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A B S T R A C T

Research in cognitive neuroscience has extensively demonstrated that the temporal dynamics of brain activity are
associated with cognitive functioning. The temporal dynamics mainly include oscillatory and 1/f noise-like, non-
oscillatory brain activities that coexist in many forms of brain activity and confound each other’s variability. As
such, observed functional associations of narrowband oscillations might have been confounded with the broad-
band 1/f component. Here, we investigated the relationship between resting-state EEG activity and the efficiency
of cognitive functioning in N¼ 180 individuals. We show that 1/f brain activity plays an essential role in ac-
counting for between-person variability in cognitive speed – a relationship that can be mistaken as originating
from brain oscillations using conventional power spectrum analysis. At first glance, the power of alpha oscillations
appeared to be predictive of cognitive speed. However, when dissociating pure alpha oscillations from 1/f brain
activity, only the 1/f predicted cognitive speed, whereas the predictive power of alpha vanished. With this highly
powered study, we disambiguate the functional relevance of the 1/f power law pattern in resting state neural
activities and substantiate the necessity of isolating the 1/f component from oscillatory activities when studying
the functional relevance of spontaneous brain activities.
1. Introduction

Sustaining dynamic brain activities encode rich information about an
individual’s functional and cognitive profile (Valizadeh et al., 2019). One
prominent feature of brain activity is that there are oscillations that occur
at various levels of the neural system (Buzsaki, 2006). The functional
relevance of brain oscillations has been widely studied both theoretically
and experimentally (Arnal and Giraud, 2012; Wang, 2010). From a
neurocognitive perspective, it is of great interest to explore how brain
oscillations are related to cognitive performance outcomes. The most
prominent oscillations measured from scalp EEG activity – the alpha
oscillations – have been studied for a century, leading to a large body of
findings on their functional roles and associations with cognitive per-
formance outcomes (Babu Henry Samuel et al., 2018; Doesburg et al.,
2016; Ergenoglu et al., 2004; Grandy et al., 2013; Haegens et al., 2011;
Haegens et al., 2010; Hanslmayr et al., 2007; Ikkai et al., 2016; Korn-
rumpf et al., 2017; Lange et al., 2012; Linkenkaer-Hansen et al., 2004;
Petro et al., 2019; Thut et al., 2006; Van Dijk et al., 2008; Weisz et al.,
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2014; Worden et al., 2000; Zhang and Ding, 2010). Available findings
suggest that the relationship between alpha power and cognitive per-
formance is multifaceted and not always linear: A negative within-person
correlation has been observed in visual and somatosensory perception
(Ergenoglu et al., 2004; Petro et al., 2019; Van Dijk et al., 2008; Weisz
et al., 2014), a positive correlation has been observed for working
memory (Haegens et al., 2010), and a U-shaped relationship has been
found in somatosensory perception (Lange et al., 2012; Link-
enkaer-Hansen et al., 2004; Zhang and Ding, 2010). Between-person
relationships of alpha oscillations and cognitive performance have
been extensively studied as well, leading to mixed findings (Bauml et al.,
2008; Grandy et al., 2013; Hanslmayr et al., 2007; Klimesch, 1999; Kli-
mesch et al., 2006; Mahjoory et al., 2019; Parameshwaran and Thia-
garajan, 2017). The heterogeneity of alpha oscillations with respect to
their generating sources (Basar, 2012; Klimesch, 1999; Palva and Palva,
2007) may partly account for the inconsistency that has been revealed in
their functional relations. Another possible cause of the diverging results
may lie in the mixture of alpha power with broadband background
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activity (Buzsaki, 2006; Wen and Liu, 2016b), which was not taken into
consideration in many of the above mentioned studies.

In addition to oscillations, brain activity displays a dominant 1/f-like
spectral pattern, reflecting a scale-free property (He, 2014; Van de Ville
et al., 2010). Such an activity pattern has been ubiquitously observed in
nature and has been linked to fundamental physical mechanisms (Bak
et al., 1987). An important fact about the 1/f-like pattern of brain activity
is that it is functionally relevant (Bassettt et al., 2006; Colombo et al.,
2019; Dave et al., 2018; He, 2014; Palva et al., 2013; Podvalny et al.,
2015; Tagliazucchi et al., 2013; Voytek et al., 2015; Waschke et al.,
2017), which complicates the interpretation of the alpha-behavior re-
lationships, because oscillatory (alpha) and non-oscillatory (1/f) activity
components are mixed in recorded brain signals. Oscillatory and
non-oscillatory activities are likely to be generated by distinct neural
mechanisms and play different functional roles, which strongly calls for
the necessity to disentangle them. Spectrum analysis (e.g., Fourier
Transform) – a commonly used approach that measures the power of
oscillations in a time series at different frequencies – disregards whether
a true oscillatory pattern exists in the original time series or not (Bullock
et al., 2003). Obviously, oscillatory power can be obtained from time
series of pure noise as well. Another issue is that the estimated oscillatory
power of brain signals contains a portion of 1/f noise,1 even for the alpha
band. Consequently, estimated within- or between-person relationships
of oscillation power and cognitive performance outcomes can reflect
either the oscillation part or the noise part of the brain signal. Attention
to this issue has increased as reflected in an increasing amount of
empirical and methodological studies that specifically emphasize this
challenge (Demanuele et al., 2007; Haller et al., 2018; He et al., 2010a;
McDonnell and Ward, 2011; Parameshwaran and Thiagarajan, 2017;
Wen and Liu, 2016b). Therefore, it is imperative to disentangle oscilla-
tory and non-oscillatory components of neural signals when studying
their functional roles in cognition.

With the present study, we aimed to investigate the between-person
relationship of power spectrum features (in resting-state EEG) and
cognitive performance at a finer-grained level that would allow us to
differentiate alpha oscillation from 1/f noise. Dissociating the two will
undoubtedly help reveal a more detailed picture of functional signatures
of ongoing brain activities. This is because the neural circuits or systems
generating structured oscillations may rely on mechanistically different
architectures in comparison with those that generate the 1/f noise
(Buzsaki, 2006). To achieve our goal to separate oscillatory and
non-oscillatory brain activity, we employed statistical approaches,
combining structural equation modeling based on variance decomposi-
tion across persons with signal processing methods to disentangle alpha
from 1/f noise. We report their differential associations with cognitive
performance outcomes measured as cognitive processing speed. The re-
ported novel findings help shed light on neural mechanisms underlying
between-person differences in cognitive functioning efficiency.

2. Methods

2.1. Resting-state EEG recording

The resting EEG of the eyes-open and eyes-closed states (90 s each)
were collected from 210 healthy young adults (18–40 years old, 105
women) seated in a sound-attenuated cabin. Informed consent was ob-
tained from all participants, and this study received approval from the
departmental ethics committee. EEG was recorded from 42 Ag/AgCl
electrodes referenced to the left mastoid (A1). Forty electrodes were
mounted on an elastic cap (Easycap, Brain Products, Germany) in
accordance with the 10–20 system (Pivik et al., 1993). Two electrodes
1 In fact, the pattern should be described by 1/fβ, where β is not necessarily
equal to 1. For simplicity and convenience, here we used 1/f to refer to the
general power-law pattern.
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were positioned directly on the left (reference) and right mastoids. In
addition, there was one right infra-orbital electrode and two electrodes
positioned at the outer canthi of both eyes (EOG electrodes: VO2, HO1,
HO2) intended to monitor blinks and eye movements. EEG data were
amplified using BrainAmp DC amplifiers (Brain Products, Germany) with
a 0.1 μV resolution, 5 kHz sampling rate, and 0.1–1000Hz bandpass fil-
ter. They were recorded with the Brain Vision Recorder (Brain Products,
Germany) while down-sampled to 1 KHz.

