, if y = 0, 1,

(1− π) · f(y;µ, σ2), if y ∈ (0, 1),
(2.9)

where π ∈ [0, 1) is the mixture parameter, ρy(1 − ρ)1−y denotes the pmf of the Bernoulli

distribution with ρ ∈ (0, 1), and f(·;µ, σ2) denotes the pdf of the simplex distribution

S−(µ, σ2). In particular, when π = 0, the ZOIS(π, ρ, µ, σ2) distribution is reduced to the

simplex distribution S−(µ, σ2).

Let Z ∼ Bernoulli(π), η ∼ Bernoulli(ρ), X ∼ S−(µ, σ2), and (Z, η,X) be mutually

independent. Then, the random variable Y ∼ ZOIS(π, ρ, µ, σ2) has the following stochastic

representation (SR):

Y
d
= Zη + (1− Z)X =

 η, with probability π,

X, with probability 1− π.
(2.10)

Based on the SR (2.10), we easily obtain

Pr(Y = 0) = Pr(Z = 1, η = 0) = π(1− ρ),

Pr(Y = 1) = Pr(Z = 1, η = 1) = πρ,

E(Y ) = πρ+ (1− π)E(X) = πρ+ (1− π)µ,
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E(Y 2) = E(Z2)E(η2) + E[(1− Z)2]E(X2) + E[Z(1− Z)]E(η)E(X)

= πρ+ (1− π)E(X2) = πρ+ (1− π)[Var(X) + µ2],

Var(Y ) = πρ(1− ρ) + π(1− π)(ρ− µ)2 + (1− π)Var(X),

where Var(X) is given by (2.3).

2.3.2 The second stochastic representation

Alternatively, after the parameterization of π = φ0 + φ1 and ρ = φ1/(φ0 + φ1), the density

(2.9) can be rewritten as

zois(y;φ0, φ1, µ, σ
2) =


φ0, if y = 0,

φ1, if y = 1,

(1− φ0 − φ1) · f(y;µ, σ2), if y ∈ (0, 1),

(2.11)

where φ0, φ1, φ0 + φ1 ∈ [0, 1) and f(·;µ, σ2) is given by (2.1). We denote the distribution by

Y ∼ ZOIS(φ0, φ1, µ, σ
2). In particular, when φ0 = 0, the ZOIS distribution is reduced to the

one-inflated simplex (OIS) distribution (denoted by OIS(φ1, µ, σ
2)); when φ1 = 0, the ZOIS

distribution becomes the zero-inflated simplex (ZIS) distribution (denoted by ZIS(φ0, µ, σ
2));

when φ0 = φ1 = 0, the ZOIS distribution becomes the original simplex distribution S−(µ, σ2).

Let z = (Z0, Z1, Z2)
>∼ Multinomial(1;φ0, φ1, 1−φ0−φ1), X ∼ S−(µ, σ2), z andX be mu-

tually independent (denoted by z ⊥⊥ X). Then, the random variable Y ∼ ZOIS(φ0, φ1, µ, σ
2)

has the following SR:

Y
d
= Z0 · 0 + Z1 · 1 + Z2 ·X = Z1 + Z2X =


0, with probability φ0,

1, with probability φ1,

X, with probability 1− φ0 − φ1.

(2.12)

The SR (2.12) means that Y ∼ ZOIS(φ0, φ1, µ, σ
2) is a mixture of three distributions: De-

generate(0), Degenerate(1) and S−(µ, σ2).
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3. Likelihood-based inferences

3.1 MLEs of parameters via an MM algorithm

Let Y1, . . . , Yn
iid∼ ZOIS(π, ρ, µ, σ2) and {yi}ni=1 be the realizations of {Yi}ni=1. Furthermore,

let Yobs = {yi}ni=1 denote the observed data and θ = (π, ρ, µ, σ2)> the unknown parameter

vector. For the purpose of convenience, we define

I0 = {i: yi = 0, 1 6 i 6 n}, I1 = {i: yi = 1, 1 6 i 6 n},

and I2 = {i: 0 < yi < 1, 1 6 i 6 n}. In addition, let n0 = # I0, n1 = # I1, and m = n0 +n1.

From (2.9), the likelihood function of θ based on the observed-data is

L(θ|Yobs) =

[∏
i∈I0

π(1− ρ)

]
·

[∏
i∈I1

πρ

]
·

[∏
i∈I2

(1− π)f(yi;µ, σ
2)

]

= πm(1− π)n−m · ρn1(1− ρ)m−n1 ·
∏
i∈I2

f(yi;µ, σ
2),

so that the log-likelihood function is

`(θ|Yobs) = m log(π) + (n−m) log(1− π) + n1 log(ρ)

+ (m− n1) log(1− ρ) +
∑
i∈I2

log[f(yi;µ, σ
2)].

