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Abstract: Acapsule network, as an advanced technique in deep learning, is designed to overcome
information loss in the pooling operation and internal data representation of a convolutional neural
network (CNN). It has shown promising results in several applications, such as digit recognition
and image segmentation. In this work, we investigate for the first time the use of capsule network
in digital holographic reconstruction. The proposed residual encoder-decoder capsule network,
which we call RedCap, uses a novel windowed spatial dynamic routing algorithm and residual
capsule block, which extends the idea of a residual block. Compared with the CNN-based neural
network, RedCap exhibits much better experimental results in digital holographic reconstruction,
while having a dramatic 75% reduction in the number of parameters. It indicates that RedCap
is more efficient in the way it processes data and requires a much less memory storage for the
learned model, which therefore makes it possible to be applied to some challenging situations
with limited computational resources, such as portable devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As a powerful interferometric imaging modality, digital holography (DH) is able to capture the
diffracted wavefront from an object or a three-dimensional scene, by encoding the interference
patterns in a hologram utilizing object light and reference light [1]. Both amplitude and phase
information can be reconstructed numerically from the hologram [2]. Given such features, DH
is a fast and non-invasive method for amplitude and phase measurement, and has been applied
in various domains such as surface topography [3], microscopic imaging [4], 3D recognition
[5], and particle measurement [6]. To ensure the quality of further applications, holographic
reconstruction has been considered as an important task for decades.
The traditional physics-based methods, including Fresnel approach [7], angular spectrum

approach (ASM) [8], and convolution approach (CONV) [9], require detailed information about
the experimental setup (such as the wavelength of the laser, and the pixel pitch of the sensor).
In the last few years, superior performance of deep learning-based methods, especially CNN-
based networks, have been reported in various imaging problems, such as in phase aberration
compensation [10,11], ghost imaging [12], light field [13], scatter imaging [14], autofocusing
[15], super-resolution [16], denoising [17], despeckling [18,19], classification [20,21], and
depth-of-field extension [22]. Emerging data-driven holographic reconstruction approaches have
also been investigated [23–26]. Designed on the extension of various CNN models including
U-Net [27], deep residual network (ResNet) [28], and other encoder-decoder models [29], these
approaches enable direct reconstruction from raw holograms without any prior knowledge of
physical parameters in the imaging process, and are more robust and less time-consuming
compared with traditional physics-based methods.
Despite the remarkable performance and successful applications in various fields, CNNs

still have their limitations. The pooling operation, especially max-pooling, while serving as an
important contributor to its robust and strong feature extraction capability, discards valuable
information. Moreover, CNNs do not preserve the spatial relationship between features in
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adjacent layers, due to the scalar nature of their internal data representation. To overcome these
drawbacks, a new concept of building block to represent features, which is named capsule, has
been introduced by Sabour et al. [30], where complex information at each capsule is stored
in vectors instead of scalars. Moreover, the similarity, also interpreted as agreement between
lower- and higher-level capsule vectors, is encoded in a transformation matrix in the operation
of dynamic routing. With all information encapsulated in vector form and agreement between
these vectors taken into account, the capsule network can model the hierarchical relationships
inside the architecture better, and is able to learn features in a more efficient way. For illustration,
a three-layer capsule network model, named CapsNet, is established in [30] and has been
demonstrated to work well in classification on MNIST dataset [31]. This concept is then further
investigated and adjusted to different applications and tasks [32–35].

In thiswork, we aim at extending the use of capsule network to digital holographic reconstruction.
The CapsNet [30] uses fully-connected capsules with dynamic routing performed globally along
all dimensions, including capsule types (depth), height, and width, which however will result
in parameter explosion of the transformation matrix, and consequently incur an expensive
computational cost when handling much larger images. Therefore, we adopt the convolutional
and deconvolutional capsule layers introduced by [32], where a sliding transformation kernel is
applied and shared spatially across blocks similar to a convolutional kernel. The dynamic routing
is only performed depth-wise along different capsule types, and the number of parameters, as
well as computational cost, can be dramatically cut down. To compensate for the loss that no
routing operation is performed in the spatial dimension (along height and width), we propose
a novel windowed spatial dynamic routing that is only performed within a block of capsules
between adjacent layers for parameter reduction.
With the use of the proposed routing algorithm, a capsule layer mimicking the function of