The pre-processing of continuous EEG data was conducted with the
EEGLAB toolbox (version eeglab13_4_4b (Delorme and Makeig, 2004);).
The data were down-sampled to 250 Hz. To remove artifacts due to
blinks and eye movements, an independent component analysis (ICA;
function: runica; algorithm: Infomax (Gradient)) was applied. SASICA
(EEGLAB plugin (Chaumon et al., 2015);) was used as a guide for
selecting the artifact components for rejection. The data were then
low-pass filtered at 40 Hz and were re-referenced to average.

2.2. Object recognition task

Participants performed a simple object recognition task after the
resting state EEG session. Despite the complexity of the experimental
design (which consisted of multiple conditions), this task served to
measure cognitive processing speed ability, which was captured by a
latent factor in the psychometric analyses that were computed to extract
cross-condition covariance (see below). Participants were asked to
complete a familiarity decision task on objects they learned during a
learning phase prior to the task session. The task consisted of 16 exper-
imental conditions (each with 72 trials) in which the following dichot-
omous factors were manipulated: difficulty (two levels: easy and
difficult), familiarity (two levels: familiar and unfamiliar), priming (two
levels: primed and unprimed), and stimulus category (two levels: face
and house). Performance was evaluated on the basis of the average RT in
each condition of the task, resulting in 16 performance indicators that
were used for latent variable modeling (see below).

Task difficulty was manipulated by varying the memory load. In the
low memory load (easy) condition, only 12 stimuli had to be learned in
the learning phase, whereas in the high memory load (difficult) condi-
tion, there were 36. In the learning phase, the target stimulus (unfamiliar
to all participants) was presented for 5 s per stimulus in a randomized
order for participants to memorize. Then, all familiarized stimuli were
presented again in a randomized order, intermixed with new distractor
stimuli, and participants had to indicate familiarity by pressing a button.
This learning block was repeated with different orders of target stimuli
and new unknown stimuli until the participant reached 100% accuracy in
the low and 80% accuracy in the high memory load conditions, respec-
tively. The task began thereafter. Familiarity was manipulated by pre-
senting eight learned or unlearned images. Priming was manipulated by
presenting a stimulus that was either the same (primed) or different
(unprimed) from the target stimulus to be evaluated for its familiarity,
before the presentation of the target stimulus (Fig. 1). Participants
pressed the right key for familiar stimuli and the left key for unfamiliar
stimuli. Object content was manipulated by introducing two categories of
stimuli: faces and houses. Black and white portraits (50% women) were
obtained from two external databases (Endl et al., 1998; Lundqvist et al.,
1998) and our own database (Herzmann et al., 2010). All faces were
shown from a frontal view with neutral expressions and gaze directed
toward the viewer. They were fitted into a vertical ellipse of 200� 300
pixels. House stimuli were also black and white and were fitted into a
rectangular picture (landscape orientation) of 237� 160 pixels. All face
and house stimuli were matched in terms of overall luminance.

Each trial began with a black fixation cross presented for 1000m s,
followed by a prime stimulus for 500m s. The primewas then replaced by
a fixation circle displayed for 1300m s, followed by the target stimulus
for 2000m s and an inter-trial interval of 200m s. Participants were
instructed to respond to the target stimulus as quickly and accurately as
possible. An illustration of the paradigm is depicted in Fig. 1.



Fig. 1. The object recognition task. The first stimulus serves as priming infor-
mation and is not task relevant. The second stimulus is the target stimulus and
requires a decision by button press, indicating whether the stimulus is new or it
has been learned at the beginning of a given task block. (A) Example of a primed
trial in the face recognition tasks; (B) Example of an unprimed trial in the object
(house) recognition tasks.

Fig. 2. Illustration of spectrum fitting based on different methods and the consisten
based on ‘α þ1/f’ method. The left one is in Linear (horizontal axis) – Log (vertica
method. These two plots were generated by the FOOOF python toolbox. E,F: Same r
series rather than segment by segment, the frequency resolution is much higher, and c
methods. In this participant, the gamma range also appears to be deviated from the fr
scatter plots of estimated alpha amplitudes across participants from different m
closed condition.
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2.3. EEG spectrum analysis

The resting state EEG data were segmented into 90 epochs, each
lasting for 1 s. We applied discrete Fast Fourier Transform (fft, Matlab
R2016a) on each epoch and electrode to obtain the frequency spectrum.
To exclude the non-stationary feature from the ongoing EEG activity,
each 1-s epoch was detrended and demeaned. The discrete Fourier
Transform was applied separately on each epoch with a transformation
length that doubles the epoch length (by zero padding) to achieve a
frequency resolution up to 0.5 Hz. Epochs containing amplitude varia-
tions of > �100 μV were considered to contain abrupt jumping and were
thus excluded from the analysis. The spectrum for each ten epochs were
averaged to serve as one of the four indicators for structural equation
modeling analysis (see below). In a first step, the scalp-averaged spec-
trum was used to study its relationship with behavioral performance. In a
second step, the spatial specificity of the correlation between spectrum
and behavior was examined.

2.4. Structural equation modeling

Three structural equationmodels (SEMs) were specified to investigate
how the resting state EEG spectrum predicts behavioral performance
(expressed as cognitive processing speed ability). Model 1 (Fig. 3C and D)
estimated the latent level correlation between alpha oscillations and
cy among them. A,B: Original spectrum and its fitted curve for one participant
l axis) scale. The right one is in Log-Log scale. C,D: Same results from FOOOF
esults from IRASA method. Note: As IRASA algorithm works on the entire time
onsequently the amplitude scale is also different from the other two curve fitting
actal component. G: Explanation of the meaning of N and β parameters. H-J: The
ethods served to demonstrate the consistency. The results are from eyes-



Fig. 3. Latent level correlation between overall alpha amplitude (8–12 Hz) and cognitive processing speed across participants. A: Spectra of resting-state EEG for both
eyes-closed and eyes-open brain states. B: The topographies of alpha amplitude for both measurement states. C, D: Schematic representation of the SEMs correlating
alpha and cognitive processing speed for both brain states. The correlations between the factors and the range of loadings are depicted in the diagrams. Model fit
indices for the eyes-open state: CFI¼ 0.96, RMSEA¼ 0.09, for the eyes-closed state: CFI¼ 0.96, RMSEA¼ 0.10. For simplicity, the factors accounting for inter-
individual variance due to experimental conditions (abbreviated as con in the figures, including the combination of two levels each for priming, familiarity, diffi-
culty, and stimulus category) are not displayed. The models depicted in Panel C and D schematically follow the graphical language conventions of the SEM statistical
literature: Rectagles represent measured variables, whereas circles are used to depict latent factors. Directed paths show factor loadings in our graphs and non-directed
paths represent correlations at the level of latent variables.