Therefore, the MLEs of θ are given by

π̂ =
m

n
, ρ̂ =

n1

m
,

µ̂ = arg max
µ∈(0,1)

{
− log[DI2(µ|Yobs)]

}
,

σ̂2 =
1

(n−m)µ̂2(1− µ̂)2

∑
i∈I2

(yi − µ̂)2

yi(1− yi)
,

(3.1)

where π̂ denotes the proportion of zeros and ones in all observations, ρ̂ is the proportion of

zeros in the zero or one observations,

DI2(µ|Yobs) =
1

µ2(1− µ)2

∑
i∈I2

(yi − µ)2

yi(1− yi)
.
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Let µ(t) be the t-th approximate of the MLE µ̂ in the MM algorithm. From (2.6) and (2.7),

we know that the (t+ 1)-th approximate µ(t+1) can be obtained as the real root of the cubic

equation

a(t)µ3 − (a(t) + b(t))µ2 + (b(t) − 2)µ+ 1 = 0, (3.2)

where

a(t) =

∑
i∈I2 [yi(1− yi)]

−1∑
i∈I2

(yi − µ(t))2

yi(1− yi)

and b(t) =

∑
i∈I2(1− yi)

−1∑
i∈I2

(yi − µ(t))2

yi(1− yi)

.

3.2 Bootstrap confidence intervals

For small sample sizes, the bootstrap method is a useful tool to calculate a bootstrap CI

for an arbitrary function of θ = (π, ρ, µ, σ2)>, say, ϑ = h(θ). Let ϑ̂ = h(θ̂) denote the

MLE of ϑ, where θ̂ = (π̂, ρ̂, µ̂, σ̂2)> are the MLEs of θ calculated by means of (3.1). Based

on the obtained MLEs θ̂, by using the SR (2.10) we can generate Y ∗1 = y∗1, . . . , Y
∗
n =

y∗n
iid∼ ZOIS(π̂, ρ̂, µ̂, σ̂2). Having obtained Y ∗obs = {y∗1, . . . , y∗n}, we can calculate the bootstrap

replications θ̂
∗

and get ϑ̂∗ = h(θ̂
∗
). Independently repeating this process G times, we obtain

G bootstrap replications {ϑ̂∗g}Gg=1. Consequently, the standard error, se(ϑ̂), of ϑ̂ can be

estimated by the sample standard deviation of the G replications, i.e.,

ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗g − (ϑ̂∗1 + · · ·+ ϑ̂∗g)/G]2

}1/2

. (3.3)

If {ϑ̂∗}Gg=1 is approximately normally distributed, the first (1−α)100% bootstrap CI for ϑ is

[ϑ̂− zα/2ŝe(ϑ̂), ϑ̂+ zα/2ŝe(ϑ̂)]. (3.4)

Alternatively, if {ϑ̂∗}Gg=1 is non-normally distributed, the second (1− α)100% bootstrap CI

for ϑ is given by

[ϑ̂L, ϑ̂U ], (3.5)

where ϑ̂L and ϑ̂U are the 100(α/2) and 100(1− α/2) percentiles of {ϑ̂∗}Gg=1, respectively.
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3.3 Zero-one-inflated simplex regression model

To investigate the influence of some covariates on model parameters, based on the ZOIS

distribution (2.11), we consider the following ZOIS regression model:

Yi
ind∼ ZOIS(φ0i, φ1i, µi, σ

2), i = 1, . . . , n,

log

(
φ0i

1− φ0i − φ1i

)
= u>iα,

log

(
φ1i

1− φ0i − φ1i

)
= v>iβ,

log

(
µi

1− µi

)
= x>iγ,

(3.6)

where ui = (ui1, . . . , uip)
>, vi = (vi1, . . . , viq)

> and xi = (xi1, . . . , xir)
> are covariate vectors

for subject i and they are not necessarily identical; α = (α1, . . . , αp)
>, β = (β1, . . . , βq)

>,

γ = (γ1, . . . , γr)
> are vectors of unknown parameters in the model and p + q + r 6 n. In

addition, we assume that σ2 are the same across all subjects.

The likelihood function for θ = (α>,β>,γ>, σ2)> can be factorized into two parts:

L(θ) =
n∏
i=1

zois(yi;φ0i, φ1i, µi, σ
2) = L1(θ1)L2(θ2),

where θ1 = (α>,β>)>, θ2 = (γ>, σ2)>,

L1(θ1) =
n∏
i=1

φ
I{0}(yi)

0i φ
I{1}(yi)

1i (1− φ0i − φ1i)
1−I{0,1}(yi),

L2(θ2) =
∏
i∈I2

f(yi;µi, σ
2),

IA(y) is the indicator function, and

φ0i =
exp (u>iα)

∆
, ∆ =̂ 1 + exp (u>iα) + exp (v>iβ),

φ1i =
exp (v>iβ)

∆
,

µi =
exp (x>iγ)

1 + exp (x>iγ)
.