pooling operation, named pooling capsule layer, is introduced to reduce the spatial size of the data
transmitting through the network, which thus enlarges the receptive field of capsules in higher
layers. In this way, we divide the global dynamic routing into two ways, namely, depth-wise
and spatial dynamic routing. We then form a capsule-based residual block composed of a
pooling capsule layer and a convolutional capsule layer, with a skip connection adding the input
data with the output data in order to learn a deeper network. The framework of our proposed
capsule-based holographic reconstruction network, residual encoder-decoder capsule network
(RedCap), leveraging residual capsule blocks for the encoder process and deconvolutional capsule
layers for the decoder, is exhibited in Fig. 1.
The contributions of our work can be summarized as follows:

• The proposed RedCap architecture is the first attempt to extend capsule network to digital
holographic reconstruction.

• We design a new mechanism replacing the original fully-connected dynamic routing with
spatial and depth-wise routing, and propose a novel windowed spatial dynamic routing to
address the issue of the expensive computational cost of the original capsule layer.

• We introduce the concept of pooling capsule layer using the windowed spatial dynamic
routing to downsample feature map, and establish a residual capsule unit combining the
idea of the residual block with the capsule layers to enable deeper training.

• We evaluate the reconstruction performance of RedCap on holograms obtained from
amplitude objects, and compare with both traditional convolution method CONV [9]
and learning-based holographic reconstruction network (HRNet) [23]. RedCap shows
better results in both objective measures and visual inspection with an approximately 75%
reduction in the number of parameters.
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Fig. 1. Architecture of proposed RedCap model for holographic reconstruction, indicating
the details of layers including kernel sizes, channel numbers, as well as number of capsule
types, etc.

2. Method

Digital holographic reconstruction aims at numerically reconstructing the wavefront information
of an object, especially amplitude and phase information from the interference patterns stored
in a captured hologram. Such patterns, with complex imaging information to be extracted, is
formed by recording the interference of two waves, namely, a reference wave and an object wave
carrying the object information. The mapping from a captured hologram to a reconstructed
image can be modeled as an inverse imaging problem, and the learning-based approaches attempt
to achieve this computation through training a neural network.

2.1. Capsule network

In a wide range of tasks that involve images, CNN-based architecture has become a popular
learning approach with very good performance [36]. The idea of a convolutional layer lies in the
fact that local image pixels contain important features such as edges, and these local features are
shared among remote locations all over the image. Different feature patterns can be detected with
different weight matrices, and the detected features at lower layers are combined as a weighted
sum; they are then passed through a nonlinear function to form more complicated higher-order
features at deeper layers.

However, due to the scalar nature of neurons and additive operations, the spatial relationships
of lower-level features and higher-order features are not well described by CNN [37]. Moreover,
to enable neurons from the higher layers to learn higher-order features in a wider range of
input data, CNN enlarges the field of view by downsampling the feature map. This is usually
accomplished with pooling layers, especially max-pooling, or convolutional layers that reduce
the spatial dimension of the data with a stride larger than one. Despite the good performance in
achieving invariance of neuronal activities, which makes the network more robust against small
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changes of the input, max-pooling is a primitive operation that discards valuable information.
Furthermore, it only passes a scalar output indicating the position of the most active features,
without taking spatial relationships of features into consideration.

Capsule network with dynamic routing has been designed to address these issues [30]. Inspired
by how internal hierarchical relationships of geometrical data are represented in computer
graphics, the fundamental units of the network are denoted as capsules, which are in the form
of vectors instead of scalars. They can encode a broader range of information of the detected
features, including pose (such as orientation and position), magnitude, and some other attributes
[38]. Specifically, the pose of the capsules denotes the spatial information of the extracted
features, and the magnitude (length of the capsule vectors) represents the existence probability of
the detection of such features. Thus, as the feature detector is applied on the input data, identical
features that have a slight change in the position or orientation would result in a different pose but
the same magnitude. With the spatial relationship of lower- and higher-level features encoded in
the translation process between capsules at adjacent layers, the changes in child capsules, as the
feature rotates or moves over the image, will be translated into an equivalent variance in the state
of the parent capsules. Yet, the feature can still be detected since the existence probability stays
the same. Such property is referred to as translation equivariance [38], which is more powerful
than the invariance of neuronal activities. This robustness of network performance is therefore
superior to what can be obtained in standard CNNs.
Furthermore, the vector-form data representation of a capsule network also enables a novel