Fig. 4. Dichotomy between the alpha oscillation and the background 1/f noise in cross-individual amplitude variability. A: Illustration of the resting EEG spectrum. B:
Correlation values between the signal amplitudes at different frequencies and average processing speed (RT) across participants. C: Cross-frequency correlations of the
amplitudes of the oscillations across participants.
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mean RTs across participants. Three type of factors were estimated in this
model: an alpha factor (Alpha) based on the resting EEG data, a general
factor of cognitive processing speed accounting for individual differences
in mean response times across all task conditions, and specific factors
nested below the general factor to account for the effects due to experi-
mental manipulations (EX), i.e. difficulty, familiarity, priming, and
stimulus category. More detailed information about this measurement
model is provided in Fig. 3C and D. For simplicity, the EX factors are only
displayed in the SI (Fig. S 1). In accordance with research conventions
(Klimesch, 1999) and the features of the current data, alpha amplitude
was sampled from within a frequency band ranging from 8Hz to 12Hz.
4

For each participant, four segments were separately parameterized to
serve as independent indicators in SEM. Each indicator was measured
from the power spectrum averaged from a segment that was 10 s in
length (see above section for power spectrum calculation). During EEG
preprocessing, participants who did not have clean data (understood as
such without abrupt jumping) longer than 40 s (yielding four indicators
for psychometric modeling) were discarded from further SEM analyses.
There were 194 participants left from the eyes-closed session and 200
participants from the eyes-open session. After merging the two EEG
datasets with the behavioral RT data, 180 participants were left for SEM.
For indicating how well the models fit the variance-covariance structure



Fig. 5. Schematic, simplified SEM diagrams
correlating 1/f noise and Alpha with cogni-
tive processing speed. Model fit indices for
the eyes-open condition: CFI¼ 0.93,
RMSEA¼ 0.10, and for the eyes-closed con-
dition: CFI¼ 0.93, RMSEA¼ 0.09. For
simplicity, the factors accounting for experi-
mental effects on RTs (priming, familiarity,
difficulty, and stimulus category) are not
displayed in these graphs (see the SI for the
complete measurement model results for
cognitive processing speed). The models
depicted in Panel A and B schematically
follow the graphical language conventions of
the SEM statistical literature: Rectagles
represent measured variables, whereas cir-
cles are used to depict latent factors. Directed
paths show factor loadings in our graphs and
non-directed paths represent correlations at
the level of latent variables.
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of the observed data, we report the Comparative Fit Index (CFI (Bentler,
1990), and the Root Mean Square Error of Approximation (RMSEA,
(Steiger, 1980). SEM analysis was conducted by the lavaan package for R
(Rosseel, 2012).

Model 2 estimated the latent level relationship between Alpha and
cognitive processing speed versus 1/f noise and cognitive processing
speed (Fig. 5). Four types of factors were modeled: Alpha, 1/f noise,
cognitive processing speed, and specific factors capturing experimental
manipulations. To create the indicators that we needed to model 1/f
noise and Alpha factors, twenty-two indicators of frequency amplitude
were sampled in the following way: 1 Hz, 2 Hz, 3 Hz, 4 Hz, 5 Hz, 6 Hz,
7 Hz, 8 Hz, 9 Hz, 10 Hz, 10.5 Hz, 11 Hz, 11.5 Hz, 12 Hz, 13–14 Hz,
15–16 Hz, 17–18 Hz, 19–20Hz, 21–23Hz, 24–27Hz, 28–32 Hz,
33–40 Hz. The finer-grained sampling in the alpha band served the
purpose of extracting the latent factor for a specific alpha amplitude. We
selected the fine-grained range on the basis of the cross-frequency
amplitude correlation matrix indicating the independence of the oscil-
lations in the alpha range (Fig. 4). The spectrum indicators were modeled
with two orthogonal latent factors, Alpha and 1/f noise (Fig. 5), both of
which were allowed to be correlated with the general RT factor.

Model 3 (Fig. 6) estimated the latent level relationship between three
power spectrum parameters along with their respective correlation with
cognitive processing speed. The three parameters are the alpha ampli-
tude (Alpha), the initial power law amplitude (N), and the power law
exponent (β). These parameters were estimated by applying parametric
fitting to the power spectrum, assuming that oscillatory and 1/f activity
components contributed to the EEG spectrum. We applied three fitting
algorithms for the purpose of examining the robustness of the main sta-
tistical results across algorithms used (see below for details). Again, for
SEM analysis, each fitted parameter was obtained with four indicators
from four equally divided data segments (each with a length of 10 s). The
model is depicted in Fig. 6.

2.5. Estimation of alpha and 1/f parameters based on data fitting

2.5.1. Parametric curve fitting based on summation of the alpha bell function
and the 1/f spectrum (αþ1/f)

Following visual inspection of the power spectrum of the present data
(Fig. 6E, G), we first developed a straightforward method that fit the
spectrum of each participant between 1 and 40Hz by the summation of a
bell function (representing the alpha bump, see Fig. 3) and the power-law
function (representing 1/f noise). For convenience, this method will be
called ‘αþ1/f’.

The summation of the bell function and power-law function is:
5

DðxÞ¼BðxÞþPðxÞ¼A
1
�
�x�c

�
�
b Hðx; c;wÞ þ Nx�β
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where H is the Hann window function centered at c with width w, which
constrains the left and right ends of the alpha bump to be strictly zero.
There are five different parameters to be estimated: amplitude of alpha A,
the center frequency of alpha c, the coverage width of the time window of
alpha w (if alpha covers 8–12Hz, w will be 5), the magnitude of the
power law N and the power law exponent β (see Fig. 2G for the
distinction between N and β). For simplicity, b is fixed to 1, and a is
associated with w in a way that a¼w/4 so that the bell shape properly
covers the whole Hann window, and the width of the alpha bump can
merely be estimated by w, which avoids redundancy in the two param-
eters (a and w) estimating the same feature.

The Parameter curve fitting is implemented by applying an iterative
approach starting with initial values. The estimation of each parameter is
confined in a plausible range (Table 1). Iteratively, the optimal value of
each parameter corresponding to the minimum error function was
identified and fixed before moving to the estimation of the next param-
eter. The iteration stops when all parameters have converged. The iter-
ation usually converges after about 5 rounds, but up-to-50-iterations
were allowed programmatically. When estimating the alpha-related pa-
rameters, the error function is defined as the least square error only
confined around the alpha peak (c-2Hz, c-1Hz, c, cþ1 Hz, cþ2 Hz)
because the other frequencies were irrelevant, and involving all the
frequencies led to a very poor estimation of the alpha amplitude. When
estimating the noise-related parameters (i.e., the power law), the error
function involves all frequencies but is calculated in the log-log scale with
L1-norm minimization to avoid outlier effects. In the log-log scale, the
data were resampled with equal space ranging from left to right ends of
the spectrum aiming to avoid a bias by the contribution of high fre-
quencies to the data fitting. To this purpose the interp1 function in Matlab
was used. The estimation was conducted with an order of N -> β ->A
-> c ->w. The initial values and confined realistic ranges are listed in
Table 1. An example of fitting is shown in Fig. 2. The data and analysis
scripts for this work can be obtained upon request.