(3.7)
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Thus, the log-likelihood function is given by

`(θ) = `1(θ1) + `2(θ2) =
n∑
i=1

`∗1(φ0i, φ1i) +
∑
i∈I2

`∗2(µi, σ
2),

where

`∗1(φ0i, φ1i) = I{0}(yi) log(φ0i) + I{1}(yi) log(φ1i) + [1− I{0,1}(yi)] log(1− φ0i − φ1i),

`∗2(µi, σ
2
i ) = log[f(yi;µi, σ

2)].

Therefore, the MLEs of θ1 and θ2 can be calculated separately. Zhang & Qiu (2014) pro-

vided an R package named “simplexreg” to calculate the MLEs of parameters in a simplex

regression model, and we use this package to compute θ̂2 = (γ̂>, σ̂2)>.

To calculate the MLEs of θ1, we first calculate the score function, which is given by

∇`1(θ1) =
∂`1(θ1)

∂θ1
=


∂`1(θ1)

∂α

∂`1(θ1)

∂β

 ,

where

∂`1(θ1)

∂α
=

n∑
i=1

[
I{0}(yi)ui −

exp(u>iα)

∆
ui

]
=

n∑
i=1

ui[I{0}(yi)− φ0i]

∂`1(θ1)

∂β
=

n∑
i=1

[
I{1}(yi)vi −

exp(v>iβ)

∆
vi

]
=

n∑
i=1

vi[I{1}(yi)− φ1i].

The Hessian matrix is

∇2`1(θ1) =
∂2`1(θ1)

∂θ1∂θ
>
1

=


∂2`1(θ1)

∂α∂α>
∂2`1(θ1)

∂α∂β>

∂2`1(θ1)

∂β∂α>
∂2`1(θ1)

∂β∂β>

 ,

where

∂2`1(θ1)

∂α∂α>
= −

n∑
i=1

exp(u>iα)[1 + exp(v>iβ)]

∆2
uiu

>
i = −

n∑
i=1

φ0i(1− φ0i)uiu
>
i ,

∂2`1(θ1)

∂β∂β>
= −

n∑
i=1

exp(v>iβ)[1 + exp(u>iα)]

∆2
viv
>
i = −

n∑
i=1

φ1i(1− φ1i)viv
>
i ,

∂2`1(θ1)

∂α∂β>
=

n∑
i=1

exp(u>iα) exp(v>iβ)

∆2
uiv

>
i =

n∑
i=1

φ0iφ1iuiv
>
i .
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Therefore, the Newtown–Raphson iteration

θ
(t+1)
1 = θ

(t)
1 − [∇2`1(θ

(t)
1 )]−1∇`1(θ(t)1 ) (3.8)

can be employed to calculate the MLEs of θ1.

4. Simulation studies

To evaluate the finite sample performance of the proposed MLEs of θ for both cases of

without and with covariates, we conduct some Monte Carlo simulations. Let ϑ = h(θ) be an

arbitrary function of θ. The performance of the estimator ϑ̂ is assessed by the mean square

error (MSE), defined by

MSE(ϑ̂) = E(ϑ̂− ϑ)2 = Var(ϑ̂) + b2(ϑ), (4.1)

where b(ϑ) = E(ϑ̂)− ϑ denotes the bias of the estimator ϑ̂.

4.1 The case without covariates

To conduct the simulations, we consider the sample size n = 500, 800, 1000. The true values

of parameters are set as (π, ρ, µ, σ2) = (0.2, 0.3, 0.5, 16), (0.5, 0.2, 0.3, 14). Based on the SR

(2.10), we independently generate

Y
(k)
1 , . . . , Y (k)

n
iid∼ ZOIS(π, ρ, µ, σ2) for k = 1, . . . , K (K = 1000).

For the k-th generated sample Y
(k)
obs = {Y (k)

i }ni=1, the MLEs of θ = (π, ρ, µ, σ2)> can be

calculated according to (3.1) and (3.2), denoted by θ̂
(k)

= (π̂(k), ρ̂(k), µ̂(k), σ̂2(k))>. The MSE

of each component in θ is computed in terms of (4.1), denoted by MSE(π̂(k)), MSE(ρ̂(k)),

MSE(µ̂(k)), MSE(σ̂2(k)), respectively. The average MLE for each parameter based on the

1000 repetitions and the average MSE for each MLE based on the 1000 repetitions are

reported in Table 1.

From Table 1, we have observed the following facts:

(a) For the given values of four parameters (π, ρ, µ, σ2), as expected, the differences between

of the average MLE and its true value become smaller and smaller as the sample size n
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increases. In addition, the average MSEs of the estimators π̂, ρ̂, µ̂ and σ̂2 also become

smaller and smaller as the sample size n increases.

(b) For the given sample size n, the performance of the MLE µ̂ is the best in terms of model

error. Furthermore, the performances of both π̂ and µ̂ are significantly better than those

of ρ̂ and σ̂2.