dynamic routing algorithm, where the essential idea is referred to as “routing by agreement” [30].
This operation can be intuitively interpreted as a clustering mechanism, which ensures that each
parent capsule at the higher layers receives inputs from the child capsules at the lower layers that
agree with it, and therefore forms a “part-whole” relationship between features at adjacent layers.
Mathematically, by multiplying a corresponding transformation matrix W, the vector ui of

each child capsule i at the lower layers will generate a prediction vector, also called a vote, i.e.,

ûj |i = Wui, (1)

for each parent capsule j at the next layer. All votes from different child capsules are then
clustered to generate the vector of each parent capsule, i.e.,

pj =
∑
i
βijûj |i, (2)

with the corresponding coupling coefficient βij determined by the level of agreement or similarity
between the vote generated by each child capsule i and parent capsule j. A vector-to-vector
nonlinear function is then applied to pj to obtain an output vector vj, with length between 0 and
1, for the parent capsule j, since the length indicates the existence probability. The similarity
is computed by a scalar product vj · ûj |i, which iteratively updates the value of the coupling
coefficient βij. A larger βij represents a higher probability that the features from a child capsule i
should be passed to a parent capsule j. In this way, the existence probability of the higher-level
capsule relies on the agreement of the votes. The spatial relationships between the lower-level
capsules and the higher-level capsules are therefore learned accordingly, which enables a more
efficient way of training.

2.2. RedCap

The main challenge in extending the capsule network for holographic reconstruction lies
in the computationally expensive full connection of such a network, which not only limits
the size of holograms to be processed but also constraints the depth of the network that is
considered practical. Considering the input child capsules to the routing operation to be
128 × 128, 16-dimensional, with one capsule type, and they are being routed to a set of 2 capsule
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Algorithm 1 Windowed Spatial Dynamic Routing
Require: ûj |i: prediction vector
Require: r: number of routing iterations
Require: l: layer
Require: hl, wl, hl+1, wl+1: height and width of a user-defined window for layer l and (l + 1)
1: for all capsule i within a hl × wl window in layer l and capsule j within hl+1 × wl+1 window

in layer (l + 1): bij ⇐ 0
2: for r iteration do
3: for all capsule i within a hl × wl window in layer l: βi ⇐ softmax(bi)
4: for all capsule j within a hl+1 × wl+1 window in layer (l + 1): sj ⇐

∑
(hl,wl) βijûj |i

5: for all capsule j within a hl+1 × wl+1 window in layer (l + 1): vj ⇐ squash(sj)
6: for all capsule i within a hl ×wl window in layer l and capsule j within hl+1 ×wl+1 window

in layer (l + 1): bij ⇐ bij + ûj |i · vj
7: end for
8: return vj

types, 64 × 64, 32-dimensional parent capsules. The fully-connected dynamic routing requires
128×128×16×64×64×32×2 = 68, 719, 476, 736 parameters, which makes the implementation
of the network impossible on holographic reconstruction task. To address this issue, we introduce
a novel mechanism to divide the fully connected routing into two separate ones along different
dimensions, namely, spatial routing and depth-wise routing.

For the former, we develop a windowed spatial dynamic routing approach, which is described
in Algorithm 1 and Fig. 2, instead of the conventional global routing. Full connection is only
implemented among capsules within a user-defined local block at adjacent layers. Mathematically,
for any given layer l, a moving window of size hl ×wl gathers the input data with cl channels, and
forms a set of capsule blocks. Let N = hl × wl; then, this set contains a total of N capsule vectors,
each of which is cl-dimensional, i.e., U = {u1,u2, . . . ,uN}. In each single block, instead of
routing to all capsules at the next layer, capsule vectors will only be routed locally, corresponding
to a hl+1 × wl+1 grid of higher-order capsules. Similarly, we can let M = hl+1 × wl+1, and the
M capsule vectors are V = {v1, v2, . . . , vM}, with cl+1 channels at layer (l + 1). Each low-level
capsule ui will generate a prediction vector ûj |i for each parent capsule pj by multiplying a
transformation weight matrix Wij of size cl+1 × cl.