Initial value Confined range Meaning
A
 2
 [0, 10]
 Amplitude of purified alpha

f
 10
 [7, 13]
 Central frequency of alpha

w
 5
 [2, 10]
 Width of alpha bump

N
 left end of spectrum
 –
 Magnitude of power-law distribution

β
 0.45
 [0.2,0.8]
 Exponent of power-law distribution



Fig. 6. Parameter fitting of the spectra and the relations of the fitted parameters with cognitive processing speed. A: spectrum pattern averaged across participants. B-
D: illustrations of the bell function, power law function that was used by ‘αþ1/f’ fitting method, and their summation. E: spectra for all participants. F: fitted spectra
(by ‘αþ1/f’ method) for all participants. G, H: same as E, F but given on a log-log scale. The data from A-H are from the eyes-closed state for purposes of illustration. I,
J, K: The time-frequency pattern of three participants with the largest, medium, and smallest alpha amplitudes estimated by ‘αþ1/f’ method as a demonstration of a
valid parameter fitting. The wavelet analysis was applied to each 1-s segment of the data, and then the time frequency representation was averaged across segments. L:
same participants as I–K but showing a Fourier spectrum. M-N: The SEM diagram relating the estimated alpha amplitude and the power law exponent with cognitive
processing speed for both the eyes-open and eyes-closed conditions. The regression coefficients as shown in the diagram are from ‘αþ1/f’ fitting method. The results
for all three methods were summarized in Table 1. We allowed the predictors to be correlated (see below). Additionally, factors accounting for the effects of the
experimental manipulations in the object processing task (priming, familiarity, difficulty, and stimulus category) on individual differences in observed RTs were
estimated (see Fig. S 1), but they are not displayed here for simplicity (and because they are not relevant to the research questions we aimed to address). The models
depicted in Panel M and N schematically follow the graphical language conventions of the SEM statistical literature: Rectagles represent measured variables, whereas
circles are used to depict latent factors. Directed paths show factor loadings in our graphs and non-directed paths represent correlations at the level of latent variables.

Table 1
Regression coefficients of different spectrum parameters (N, β, Alpha) serving as independent (latent) variables in predicting cognitive processing speed ability.

Eye open Eye closed

N→Speed β→Speed Alpha→Speed N→Speed β→Speed Alpha→Speed

αþ1/f -.00 (.993) -.26 (.003) .10 (.276) .31 (.004) -.34 (.001) -.13 (.163)
FOOOF .03 (.819) -.24 (.029) .15 (.135) .36 (.008) -.41 (.002) -.04 (.702)
IRASA .20 (.160) -.31 (.010) .00 (.998) .58 (.001) -.40 (.003) -.21 (.097)

Note. p-values are indicated in parenthesis. Statistically significant relationships are highlighted in bold.

G. Ouyang et al. NeuroImage 205 (2020) 116304
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2.5.2. Fitting oscillations and one-over-f (FOOOF)
Although the above spectrum fitting algorithm that we propose (αþ1/

f) appears to capture the main features of the spectrum in our data as
composed of alpha and 1/f components, there are limitations to it. The
‘αþ1/f’ method relies on the assumption that a single dominant alpha
oscillation exists in the data. While this presumption largely fits the vi-
sual pattern of the data at hand, there arguably exit some secondary
narrowband, non-alpha oscillations spectrum, at least in some of the
participants (Fig. 6). Such secondary non-alpha bumps can, in principle,
affect the precision of estimating the 1/f parameters. Therefore, we
further applied a more data-driven approach that fits the spectrum in a
way that allows multiple oscillatory components, driven by specific
spectrum pattern in individuals. FOOOF is a tool developed by Haller
et al. (2018) for parameterizing neural power spectrum that was assumed
to be the summation of 1/f and multiple narrowband oscillation humps.
Aside from allowing different numbers of oscillation peaks in the spec-
trum, FOOOF adopted similar core principles of data fitting as our
‘αþ1/f’ method, which is basically a parametric curve fitting. The alpha
peaks in FOOOF is modeled as Gaussian function rather than a bell
function. The objective function for the fitting is square error. In addition
to the intercept (N) and slope parameter (β) of 1/f noise, FOOOF esti-
mates the central frequency, bandwidth, and amplitude of each indi-
vidual oscillation that was automatically detected. To avoid overfitting,
we set the maximum of peaks to be three. The one that is closest to 11 Hz
(center of alpha oscillation in the present data) was selected as the
detected alpha and its amplitude was fed into subsequent SEM analysis
for examining its relationships with behavior. The FOOOF toolbox is
available on https://github.com/fooof-tools/fooof.

2.5.3. Irregular-resampling auto-spectral analysis (IRASA)
The parametric curve fitting approaches that were directly applied to

fit the pattern of the power spectrum do not take into account how the
power spectrum is generated. Thus, these approaches may have an
inherent shortcoming in terms of misallocation of oscillation and 1/f
component due to the so-called spectral leakage. Because of discretiza-
tion, non-stationarity, damping, variations in central frequency over
time, and multitude of oscillators, the peak of the central frequencies of
oscillators may be blurred out to nearby frequency bands to different
degrees. In terms of segregating the two different types of activity, the
above mentioned factors may affect the performance of the fitting algo-
rithms that directly fit curve functions to the spectrum pattern. This is
why it is worthwhile to apply a decomposition method that is oriented to
the defining nature of the components, rather than their appearance in
the end-product of the spectrum. The method IRASA (Wen and Liu,
2016b) was particularly developed for this purpose. Specifically, IRASA
rests upon the definitions of 1/f and oscillation such that the power
spectrum calculated from resampled (either up or down sample) time
series of 1/f activity will remain the same as from the original data,
whereas the spectrum from the resampled activity of an oscillation will
systematically shift the peak frequency at the scale of resampling (Wen
and Liu, 2016b). Based on this principle, the IRASA algorithm separates
the spectrum of oscillatory and 1/f (called fractal in the original paper)
activities.

We applied IRASA to our present data using the four different seg-
ments that serve as four indicators (using original rescale factor 1.1 to 1.9
with a space of 0.1). IRASA is not exactly a data fitting method. After the
decomposition of oscillation and 1/f spectrum, we quantified the inter-
cept N, slope β from the linear regression parameters of the IRASA-
decomposed fractal spectrum. The alpha amplitude was simply calcu-
lated from the amplitude between 8 and 12 Hz from the IRASA-
decomposed oscillation spectrum.

In summary, we applied the above described three algorithms to
quantify the alpha amplitude (A), intercept and slope of the 1/f spectrum,
N and β with three different approaches proposed in the literature. This
will allow us to examine the robustness of the investigated relationships
with cognitive processing speed across analysis algorithms. The fitting
7

results based on each method from one participant was shown in
Fig. 2(A–E) to illustrate the general principle. The consistency among
them are relatively high as showed by high correlation in the estimated
alpha amplitude from different methods (Fig. 2H–J).