Table 1. The average MLE of each parameter and the average MSE of each MLE for the
ZOIS distribution

n Parameter True value A-MLE A-MSE True value A-MLE A-MSE

500 0.2008 0.0003 0.5011 0.0911

800 π 0.2 0.2005 0.0002 0.5 0.4995 0.0900

1000 0.2004 0.0002 0.5001 0.0903

500 0.3013 0.0022 0.2003 0.0106

800 ρ 0.3 0.3002 0.0013 0.2 0.2010 0.0102

1000 0.3002 0.0010 0.2008 0.0101

500 0.5003 0.0002 0.2996 0.0404

800 µ 0.5 0.5005 0.0001 0.3 0.3000 0.0401

1000 0.5002 0.0001 0.3000 0.0402

500 16.034 1.2733 13.691 6.7076

800 σ2 16 15.974 0.8345 14 13.623 6.6215

1000 15.977 0.6556 13.670 6.2748

A-MLE = Average MLE based on 1000 repetitions.
A-MSE = Average MSE based on 1000 repetitions.

4.2 The case with covariates

The sample size n is set to be 500, 800, 1000, and the ten parameters are set as α =

(α1, α2, α3)
> = (1, 0.5,−0.5)>, (1.5, 1,−1)>; β = (β1, β2, β3)

> = (1, 0.5,−0.5)>, (1.5, 1,−1)>;

γ = (γ1, γ2, γ3)
>= (1.5, 0.5,−0.5)>, (1,−1, 0.5)>; and σ2 = 16, 14. The covariates ui1, ui2, ui3

iid∼

U(−1, 1); vi1, vi2, vi3
iid∼ U(−1, 1); xi1 = 1, xi2 ∼ Bernoulli(0.5), xi3 ∼ U(0, 5). Let ui =

(ui1, ui2, ui3)
>, vi = (vi1, vi2, vi3)

> and xi = (xi1, xi2, xi3)
>.

Based on the SR (2.12), we independently (for k = 1, . . . , K and K = 1000) generate

Y
(k)
i

ind∼ ZOIS(φ0i, φ1i, µi, σ
2) for i = 1, . . . , n,
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Table 2. The average MLE of each parameter and the average MSE of each MLE for the
ZOIS regression model

n Parameter True value A-MLE A-MSE True value A-MLE A-MSE

500 1.0109 0.0325 1.5054 0.0408

800 α1 1 1.0005 0.0187 1.5 1.5038 0.0240

1000 0.9992 0.0163 1.5147 0.0209

500 0.5121 2.3196 1.0069 0.0371

800 α2 0.5 0.5050 2.2850 1 1.0020 0.0225

1000 0.4998 2.2642 1.0037 0.0187

500 −0.5089 0.0327 −1.0072 0.0377

800 α3 −0.5 −0.5015 0.0191 −1 −1.0016 0.0233

1000 −0.5106 0.0156 −1.0058 0.0195

500 1.0103 0.0306 1.5072 0.0387

800 β1 1 1.0028 0.0214 1.5 1.5017 0.0255

1000 1.0029 0.0159 1.5074 0.0201

500 0.5063 2.2996 1.0035 0.0379

800 β2 0.5 0.5060 2.2874 1 1.0036 0.0229

1000 0.4955 2.2518 1.0060 0.0188

500 −0.5075 0.0303 −1.0010 0.0366

800 β3 −0.5 −0.5121 0.0188 −1 −1.0043 0.02313

1000 −0.5073 0.0154 −1.0023 0.0186

500 1.5173 0.0376 1.0103 0.0339

800 γ1 1.5 1.5010 0.0232 1 1.0061 0.0214

1000 1.5157 0.0178 1.0056 0.0182

500 0.5066 0.0280 −1.0073 0.0239

800 γ2 0.5 0.5038 0.0162 −1 −1.0035 0.0158

1000 0.5010 0.0129 −0.9993 0.0122

500 −0.5060 0.0033 0.4493 0.0028

800 γ3 −0.5 −0.5004 0.0022 0.5 0.5000 0.0017

1000 −0.5051 0.0018 0.4994 0.0013

500 16.089 3.3656 13.991 2.8301

800 σ2 16 16.033 1.9923 14 14.000 1.7109

1000 15.971 1.6434 14.006 1.4181

A-MLE = Average MLE based on 1000 repetitions.
A-MSE = Average MSE based on 1000 repetitions.

where (φ0i, φ1i, µi) are determined by (3.7). For the k-th generated sample Y
(k)
obs = {Y (k)

i }ni=1,

the MLEs of θ = {α,β,γ, σ2} can be calculated according to (3.8) and the R package
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“simplexreg”, denoted by θ̂
(k)

= {α̂(k), β̂
(k)
, γ̂(k), σ̂2(k)}. The MSE of each component in θ

is computed in terms of (4.1), denoted by MSE(α̂
(k)
i ), MSE(β̂

(k)
i ), MSE(γ̂

(k)
i ), MSE(σ̂2(k)),

respectively. The average MLE for each parameter based on the 1000 repetitions and the

average MSE for each MLE based on the 1000 repetitions are displayed in Table 2.