Note that the transformation matrices are different for different low-level and high-level capsule
pairs within each block. Nevertheless, they will be shared across different blocks, in order to
reduce the number of parameters significantly and lighten the computational complexity of the
network. For a parent capsule pj where j lies within the hl+1 × wl+1 window, we obtain a set of
prediction vectors, denoted as

Ûj = {ûj |1, ûj |2, . . . , ûj |N | ûj |i = Wijui}. (3)

The output capsule vj is computed as a weighted sum of all prediction vectors with routing
coefficient βij, and it then passes through a nonlinear vector-to-vector activation function (called
a “squash” function here, which we will explain below), which can be expressed as

vj = squash

(∑
i
βijûj |i

)
, βij =

exp (bij)∑
k exp (bik)

. (4)

The parameter bij indicates the prior log probability between a higher-level capsule j in the
hl+1 × wl+1 grid and one of its votes ûj |i, and it undergoes a softmax operation to obtain a
non-negative routing coefficient βij with a total probability summed to 1. Similar to the original
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Fig. 2. Windowed spatial dynamic routing. In layer l, a window of size hl × wl will slide
across the entire capsule tensor and generate local capsule blocks. For each block in layer l,
hl ×wl capsules will be used to predict capsules within a hl+1 ×wl+1 in layer (l+1) towards a
weighted combination. All weights are initialized to be equal and will be updated iteratively
based on the agreement between ûj |i and vj.

capsule network, bij is initialized to be zero and updated according to vj · ûj |i in the iterative
windowed spatial dynamic routing process. The “squash” function, as introduced in [30], is
applied to ensure that the length of the capsule vector is restricted within an interval between 0
and 1 to indicate the existence probability of this capsule. We can express this as

vj = squash(pj) =
‖pj‖2

1 + ‖pj‖2
·

pj
‖pj‖

. (5)

As for depth-wise dynamic routing, we use the same routing approach proposed in [32], where
in the convolutional and deconvolutional capsule layers, the child capsules will first undergo
convolution or deconvolution operations. The output vectors are then viewed as votes. Afterwards,
the routing procedure between the votes and the parent capsules is only carried out in the dimension
of the capsule types, which we interpret as depth-wise dynamic routing. Mathematically, suppose
that the input data to layer l is of size Hl ×W l × cl × T l, where Hl and W l denote the height
and width of the input data, cl represents the channel number, and T l indicates the number of
capsule types. For each parent capsule type tj from T l+1 number of capsule types, at layer l + 1, a
convolution or deconvolution operation is applied, and a vote tensor of sizeHl+1×W l+1×cl+1×T l

is obtained. Then,Hl+1×W l+1 parallel depth-wise dynamic routings are performed across capsule
types. Each parent capsule ptj receives a group of votes, described as Utj = {ûtj |t1 }, . . . , ûtj |tTl .
Therefore, the predicted vector vtj of each parent capsule is computed as a weighted sum of all
votes in group Utj with weight βtj tj , and then passes through the squashing function,

vtj = squash

(∑
ti

βtitj ûtj |ti

)
. (6)

Similarly, the routing coefficient βtitj is updated iteratively according to vtj · ûtj |ti . Therefore, the
routing operation is only implemented depth-wise between the lower- and higher-level capsule
types.
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The procedure of our proposed RedCap network is illustrated in Fig. 1, which consists of a
convolutional residual unit and three residual capsule cells to extract features for the encoder part,
and three deconvolutional units to reconstruct images for the decoder network. Since the size
of an input hologram is large, it is not computationally efficient to apply the routing operation
directly at the beginning of the network. Thus, we use a convolutional residual unit with four
residual blocks and each of them consists of two 3 × 3 × 16 convolutional layers, followed by a
batch normalization layer and a rectified linear unit (ReLU) activation function right after each
convolutional layer. They are stacked successively as the initial feature detector and meanwhile
downsample the feature map to increase the receptive field. The output is then processed by three
residual capsule units (denoted as Rescap), containing a pooling capsule layer with windowed
spatial dynamic routing, and a 3× 3 convolutional capsule layer with depth-wise dynamic routing
algorithm. For pooling capsule layer, balancing between the performance and the computational
cost, the windows of spatial dynamic routing are set to be of size 3 × 3 and 1 × 1 for adjacent
layers with a sliding step of 2, which can be interpreted as a pooling operation with local spatial
hierarchies included to increase the field of view of higher layers. The input to each Rescap
Unit is passed to the output of the unit with a shortcut connection, in order to avoid the possible
gradient vanishing or exploding problem in a deep network.
In the decoder network, there is an up-scaling unit composed of five dilated deconvolutional