3. Results

3.1. Estimating a latent variable reflecting cognitive processing speed

In the present study, we focused on processing speed as a proxy for
cognitive processing efficiency. Cognitive processing speed is conceptu-
alized as a latent variable that accounts for covariation in individuals’
reaction times (RT) captured across basic cognitive tasks. It is thus
extracted from participants’ RT data on perceptual decision tasks
administered with multiple experimental conditions (see the Methods
section for details). Specifically, hierarchically nested factor analyses
were used to statistically dissociate a cognitive processing speed factor
from condition-specific latent factors that capture condition-induced
components of variance (e.g., specific individual differences due to dif-
ferential effects of priming, familiarity, difficulty, and stimulus category).
Thereby, the estimated measurement model comprised five factors: A
general factor (termed cognitive processing speed) and four orthogonal
factors capturing the individual differences that were due to the experi-
mental manipulations (see Fig. S1). This measurement model revealed a
satisfactory fit to the data: All factor loadings were substantial and sig-
nificant (see Fig. S1), and the model fit indexes were CFI¼ 0.95,
RMSEA¼ 0.13. Thus, the extracted general factor serves as a suitable
latent ability estimate of between-person differences in cognitive pro-
cessing speed that can be predicted by EEG spectrum measures.

3.2. Estimating latent level correlations between alpha amplitude and
cognitive processing speed

The resting state EEG spectrum showed a clear alpha peak in both
measurement states (eyes closed and eyes open, Fig. 3 A) with a
commonly observed occipital distribution (Fig. 3 B). Alpha amplitude
and cognitive processing speed were modeled as two correlated latent
factors (named Alpha and cognitive processing speed, Fig. 3C and D). The
isolated modeling of the two measurement states was necessary because
a previously estimated model revealed that separate alpha amplitude
factors accounted for between-person variability in the two resting EEG
states (see Fig. S4). A significant correlation between Alpha and cognitive
processing speed was found in the eyes-open state only, even though the
alpha oscillation was two times stronger in the eyes-closed state than in
the eyes-open state (Fig. 3 A). This finding appears puzzling because a
larger magnitude of alpha is commonly associated with a higher signal-
to-noise ratio of the alpha band and thus the more reliable measure-
ment of alpha within individuals. We thus further asked about the extent
to which the Alpha-Speed correlation was actually driven by Alpha
(Alpha is capitalized when it refers to the factor). The following analyses
were designed to figure out this puzzle.

3.3. Dissociating alpha oscillation from 1/f noise

We hypothesized that the variation in alpha amplitude across par-
ticipants measured from the raw data would be generated to a consid-
erable degree by the background 1/f noise within the alpha band
(depicted as a dark blue area underlying the alpha peak in Fig. 4 A). We
will refer to this as the 1/f portion of alpha (shortened to 1/f alpha). In a
similar vein, we refer to the portion of alpha above the 1/f curve as the
purified alpha. 1/f alpha belongs to the continuum of 1/f noise and, thus,
does not have an oscillatory nature. Therefore, we hypothesized that the
purified alpha and the 1/f alpha are dissociable in terms of their ampli-
tude variability across persons. Furthermore, we hypothesized that the
Alpha-Speed correlation as estimated on the basis of the raw EEG data
would mainly be driven by the 1/f portion of alpha. If this was the case, a

https://github.com/fooof-tools/fooof
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stronger purified alpha would lead to lower Alpha-Speed correlations,
thus explaining the result in Fig. 3C and D.

Furthermore, if our assumptions about the 1/f alpha-speed correla-
tion are correct, it should not just hold in the alpha band. This is because
the alpha band is not unique in the spectrum of 1/f noise. It is more likely
that the continuum of the 1/f spectrum (Fig. 4 A, both light and dark blue
areas) is globally (i.e., broadband) associated with cognitive processing
speed. We first tested this hypothesis by simply correlating the amplitude
in every frequency with the observed average processing speed across
participants (Fig. 4 B). The correlations turned out to be positive for all
frequencies, suggesting a broadband relationship. Remarkably, an abrupt
drop appeared in the alpha band for the eyes-closed measurement state
(Fig. 4 B), going along with the functional dichotomy between alpha and
broadband 1/f noise.

To further demonstrate the dichotomy between the alpha oscillation
and the broadband 1/f noise, we plotted the cross-frequency correlation
matrix in Fig. 4 C. Specifically, we calculated the correlations for the
oscillation amplitudes across participants between every pair of fre-
quencies from 1 to 40Hz. Presumably, the correlations would decay with
the distance between the pair of frequencies, i.e., nearby frequencies
would be more strongly correlated, whereas distant frequencies would be
less strongly correlated. It turned out that this was the case in general, but
not for alpha oscillations that were not correlated with both nearby and
distant frequencies (Fig. 4 C, indicated with the white ellipse).

The multifaceted evidence summarized above suggests that the alpha
oscillations are largely dissociable from the background 1/f fluctuations
in terms of between-person variability and their associations with
behavioral performance. Such mixed inter-individual variability seems
ideally suited for structural equation modeling (SEM), which is summa-
rized in the next section.

3.4. Estimating latent level correlations of purified alpha and 1/f noise
with cognitive processing speed

Building on the descriptive evidence presented above, we modeled
two orthogonal latent factors that could explain the covariances of the
amplitudes at different frequencies across participants: alpha and 1/f
noise. The 1/f noise refers to the broadband activity with a 1/f-like
pattern. To be precise, the term “1/f” only carries the indication that
the power is inversely proportional to the frequency. More precise
mathematical forms depicting this broadband EEG activity have been
studied elsewhere (He, 2014; He et al., 2010b). The Alpha factor ac-
counts for between-person variability in the amplitude of pure alpha
oscillations. The 1/f noise factor accounts for between-person variability
in the magnitude of the broadband EEG activity. On the basis of the as-
sumptions summarized above, we expected the following with respect to
the relationships between the Alpha, 1/f noise, and cognitive processing
speed factors: 1) Stronger 1/f noise should be associated with slower
performance, for both eyes-closed and eyes-open states; 2) Individual
differences in alpha oscillation power should not be associated with
cognitive processing speed. These assumptions were fully corroborated
by the SEMs illustrated schematically in Fig. 5. Please note that we
correlated the Alpha and 1/f noise factors with the cognitive processing
speed factor for the eyes-open and eyes-closed states separately because
the measurement model revealed specific individual differences between
the two measurement states (see Fig. S5 in the SI).

Although mean RTs have been commonly used as an indicator of
cognitive performance (here, cognitive processing speed), there are some
other ways to characterize cognitive performance with RT data. In
addition to the results based on mean RTs as provided in Fig. 5, we also
examined the latent correlations between the resting EEG features (1/f
noise, alpha) and other methods of behavioral characterization. A pop-
ular description of RT distributions is the ex-Gaussian model, which
describes the distribution with three parameters—μ, σ, and
τ—corresponding to the central peak, the width, and the skewness of the
distribution, respectively. Conceptually, μ represents the central speed, σ
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represents the variability, and τ represents the tendency to give overly
slow responses or outliers. We used a two-step maximum likelihood
procedure to estimate the three ex-Gaussian parameters (Massidda,
2013; Van Zandt, 2000), and we analyzed their relationships with both
the 1/f noise and Alpha factors in the SEM framework (Fig. 5). The results
showed that the 1/f noise-Speed correlation was more strongly man-
ifested in the τ parameter: In the eyes-open condition, r(1/f noise,
μ)¼ 0.17, p¼ .034, r(1/f noise, σ)¼ 0.19, p¼ .38, r(1/f noise, τ)¼ 0.31,
p< .001; In the eyes-closed condition, r(1/f noise, μ)¼ 0.21, p¼ .01,
r(1/f noise, σ)¼ 0.16, p¼ .069, r(1/f noise, τ)¼ 0.28, p¼ .003. The
Alpha factor remained consistently uncorrelated with all ex-Gaussian
parameters. The three ex-Gaussian parameters were highly intercorre-
lated: r(μ, σ)¼ 0.78, p< .001; r(μ, τ)¼ 0.32, p< .001; r(σ, τ)¼ 0.66,
p< .001.