From Table 2, we have observed the following facts:

(a) For the given ten parameters α, β, γ and σ2, as expected, the performances of the

MLEs become better and better as the sample size n increases. In addition, the MSEs of

estimators α̂, β̂, γ̂ and σ̂2 also become smaller and smaller as the sample size n increases.

(b) For the given sample size n, the performance of the MLE γ̂ is the best in terms of model

error. Furthermore, the performances of α̂, β̂ and γ̂ are significantly better than that

of σ̂2.

5. A real example

In this section, we analyze the hospital stay (HS) data of Barcelona in 1988 and 1990,

respectively, to illustrate the proposed methods.

5.1 The hospital stay data of Barcelona

Gange et al. (1996) reported a hospital stay data set containing 1383 patients from a

study at the Hospital Universitari del Mar (a teaching hospital in Barcelona, Spain) in 1988

with 750 patients and in 1990 with 633 patients, respectively. Each patient was assessed

for inappropriate stay on each day through two physicians by using the appropriateness

evaluation protocol (AEP) method developed by Gertman and Restuccia (1981), see Gange

et al. (1996) for more detail. The response variable Y is the number of inappropriate days

out of the total number of days that patients spent in the hospital, so Y is the proportion of

inappropriate days out of all days spent in the hospital. Tables 3 and 4 list the corresponding

HS data in 1988 (with 750 patients) and in 1990 (with 633 patients), and some descriptive

statistics. From the two tables, we found out that with the increase of stay days, the average

inappropriate stay days may increase too. Figure 1 plots the histograms and box-plots for
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the proportion of inappropriate stay data (the response Y ) in 1988 and in 1990, respectively.

From Figure 1, we can see that there are a lot of zeros and ones for the HS data in both

1988 and 1990.

Table 3. 1988 HS data with 750 patients and some descriptive statistics

Length of Number Average inappropriate Some descriptive

stay (days) of patients stay (days) statistics

1 34 0

2 109 0

3 41 0.1

4 42 0.6 Age of patients:

5 30 1 53.4 ± 19.7

6 42 1.4

7 52 1.4 Gender:

8 36 2

9 44 2 Male 349(47%)

10 23 2.7 Female 401(53%)

11 22 2.7

12 28 4.3

13 21 4.2

14 23 3.3

15 22 3.5

[16, 20] 61 5.2

[21, 30] 68 9

[31, 40] 24 14.3

> 40 28 21.6

Gange et al. (1996) used a logistic regression to model the proportion of inappropriate

stay data with binomial and beta–binomial (BB) distributions, respectively. They found

that the BB distribution provides a better fit to the data by modeling both its mean and

dispersion as functions of explanatory variables. In this section, we would like to use the

proposed zero-one-inflated simplex distribution ZOIS(π, ρ, µ, σ2)

(1) to model the proportion of inappropriate stay data in 1988 and 1990, respectively;

(2) to estimate the four parameters (π, ρ, µ, σ2) without considering covariates;
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(3) to investigate the zero-one-inflated simplex regression by considering the effect of some

covariates (e.g., sex, age and so on) on the response Y .

Table 4. 1990 HS data with 633 patients and some descriptive statistics

Length of Number Average inappropriate Some descriptive

stay (days) of patients stay (days) statistics

1 76 0

2 74 0.1

3 45 0.4

4 39 0.8 Age of patients:

5 34 0.9 55.3±19.5

6 39 1.5

7 54 2 Gender:

8 40 2

9 27 2.3 Males 321(51%)

10 26 3.2 Females 346(49%)

11 20 4.2

12 16 4.8

13 15 3.1

14 14 1.4

15 10 1.8

[16, 20] 30 6.9

[21, 30] 42 8.9

[31, 40] 15 10.1

> 40 17 17.7

5.2 Zero-one-inflated simplex distribution without covariates

Let Y1, . . . , Yn
iid∼ ZOIS(π, ρ, µ, σ2) and θ = (π, ρ, µ, σ2)>. By employing the MM algorithm

(3.1) and (3.2), we can calculate the MLEs of θ based on the HS data in 1988 and these

results are listed in the second column of Table 5. With G = 1,000 bootstrap replications,

the estimated standard deviation (std) and two 95% bootstrap CIs of each component in

θ are given in the last three columns of Table 5. Similarly, for the HS data in 1990, the

corresponding results are given in Table 6.
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Figure 1: Comparison of histograms and box-plots for the proportion of inappropriate stay
in 1988 and in 1990, respectively.
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Table 5. MLEs and CIs of parameters without covariates for the HS data in 1988

Parameter MLE std 95% bootstrap CI† 95% bootstrap CI‡

π 0.6267 0.0177 [0.5912, 0.6604] [0.5933, 0.6600]

ρ 0.0638 0.0111 [0.0422, 0.0858] [0.0429, 0.0858]

µ 0.4757 0.0127 [0.4513, 0.5012] [0.4517, 0.5006]

σ2 6.6739 0.5503 [5.5513, 7.7087] [5.6159, 7.6820]

CI†: Normal-based bootstrap CI, see (3.4).
CI‡: Non-normal-based bootstrap CI, see (3.5).