capsule layers [32] with a stride of 2 and a kernel size of 4 × 4 to reshape the data to its original
size. In the end, three 1× 1 convolutional layers are applied for fine-tuning the final reconstructed
output images. The backpropagation operation is performed based on the loss calculated by the
mean-square error between the reconstructed image and the corresponding ground truth image.

3. Experiment and results

The hologram data used are a subset of data from [23], which are various amplitude objects
acquired by imaging different local areas on the negative USAF 1951 test target exhibited in
Fig. 3(b). The experiment is conducted using an off-axis digital holography imaging system,
as shown in Fig. 3(a), with a lens-free Mach-Zehnder interferometer and two linear motion
controllers (Newport, CONEX-LTA-HL) for axial movement. The angles between the object
light and reference light are manually adjusted via the mirror, and the setup uses no objective
lens. The interference patterns on the hologram plane are recorded as the raw hologram data.
The collected samples of original size 1024 × 1280 are cropped to size 800 × 800 due to memory
limitation, and we then divide the dataset into 80% for training, 10% for validation and 10% for
testing. The label images are obtained by backpropagating the imaging process using the CONV
method and then manually removing the artifacts as well as suppressing background noise in the
images towards thresholding. The network is trained at an initial learning rate of 10−2 with a
decaying factor of 0.9 for every 10 epochs, and stopped at the stagnation of validation loss. We
adopts Adam as the optimizer [39] and a batch size of 2 for parameter update. A weight decay of
10−4 is used for regularization. The training process is implemented using Pytorch on an Nvidia
GTX 1070.

The proposed RedCap is compared with the conventional method CONV, which is implemented
with detailed parameters of the optical system including pixel pitch of the detector, object distance,
and laser wavelength, and a CNN-based holographic reconstruction neural network HRNet [23].
As an extension of ResNet [28], it is composed of a batch normalization (BN) and a rectified
linear unit (ReLU) activation, six residual blocks and a sub-pixel convolutional layer [40]. Each
residual block in HRNet consists of two successive parts containing a convolutional layer followed
by a BN and a ReLU activation, and three of the residual blocks utilize a max-pooling layer at
the beginning of the block.
The objective assessments, the peak signal-to-noise ratio (PSNR) and structural similarity

index (SSIM) [41], are used to quantitatively evaluate the reconstruction performance of all three
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Fig. 3. The digital holography experiment setup and amplitude sample (negative USAF
1951 target).

methods. As shown in Table 1, the learning-based methods outperform the CONV method in
both metrics, and overall, RedCap presents the highest PSNR and SSIM values (emphasized in
red) than the other two methods. It is worth noting that HRNet contains more than 2.8 million
parameters, while RedCap cuts this number down to approximately 0.7 million.

Table 1. Comparison of reconstruction performance for the amplitude object among CONV, HRNet
and RedCap.