3.5. Which property of the 1/f noise factor predicts cognitive processing
speed?

The SEM results described above revealed that the between-person
variance in cognitive processing speed could be significantly explained
by variability in the magnitude of 1/f noise but not by the alpha oscil-
lations. This correlational relationship is informative in terms of indi-
vidual differences; however, it barely provides any information about the
possible functional mechanism that is supported by the broadband ac-
tivity. A more profound understanding of the functional mechanism re-
quires a dissecting of the relationship between the 1/f noise and
cognitive processing speed with respect to specific properties of the 1/f
spectrum. For instance, the pattern of the 1/f spectrum may vary across
individuals in baseline level or rate of decay (Voytek and Knight, 2015),
each of which could contribute to the relationship with cognitive pro-
cessing speed, but different dynamic mechanisms may underlie the
different associations. To address this question, we further conducted
data fitting approaches to estimate the key parameters that characterize
the 1/f spectrum and correlated the fitted parameters with behavior in
the SEM models.

A visual inspection of the spectrum pattern in Fig. 3 suggests that the
spectrum is mainly composed of broadband component and a protruding
bump of alpha oscillation. The broadband can be formulated by the
power law function PðxÞ ¼ Nx�β, which is a feature that has been
claimed to reflect the intrinsic nature of self-organized criticality of
complex dynamic systems (Bak et al., 1987; Hesse and Gross, 2014).
Here, x denotes the frequency, β denotes the power law exponent, and N
is the initial amplitude. A smaller β corresponds to a spectrum pattern
that is closer to a white noise pattern – the most irregular time series with
a zero auto-correlation. With respect to the oscillation component,
although the grand average spectrum (Fig. 3) displays a clearly shaped
oscillation at alpha band, at individual level, the morphology of this
alpha peak could be variable (thus, multiple peaks could exist). We
applied three methods to estimate the amplitude of the alpha oscillation
at the individual level (see Method description above) and denote it as A.
In sum, there are three parameters: A (purified alpha amplitude), β
(power law exponent), and N (initial amplitude of the power-law) that
were estimated and were related to cognitive processing speed in a
manner similar to the one depicted in Fig. 5.

Given the dichotomy of the curve-fitting parameters between the
eyes-open and eyes-closed states (see Fig. S 6), we analyzed the rela-
tionship between the estimated spectrum parameters and cognitive
processing speed in two separate SEMs – for eyes-open and eyes-closed
separately. The results summarized in Fig. 6 describing the relation-
ships between spectrum parameters and cognitive processing speed were
derived from ‘αþ1/f’ method. The results derived from the other two
methods are reported in Table 1 and show high consistency. We can see
that the power law exponent predicted cognitive processing speed in the
sense that larger average speed went along with smaller β values
(stronger decay). The power law amplitude N also predicted processing
speed but only in the eyes-closed condition. The estimated alpha
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amplitudes were again not predictive of cognitive processing speed, thus
confirming the absence of a consistent relationship between purified
alpha oscillations and cognitive processing efficiency. Although not
shown in Fig. 6, between-person correlations between different spectrum
parameters existed: For the eyes-open state, r(N, β)¼ 0.23, p¼ .002,
r(Alpha, β)¼�0.04, p¼ .60; r(Alpha, N)¼ 0.47, p< .001; and for the
eyes-closed state, r(N, β)¼ 0.48, p< .001, r(Alpha, β)¼�0.21, p¼ .006,
r(Alpha, N)¼ 0.29, p< .001.

Table 1 illustrates the results on the relationships between the latent
factors of the three key spectrum parameters and the latent factor of
cognitive processing speed from all applied fitting methods. In brief, the
parameters of 1/f noise are consistently predicting speed whereas the
alpha amplitude does not. Detailed SEM results from all three methods
are reported in SI.

4. Discussion

4.1. Summary

The present study aimed at investigating how individual differences
in a basic cognitive ability (cognitive processing speed) could be pre-
dicted by the power spectrum of resting-state EEG signals. Previous
research on EEG spectrum analysis has repeatedly reported correlations
between cognitive performance and oscillatory brain activity in various
frequency bands, particularly alpha (Ergenoglu et al., 2004; Haegens
et al., 2010; Lange et al., 2012; Linkenkaer-Hansen et al., 2004; Van Dijk
et al., 2008; Weisz et al., 2014; Zhang and Ding, 2010). However, the
broadband, non-oscillatory 1/f noise-like brain activity, that are
confounded with alpha oscillations in the spectrum, are also functionally
relevant per se (Bassettt et al., 2006; Colombo et al., 2019; Dave et al.,
2018; He, 2014; Palva et al., 2013; Podvalny et al., 2015; Tagliazucchi
et al., 2013; Voytek et al., 2015; Waschke et al., 2017). Therefore, we
attempted to investigate how these two major kinds of ongoing brain
activities are differentially associatedwith cognitive ability, for which we
needed to dissociate the oscillatory and non-oscillatory brain activities.
This is because the oscillatory components can be substantially
confounded with the predominant activity of 1/f noise. With structural
equation modeling, we differentiated the sources of variability from the
resting EEG signal that were differentially correlated with cognitive
processing speed. The SEM analysis revealed a dichotomy of the 1/f noise
component versus the purified alpha oscillation in terms of cross-person
variability. The dissociation further revealed that the alpha oscillations,
which are the predominant brain oscillations that show a peak at around
10 Hz, did not show a significant association with cognitive processing
speed after individual differences in the 1/f noise were partialed out by
means of SEM. This was the case even though a significant
alpha-behavior association was observed in the analysis of the raw data,
i.e., without removing the 1/f portion of alpha. Variability in the 1/f
noise was revealed by SEM to robustly predict cognitive processing speed
in both the eyes-open and eyes-closed measurement states. In addition to
SEM-based analysis, we applied three different data-analytic strategies of
parameter estimation at the level of the individual data to further
investigate which aspect of 1/f spectrum predicts cognitive ability. The
different fitting methods consistently revealed that the slope of the
power-law decaying function predicted between-person variability in
cognitive processing speed, analyzed here as a proxy for basic cognitive
performance.