Table 6. MLEs and CIs of parameters without covariates for the HS data in 1990

Parameter MLE std 95% bootstrap CI† 95% bootstrap CI‡

π 0.5703 0.0196 [0.5325, 0.6095] [0.5308, 0.6082]

ρ 0.1053 0.0164 [0.0731, 0.1374] [0.0764, 0.1395]

µ 0.3988 0.0095 [0.3912, 0.4283] [0.3920, 0.4290]

σ2 7.8180 0.6650 [6.5086, 9.1153] [6.5083, 9.1458]

CI†: Normal-based bootstrap CI, see (3.4).
CI‡: Non-normal-based bootstrap CI, see (3.5).

Figure 2(a) and Figure 2(b) give the comparison of histograms between the observed

(black bar) and estimated (grey bar) proportion of inappropriate stay through the ZOIS

distribution in 1988 and 1990, respectively. Obviously, the observed proportions are close to

the estimated proportions fitted by the ZOIS distribution in both 1988 and 1990, indicating

that the ZOIS distribution is suitable for fitting the hospital stay data. Figure 2(c) and

Figure 2(d) plot the residuals against the fitted values for the ZIOS distribution based the

HS data in 1988 and 1990, respectively. We can see that the residuals are randomly scattered

in a parallelogram, since the HS data are within [0, 1]. Thus, |residuals− fitted values| 6 1.

5.3 Zero-one-inflated simplex regression model

We consider three covariates: x1 (sex) is the gender of patient (= 0 if male, = 1 if female);

x2 (year) is the age of the patient; and x3 (los) is the total number of days patients spent

in hospital. Again, let the response variable Yi (HS) be the number of inappropriate days of

the patient i out of the total number of days (los) that patients spent in hospital, i.e., the
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Figure 2: (a)(b) Comparison of histograms between the observed (black bar) and estimated
(grey bar) proportion of inappropriate stay through the ZOIS distribution in 1988 and 1990,
respectively; (c)(d) Residuals of the ZOIS distribution in 1988 and 1990, respectively.
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proportion of inappropriate days out of all days spent in the hospital. According to (3.6),

we consider the following ZOIS regression model:

Yi
ind∼ ZOIS(φ0i, φ1i, µi, σ

2), i = 1, . . . , n,

log

(
φ0i

1− φ0i − φ1i

)
= α0 + x1α1 + x2α2 + x3α3,

log

(
φ1i

1− φ0i − φ1i

)
= β0 + x1β1 + x2β2 + x3β3,

log

(
µi

1− µi

)
= γ0 + x1γ1 + x2γ2 + x3γ3.

By using the Newton–Raphson algorithm (3.8) and the R package “simplxreg” to calculate

the MLEs of the regression coefficients {αj, βj, γj}3j=0 and σ2 based on the 1988 HS data

and these results are displayed in the second column of Table 7. With G = 1,000 bootstrap

replications, the estimated std and two 95% bootstrap CIs of each regression coefficient in

{αj, βj, γj}3j=0 and σ2 are given in the last three columns of Table 7. Similarly, for the 1990

HS data, the corresponding results are reported in Table 8.

Table 7. MLEs and CIs of regression coefficients for the HS data in 1988

Coefficient MLE std 95% bootstrap CI† 95% bootstrap CI‡

α0 1.5155 0.2787 [0.9894, 2.0820]* [1.0143, 2.0649]*

α1 0.3361 0.1708 [0.0012, 0.6709]* [−0.0093, 0.6722]

α2 −0.0057 0.0045 [−0.0145, 0.0033] [−0.0147, 0.0028]

α3 −0.0774 0.0094 [−0.0967,−0.0599]∗ [−0.0979,−0.0603]∗
β0 −1.5618 0.6826 [−2.9403,−0.2645]∗ [−2.9954,−0.3325]∗
β1 0.4716 0.3924 [−0.2755, 1.2626] [−0.2403, 1.2812]

β2 −0.0027 0.0106 [−0.0234, 0.0182] [−0.0234, 0.0184]

β3 −0.0606 0.0257 [−0.1149,−0.0143]∗ [−0.1243,−0.0241]∗
γ0 −0.7223 0.1834 [−1.0835,−0.3645]∗ [−1.0956,−0.3601]∗
γ1 −0.1392 0.1035 [−0.3400, 0.0660] [−0.3419, 0.0573]

γ2 0.0091 0.0027 [0.0039, 0.0143]∗ [0.0042, 0.0145]∗
γ3 0.0064 0.0036 [−0.0007, 0.0135] [−0.0008, 0.0135]

σ2 6.4042 0.5389 [5.3581, 7.4707]∗ [5.3580, 7.4924]∗

CI†: Normal-based bootstrap CI, see (3.4).
CI‡: Non-normal-based bootstrap CI, see (3.5).
∗: Indicating that the CI does not include the zero value.
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Table 8. MLEs and CIs of regression coefficients for the HS data in 1990