Measure Methods Test

PSNR (dB) CONV 20.54

HRNet 24.62

RedCap 24.79

SSIM CONV 0.2644

HRNet 0.9081

RedCap 0.9234

Number of parameters HRNet 2,86 M

RedCap 0.71 M

For visual inspection, four sample holograms are selected (Fig. 4) and reconstructed through
RedCap, HRNet and CONV. The reconstructed images of different approaches together with
the ground truth images are presented in Fig. 5. It is obvious that both RedCap and HRNet
perform much better results in suppressing background noise than the CONV method, especially
concerning the artifacts around the edges of the objects. Moreover, the images reconstructed by
RedCap are much less blurry, and appear to restore more details compared with those obtained by
HRNet. As can been seen, RedCap exhibits a better capability of preserving sharper edges than

Fig. 4. Sample holograms.
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Fig. 5. Ground truth images (a)–(d), and reconstructed images using RedCap (e)–(h),
HRNet (i)–(l) and CONV(m)–(p). (q)–(t) are zoomed-in regions of Ground Truth images
(red), and reconstructed images by RedCap (magenta), HRNet (green) and CONV method
(yellow).
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HRNet. The superior performance and the significant reduction in total parameters demonstrate
the high efficiency of RedCap in the learning process of holographic reconstruction.

Table 2. Detailed calculation of parameters of RedCap.

Layer Number Layer Type Configuration Number of Parameters

Layer 1: Residual Unit

Residual Block
3 × 3 × 1 × 16

2,448
3 × 3 × 16 × 16

Residual Block
3 × 3 × 16 × 16

4,608
3 × 3 × 16 × 16

Residual Block
3 × 3 × 16 × 16

4,608
3 × 3 × 16 × 16

Residual Block
3 × 3 × 16 × 16

4,608
3 × 3 × 16 × 16

Layer 2: Rescap Unit
Pooling Cap 3 × 3 × 16 × 16 2,304

Conv Cap 3 × 3 × 16 × 2 × 16 4,608

skip connection 3 × 3 × 16 × 2 × 16 4,608

Layer 3: Rescap Unit
Pooling Cap 3 × 3 × 16 × 32 4,608

Conv Cap 3 × 3 × 32 × 4 × 32 36,864

skip connection 3 × 3 × 16 × 4 × 32 18,432

Layer 4: Rescap Unit
Pooling Cap 3 × 3 × 32 × 64 18,432

Conv Cap 3 × 3 × 64 × 8 × 64 294,912

skip connection 3 × 3 × 32 × 8 × 64 147,456

Layer 5: Up-scaling Unit

Deconv Cap 4 × 4 × 64 × 4 × 32 131,072

Deconv Cap 4 × 4 × 32 × 2 × 16 16,384

Deconv Cap 4 × 4 × 16 × 1 × 16 4,096

Deconv Cap 4 × 4 × 16 × 1 × 16 4,096

Deconv Cap 4 × 4 × 16 × 1 × 1 256

Layer 6 convolution 1 × 1 × 1 × 128 128

Layer 7 convolution 1 × 1 × 128 × 64 8,192

Layer 8 convolution 1 × 1 × 64 × 1 64

Total parameters 712,784

4. Conclusion

In conclusion, we propose a novel capsule-based deep learning network RedCap for holographic
reconstruction, which is the first work expanding the recently emerged capsule network to the
numerical reconstruction of DH. In RedCap, global dynamic routing of the capsule network
is separated into depth-wise and spatial dynamic routing. We introduce a novel windowed
spatial dynamic routing to cut down the number of parameters and apply it into pooling capsule
layers, replacing the pooling operation in CNN-based networks, to increase the receptive field
of the network. We then use a convolutional capsule layer with depth-wise dynamic routing
and pooling capsule layer with windowed spatial dynamic routing to form a residual capsule
unit, which eases the training of a deeper network. By using depth-wise and windowed dynamic
routing, RedCap significantly reduces the number of parameters in the network and breaks the
limit in the image size of the capsule network due to high computation complexity and memory
burden. We also demonstrate the superiority and efficiency of proposed RedCap in reconstructing
high-quality images from raw holograms compared to the traditional method and CNN-based
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reconstruction neural network. Experimentally, RedCap outperforms the other two methods in
both evaluation metrics (PSNR and SSIM) and shows better performance in details restoration,
especially in preserving sharp edges. Moreover, RedCap achieves better results with 75% fewer
parameters in comparison with CNN-based HRNet. Our work demonstrates that the capability
of encoding spatial relationships of objects possessed by capsules, helps improve the efficiency
and performance of the network in the holographic reconstruction task.

Appendix: Details of RedCap

The detailed parameter calculation of the proposed RedCap has been shown layer by layer in
Table 2.
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