4.2. Current issues in EEG spectrum analysis and solutions

The scalp EEG signal has been canonically classified into five fre-
quency bands: delta: <3Hz; theta: 4–7Hz; alpha: 8–12 Hz; beta:
13–30 Hz; gamma: >30Hz. Although a number of studies have discov-
ered EEG oscillation patterns that display defining frequency bands that
fall into these specific bands (Cavanagh and Frank, 2014; Klimesch et al.,
2007; Tallon-Baudry and Bertrand, 1999), the rationale behind the above
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categorization in terms of functional specificity with respect to the un-
derlying neural generators has not yet been soundly established (Buzsaki
et al., 2013). More importantly, the genuineness of oscillations circum-
vented by a narrow band has been debated (Buzsaki, 2006). The EEG
spectrum was shown to display 1/f-like patterns that are typically
observed in signals generated by complex systems (Freeman et al., 2003;
Markovic and Gros, 2014; Miller et al., 2009; Pritchard, 1992). From the
perspective of complex systems, the power-law pattern is an intrinsic
property of complex dynamic systems with a self-organized order that
differentiates these systems from randomness (Markovic and Gros,
2014). Therefore, it seems inappropriate to analyze the 1/f continuum in
a narrowband fashion. This is because the 1/f pattern, as a holistic
feature, penetrates the entire EEG spectrum. The brain oscillation as
defined in the conventional way – a narrow band taken from the entire
1/f spectrum – may be conceptually elusive. For instance, the power of
infra-slow or delta oscillation (<3 Hz) is largely contributed by the 1/f
component, despite the fact that a genuine oscillation pattern might exist
(Demanuele et al., 2007). Given that a large body of EEG analyses in
frequency domain have been based on power analysis on the raw spec-
trum, we advocate shifting the spectrum analysis from a band-based
power calculation to a more sophisticated approach that dissects the
spectrum into overlapping oscillatory and non-oscillatory components
appears to be indicated. In fact, the mixture issue has been recognized
and a number of methods have been developed and applied to address
this problem, with different levels of sophistication, e.g., whitening the
spectrum by removing the linear component in the log-log scale (Buzsaki,
2006), or removing the across-condition average spectrum (Demanuele
et al., 2007), or purely data-driven approaches that involve modeling the
spectrum pattern (Haller et al., 2018), or simply removing the average of
the left and right ends of the alpha bump when analyzing alpha power
(Parameshwaran and Thiagarajan, 2017). Notably, there are methods
(also applied in the present work) that have been developed to segregate
the oscillatory and 1/f component based on algorithms that utilized their
defining features in the time series (Wen and Liu, 2016b; Yamamoto and
Hughson, 1993), rather than on their different manifestations in the
spectrum. These methods could be applied to isolate the 1/f component
from the oscillatory activities before the narrowband-oriented analysis
(e.g., investigating the functional roles of alpha). In the present work, we
introduced a novel solution for spectrum decomposition: structural
equation modeling. The SEM method explicitly utilized the
between-person variability as the basis for factorizing and decomposing
(Model 2) alpha and 1/f, based on which differential relationships with
cognitive ability could be demonstrated. Method comparisons are dis-
cussed below, but the converging results about the spectrum-behavior
relationships from the various methods with very diverse theoretical
basis strongly substantiated the necessity of decomposing the spectrum
when studying the neural basis of cognitive performance.

4.3. How can the present findings inspire research on brain oscillations?

Oscillations are a prominent feature of neural dynamics and are un-
doubtedly a crucial reflection of neural working mechanisms. Owing to
their importance and ubiquity, a large body of neuroscience research has
focused on neural oscillations. The EEG alpha oscillations have been
studied for more than one century (Berger, 1929). In contrast, the
non-oscillatory, 1/f noise-like activity used to be deemed unimportant
and only started to receive attention in recent years (He, 2014). There-
fore, a large body of brain activity analysis in the frequency domain,
including many contemporary works, did not consider the effect
contributed by 1/f. A main contribution of our work is that, we have
demonstrated the necessity of disentangling them when investigating
EEG spectrum-cognition relationships. Without disentangling the two,
the obtained relationships could strongly diversify the view on neural
oscillations across specific research contexts. In the present case, after the
disentanglement that was based on the SEM approach, the prominent
EEG alpha oscillations do not seem to play a key functional role in
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explaining cognitive performance (here, cognitive processing speed) as
measured with a traditional stimulus familiarity decision task, whereas
the background 1/f noise does. Without separating alpha from the
non-oscillatory part of the signal, alpha would be mistaken as the neural
account of between-person differences in the present cognitive perfor-
mance data. This clear disparity in conclusions about the functional role
of brain oscillations speaks to the necessity to their dissociation in future
work. In a broader sense, the entanglement of oscillations and 1/f noise
could lead to both Type I and Type II errors concerning the association
between oscillation and cognition. Both are possible when researchers
examine a variety of other cognitive domains. It is conceivable that the
dissociation of oscillations and 1/f noise in signal processing may lead to
an even stronger functional association between oscillation and behavior
if the functionally responsible component is the oscillation but not 1/f
noise.

4.4. Is “1/f noise” really noise?

When interpreting the present findings, we need to clarify the use of
the terminology “1/f noise” in many places. Identifying this component
as “noise” may be conceptually confusing (although commonly used).
The term “noise” usually refers to something irregular, unexplained, and
functionally irrelevant. However, in neurobiological systems, the role of
noise is complex in the sense that its existence has been claimed to be
functionally beneficial and necessary (McDonnell and Ward, 2011).
Although its mechanism is not fully understood (the generative mecha-
nisms can be diverse, see He, 2014), the functional relevance of the
specific patterns of 1/f noise has been widely demonstrated (Bassettt
et al., 2006; He, 2014; Palva et al., 2013; Tagliazucchi et al., 2013;
Voytek et al., 2015). Notably, the power law scaling has been found to be
strongly modulated by brain activation during task processing (Podvalny
et al., 2015). Moreover, the power law scaling was significantly corre-
lated with brain oscillations from moment to moment, and was very
sensitive to pharmacological interventions (Muthukumaraswamy and
Liley, 2018). Such concrete evidence revealed that the 1/f activity is
closely engaged in both cognitive processing and maintenance of brain
functions – 1/f activity is not only more than noise; it encodes funda-
mental function. This explains our results indicating the 1/f parameters
to be correlated with general cognitive processing speed extracted from
the RT indicators of all task conditions, but not with any task
condition-related variability.

In this regard, the 1/f “noise” as we called it here can be regarded as
the broadband brain activity that is clearly functionally relevant. How
those signals are generated by neural circuits and systems, and why they
appear in this form represent questions to be addressed in future work to
gain further understanding of individual differences in cognitive ability
from amechanistic point of view. By studying the generativemodel of 1/f
we could pinpoint to the key parameters, processes, or configurations
that are responsible for alternation of 1/f features. For example, the
excitation-inhibition (E-I) balance of neural circuits alters the slope of
power law spectrum, and computational neural circuit model have been
developed to resemble this process, thus allowing inference of E-I balance
from neurophysiological signals (Gao et al., 2017). Regarding the
generative models that have been proposed, one popular theory intended
to explain the genesis of power law phenomena is the so called
self-organized criticality (SOC) theory (Bak et al., 1987; Beggs, 2008;
Beggs and Plenz, 2003; Hesse and Gross, 2014). SOC posits that the
power law feature is an emerging phenomenon that originates from
interacting dynamical systems that run in critical states, which is optimal
for information processing (Beggs, 2008). Sub-optimal functioning,
including pathological states, would appear on the dynamical regime that
deviates from critical states (Meisel et al., 2012). However, it has to be
noted that several alternative mechanisms for generating power law
feature have been proposed, for examples, intrinsic low-pass filtering of
neural current by dendritic structure (Linden et al., 2010), frequency
dependence of current propagation in biological tissue (Bedard and
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Destexhe, 2009), or mixture of damped neural oscillators having a dis-
tribution of relaxation rates (Muthukumaraswamy and Liley, 2018).
These models provide testable mechanisms by which the 1/f pattern may
be generated, and its associations with functional processing may be
supported.