Coefficient MLE std 95% bootstrap CI† 95% bootstrap CI‡

α0 2.3062 0.3423 [1.6749, 3.0167]∗ [1.6370, 3.0276]∗
α1 0.1017 0.1903 [−0.2647, 0.4812] [−0.2570, 0.4909]

α2 −0.0197 0.0050 [−0.0030,−0.0103]∗ [−0.0300,−0.0109]∗
α3 −0.1145 0.0152 [−0.1464,−0.0866]∗ [−0.1487,−0.0888]∗
β0 −0.9627 0.6403 [−2.2678, 0.2422] [−2.324, 0.2185]

β1 −0.0283 0.3469 [−0.6978, 0.6620] [−0.7222, 0.6351]

β2 −0.0062 0.0095 [−0.0240, 0.0130] [−0.0240, 0.0127]

β3 −0.0562 0.0250 [−0.1106,−0.0127]∗ [−0.1184,−0.0202]∗
γ0 −0.8810 0.2107 [−1.298,−0.4719]∗ [−1.3037,−0.4465]∗
γ1 0.1483 0.1166 [−0.0850, 0.3722] [−0.0756, 0.3729]

γ2 0.0030 0.0032 [−0.0031, 0.0093] [−0.0033, 0.0091]

γ3 0.0078 0.0047 [−0.0015, 0.0170] [−0.0015, 0.0172]

σ2 7.6927 0.6715 [6.3768, 9.0089]∗ [6.3983, 9.0525]∗

CI†: Normal-based bootstrap CI, see (3.4).
CI‡: Non-normal-based bootstrap CI, see (3.5).
∗: Indicating that the CI does not include the zero value.

From Table 7, we can see that the x1 (sex) has positive significant impact on φ0i (cf. the

MLE of α1), while the x3 (los) has negative effect on φ0i (cf. the MLE of α3). Moreover,

with the increase of age, the proportion of inappropriate stay days becomes larger in 1988

(cf. the MLE of γ2), indicating that it is more inappropriate for older patients to stay in

hospital. In addition, there is some difference for male and female about inappropriate stay

days.

From Table 8, we can see that both the age and total length of stay have a significant

impact on φ0i (cf. the MLEs of α2 and α3), and total length of stay has an impact on

φ1i (cf. the MLE of β3). However, there is no obvious relation between the proportion of

inappropriate stay days with the three factors.

Figure 3(a) and Figure 3(b) give the comparison of histograms between the observed

(black bar) and estimated (grey bar) proportion of inappropriate stay through the ZOIS

regression model in 1988 and 1990, respectively. Obviously, the observed proportions are

close to the estimated proportions fitted by the ZOIS regression model in both 1988 and
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Figure 3: (a)(b) Comparison of histograms between the observed (black bar) and estimated
(grey bar) proportion of inappropriate stay through the ZOIS regression model in 1988
and 1990, respectively; (c)(d) Residuals of the ZOIS regression model in 1988 and 1990,
respectively.
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1990, indicating that the ZOIS regression model is suitable for fitting the hospital stay data.

Figure 3(c) and Figure 3(d) plot the residuals against the fitted values for the ZIOS regression

model based the HS data in 1988 and 1990, respectively. We can see that the residuals are

randomly scattered in a parallelogram, since the HS data are within [0, 1].

6. Discussion

As a mixture of the Bernoulli distribution (or two degenerate distributions at zero and at

one) and the simplex distribution, the proposed ZOIS distribution provides a tool to analyze

continuous proportional data with excessive zeros and excessive ones. We also developed

the ZOIP regression models, which allow us to explore the relationship between a set of

covariates with the probabilities of observing zero and one values, and the mean of the

continuous responses in (0,1). The algorithms for calculating MLEs of parameters and the

bootstrapping method for constructing confidence intervals of parameters are given.

In some applications, it is needed to develop some efficient methods for variable selection

in the ZOIS regression models. In addition, future research shall focus on topic of testing

hypotheses under large sample sizes in the ZOIS distribution and regression model for one

sample and/or two samples.

Acknowledgements

G.L. Tian’s research was supported by a grant from the National Natural Science Foundation

of China (No. 11771199). K.C. Yuens research was supported by a Seed Fund for Basic

Research of the University of Hong Kong.

References

Barndorff-Nielsen, O.E. and Jørgensen, B. (1991). Some parametric models on the simplex.

Journal of Multivariate Analysis 39(1), 106–116.

Becker, M.P., Yang, I. and Lange, K. (1997). EM algorithms without missing data. Statis-

tical Methods in Medical Research 6, 38–54.

24



Espinheira, P.L., Ferrari, S.L.P. and Cribari-Neto, F. (2008a). Influence diagnostics in beta

regression. Computational Statistics & Data Analysis 52(9), 4417–4431.

Espinheira, P.L., Ferrari, S.L.P. and Cribari-Neto, F. (2008b). On beta regression residuals.

Journal of Applied Statistics 35(4), 407–419.

Ferrari, S.L.P. and Cribari-Neto, F. (2004). Beta regression for modelling rates and propor-

tions. Journal of Applied Statistics 31(7), 799–815.

Ferrari, S.L.P. and Pinheiro, E.C. (2011). Improved likelihood inference in beta regression.

Journal of Statistical Computation and Simulation 81(4), 431–443.
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Appendix A: Random variable generation from

the simplex distribution

A.1 The inverse Gaussian distribution and its generation

A positive random variable X follows the inverse Gaussian (or Wald) distribution with mean

parameter µ > 0 and shape parameter λ > 0, denoted by X ∼ IGaussian(µ, λ), if it has pdf

IGaussian(x|µ, λ) =

√
λ

2πx3
exp

[
− λD(x;µ)

2

]
, x > 0, (A.1)

where

D(x;µ) =̂
(x− µ)2

µ2x
. (A.2)

An important result (Shuster, 1968) on X ∼ IGaussian(µ, λ) is λD(X;µ) ∼ χ2(1), which can

be used to generate N i.i.d. samples from the inverse Gaussian distribution. The generation

procedure is as follows:

Step 1. Draw U ∼ U(0, 1) and independently draw Y ∼ χ2(1);

Step 2. Set X1 = µ+ µ2Y
2λ
− µ

2λ

√
4µλY + µ2Y 2 and X2 = µ2

X1
;

Step 3. If U 6 µ/(µ+X1), return X = X1, else return X = X2.

The corresponding R code for generating X ∼ IGaussian(µ, λ) is given by

function(N, mu, lambda)

{ # Function name: rigaussian(N, mu, lambda)

# -------------- Aim -------------------------------------

# Generate N i.i.d. samples of x ~ IGaussianDE(mu, lambda)

# with density given by (A.1)

# -------------- Input ------------------------------------

# N = sample size

# mu = mean parameter

# lambda = shape parameter

# -------------- Output -----------------------------------
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# x_1, ..., x_N ~iid IGaussianDE(mu, lambda)

###########################################################

y <- rchisq(N, 1)

a <- (mu^2/(2 * lambda)) * y

b <- 4 * mu * lambda * y + mu^2 * y^2

x1 <- mu + a - (mu/(2 * lambda)) * sqrt(b)

u <- runif(N)

x <- rep(0, N)

for(i in 1:N) {

if(u[i] < mu/(mu + x1[i])) { x[i] <- x1[i] }

else { x[i] <- mu^2/x1[i] }

}

return(x)

}

For the sake of convenience, in this paper, we alternatively denote the inverse Gaussian

distribution X ∼ IGaussian(µ, 1/σ2) by X ∼ IG(µ, σ2) with density function

IG(x|µ, σ2) =

√
1

2πσ2x3
exp

[
− D(x;µ)

2σ2

]
, x > 0, (A.3)

where σ2 (> 0) is called scale parameter.

A.2 The inverse Gaussian mixture distribution and its generation

Let X1 ∼ IG(µ, σ2), X−12 ∼ IG(µ−1, σ2µ2), and X1 ⊥⊥ X2. The random variable X2 is called

the complementary reciprocal of X1. Define a new r.v. Y as the mixture of the inverse

Gaussian r.v. with its complementary reciprocal; i.e.,

Y =

{
X1, with probability 1− p,

X2, with probability p,
(A.4)

where p ∈ [0, 1]. The distribution of Y is called the inverse Gaussian mixture distribution

(Jørgensen et al., 1991), denoted by Y ∼ M-IG(µ, σ2, p), and its pdf is given by

M-IG(y|µ, σ2, p) =

√
1

2πσ2y3

(
1− p+

py

µ

)
exp

[
− D(y;µ)

2σ2

]
, y > 0.
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Note that (A.4) can be rewritten as

Y
d
= (1− Z)X1 + ZX2, (A.5)

where Z ∼ Bernoulli(p) and (Z,X1, X2) are mutually independent. Therefore, the SR (A.5)

provides a procedure for generating random samples from Y ∼ M-IG(µ, σ2, p). Furthermore,

Jørgensen et al. (1991) also obtained the following SR:

Y
d
= X1 + ZX3, (A.6)

where Z ∼ Bernoulli(p), X3 ∼ σ2µ2χ2(1) and (X1, Z,X3) are mutually independent. In

this paper, we use the SR (A.6) rather than (A.5) to generate random samples from Y ∼

M-IG(µ, σ2, p).

A.3 The simplex distribution and its generation

Let X ∼ S−(µ, σ2) and make a one-to-one transformation Y = X/(1 − X). It is easy to

show that (see, Zhang & Qiu, 2014)

Y ∼ M-IG

(
µ

1− µ
, σ2(1− µ)2, µ

)
. (A.7)

Therefore, for a given pair (µ, σ2) with µ ∈ (0, 1) and σ2 > 0, we first generate Y = y from

(A.7), and solve the inverse transformation x = y/(1 + y), then X = x is a random sample

from X ∼ S−(µ, σ2).
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