Our results revealed that the 1/f noise, the continuum in the spec-
trum, appears to be an entity that is predictive of individual differences in
cognitive ability. At first glance, this relationship would mean that the
stronger the broadband activity of a participant, the slower would be the
participant’s response speed. One possible interpretation is that a
stronger baseline of neural activity, and thus brain metabolism, leads to
sub-optimal basic cognitive function. This interpretation would need
further systematic testing because the overall strength of an EEG signal
measured from the scalp could be due to many more factors other than
brain metabolism, for example, the conductivity of scalp, skull, and inner
tissues (Klimesch, 1999). We further investigated whether the behavioral
variability is due to the detailed structure of the 1/f pattern rather than
simply the magnitude. For that we conducted different data fitting
analysis on the spectrum pattern. The results consistently revealed that
the smaller delaying (closer to white noise) parameter of the 1/f pattern
mainly accounted for cognitive slowing. This demonstrated that the inner
structure of the 1/f pattern reflects important properties of brain physi-
ology and the neural network system, which may provide new source of
experiment data for testing various models of 1/f signal genesis.

4.5. What does the performance measure reflect?

In this work, we used average reaction times as a simple indicator of
cognitive performance. This is arguably a straightforward indicator of
cognitive processing speed, which reflects a very fundamental property
of brain functioning. However, the limitations of using average reaction
times to represent processing efficiency have been raised (Heathcote
et al., 1991; Larson and Alderton, 1990; Luce, 1986). The major draw-
back of such an approach is that the mean reaction time does not reflect a
unitary feature of cognitive performance but rather a mixture of multiple
different features. Specifically, a person’s behavior pattern is fully
encoded in the whole distribution of single-trial reaction times, which are
composed of multiple parameters depending on the proposed models.
The ex-Gaussian is a popular description of reaction time distributions; it
describes the distribution with three parameters—μ, σ, and τ—which
correspond to the central peak, the width, and the skewness of the dis-
tribution, respectively. In behavioral studies using the ex-Gaussian re-
action time decomposition, τ has been consistently shown to be better at
predicting higher order cognitive abilities (e.g., working memory ca-
pacity and fluid intelligence) in comparison with μ (Schmiedek et al.,
2007; Schmitz and Wilhelm, 2016; Unsworth et al., 2010).

It was therefore interesting to investigate which aspect of the RT
distribution would be found to be critically associated with the resting-
state EEG spectrum, specifically, the 1/f noise factor. Our analysis
showed that the 1/f noise-speed correlation was more strongly man-
ifested in the τ parameter in both the eyes-open and eyes-closed states.
The alpha factor remained consistently uncorrelated with all ex-Gaussian
parameters. Thus, the 1/f noise factor was more strongly associated with
the τ parameter in comparison with the mean RT, although the
improvement was only moderate. The results showed that the three ex-
Gaussian parameters were highly intercorrelated. Therefore, we could
not conclude that the 1/f noise factor was exclusively associated with the
skewness of the RT distribution.

4.6. How SEM and the parametric curve fitting approach compare in
parameterizing the noise component

To dissociate the 1/f part of the EEG spectrum that was qualitatively
distinct from the alpha bump, we employed two different types of ap-
proaches: between-person decomposition by using an SEM approach and
within-person parameter estimation. In the SEM approach, we first
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parameterized the amplitude of the spectrum at every frequency and
assigned two orthogonal factors that captured the variability of the
within-alpha frequencies and all frequencies (representing the back-
ground noise). This variance decomposition approach is based on the
conceptual assumption that there exist two factors that distinctively
capture between-person variability in alpha oscillation and 1/f activity.
The portion of frequency power within the alpha band that does not
belong to oscillations (the dark blue area in Fig. 4) will then be captured
by the 1/f noise factor because it covaries with the overall 1/f noise
strength across participants.

On the contrary, individual-data-based estimation of the spectrum
parameters is solely based on the descriptive features of individual
spectrum pattern, which is mainly composed of an alpha bump and a
power-law curve. Both approaches have advantages and disadvantages.
The SEM approach explicitly utilizes between-person variability as its
foundation in order to dissociate the two factors. This would boost the
relevance of the factors we expected to capture, namely, individual dif-
ferences in the alpha oscillations and the 1/f part. However, it lacks the
consideration of specificity within individuals, e.g., peak alpha fre-
quencies. The individual parameterization approach is better suited for
capturing the specificities in individual participants, but it may, on the
other hand, suffer from such specificities. For example, the power law
pattern has shown relatively large variability across participants. The
overall pattern tends to display a power-law shape, but for specific in-
dividuals, the pattern may deviate substantially from a power-law shape,
thus rendering the estimation less reliable. Moreover, studies found that
neurophysiological activities appear to be composed of different power
law components with different slopes, and determining of the knee point
still remains an open question (He et al., 2010a; Muthukumaraswamy
and Liley, 2018; Wen and Liu, 2016a). Thus, the parametric curve fitting
methods that were used in the individual-data-based approach may have
the limitation that the spectral components may not perfectly fit the
assumed parametric functions at the individual level.

The purpose of applying two very different approaches to model
alpha and 1/f noise is to demonstrate that their respective correlations
with behavior are consistent across different data-analysis strategies.
Both approaches revealed that the real alpha oscillation is not correlated
with cognitive processing speed, whereas the background 1/f noise is
consistently correlated with it. From a methodological perspective, we
demonstrated the robustness of these postulated relationships by the
convergent conclusions that came from different analysis approaches.
Such a convergence additionally supported the idea that in future
research on EEG oscillations and cognition, the 1/f component needs to
be fully accounted for.

4.7. Spatial feature of the 1/f-behavior relationship

Finally, we discuss the spatial specificity of the 1/f-behavior rela-
tionship. Unlike alpha oscillations, which show a specific localized scalp
distribution at occipital areas, the 1/f pattern is a universal feature that
appears to be more broadly spread across space (He et al., 2010b;
Muthukumaraswamy and Liley, 2018). The correlation between power
law scaling and other physiological or behavioral factors were found to
be either spread or localized, but without a consistent pattern across
studies (Dave et al., 2018; Muthukumaraswamy and Liley, 2018; Voytek
et al., 2015). Our current 1/f and cognitive speed relationship did not
show a clear spatial structure: We conducted the SEM analysis as done in
Fig. 5 separately on each electrode and plotted the distribution of the
1/f-RT latent correlation across the scalp, the results did not seem to
show a specific distribution that was consistent across eye states (Fig. S
7). More importantly, the pattern did not resemble the scalp pattern for
alpha (Fig. 3) at all, again confirming its difference from alpha oscilla-
tions. The lack of spatial specificity in the present study may imply that
the functional characteristic of 1/f activity is largely global, but it could
also be due to insufficient spatial resolution of EEG measurement. The
spatial pattern of such 1/f and cognitive behavior relationship may be
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rather investigated with a neuroimaging approach characterized by
higher spatial resolution (e.g., high density EEG, fMRI), which is a rele-
vant topic for future research.
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