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Abstract— Bi-copter UAVs have emerged as more agile and
energetically efficient flying platforms than quadrotor UAVs.
Yet, they are more challenging to control due to the use of servo
motors leading to non-minimum phase roll dynamics. In this
paper, we systematically investigate the modeling, identification,
and control of such non-minimum phase dynamics in an
integrated way. We start with deriving the first principle model,
from which the cause of the non-minimum phase is clearly seen.
Parameters of the derived model are identified via experiments
and subsequently used to design and analyze a high-gain robust
flight controller via H∞ loop shaping techniques. The designed
controller is implemented on actual systems and compared
against a well-tuned PID controller. Extensive flight tests are
conducted to verify the controller’s effectiveness and the effect
of the system’s non-minimum phase nature.

I. INTRODUCTION

In the last decades, quadrotor UAVs have attracted inten-
sive research and commercialization interests due to their
mechanical simplicity, agility, and small form factor [1].
Yet, many indoor tasks (e.g., exploration, disaster relief,
constructions site monitoring & mapping) require the UAV to
carry significant payload (e.g., LiDAR, IR cameras, onboard
computer) and to fly through tight spaces (e.g., narrow
doors, windows, hallway) for extended time. These three
requirements (i.e., small size, high payload capacity, and
low power consumption) are conflicting with each other and
are fundamentally limited by propeller aerodynamics [2]:
reducing the size or increasing the payload leads to high
power consumption.

Bi-copters have emerged as an excellent platform suitable
for indoor applications [3]. Shown in Fig. 1, a bi-copter
utilizes two tandem rotors and hence reduces the size by
half (w.r.t. a quadrotor) when moving in that direction. More
formally, [3] compared the power consumption of bi-copter
configuration with other common multi-rotor configurations
and showed that bi-copters are more efficient than the rests.
In particular, it is 30% more power or size efficient than
quadrotors of the same weight. Concurrent developments in
commercial sectors also proved the energy superiority of
such bi-copter configuration [4].

Despite their superiority in power efficiency and size, bi-
copters are very challenging to control, especially the roll
dynamics due to its non-minimum phase nature. Prior work
has been conducted to address these challenges. Gonçalves
et al. [5] presented the bi-copter concept and derived the
mathematical model. However, the derived model did not
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Fig. 1. Gemini: a compact yet efficient bi-copter UAV for indoor mapping.
With weight up to 1.8 kg and width down to 10 inches, the UAV is able
to hover for 13 minutes (see [3]) and to fly through tight spaces in indoor
environments.

consider the non-minimum phase in the roll dynamics. In
[6], the authors conducted more systematical work on such
a bi-copter UAV from development, modeling, control to
actual flight tests. A fully nonlinear model was derived, and
a feedforward feedback controller was proposed and verified
by experiments. Again, the presented model neglected the
non-minimum phase nature in the roll dynamics, and the
presented controller was more focused on the position con-
troller. This was also the case with our prior work [3], where
a cascaded PID controller was used to control the position,
attitude, and angular velocity without carefully modeling the
underlying roll dynamics. Other prior work, such as the
model predictive control in [7], PID control in [8], and N-PID
controller in [9] all neglected the non-minimum phase. The
performance of these controllers was highly dependent on
manual tuning and most often not optimal. More importantly,
the stability margin of these tuned controllers is totally
unknown when model uncertainties occur.

In this paper, we formally investigate the non-minimum
phase nature of the bi-copter roll dynamics: modeling, iden-
tification, and control. We derive the first principle model
and explain the cause of the non-minimum phase nature and
its effect on system response. Experiments are conducted
to identify the model parameters. Results show that the
model with identified parameters matches very closely to
the system response in the frequency domain. Then, we
proceed to design a high-gain robust controller using H∞

loop-shaping technique and compare its performance against
a well-tuned PID controller. The comparison is conducted via



both theoretical analysis and flight experiments in normal
and extreme flight conditions (e.g., drastic external distur-
bances and center of mass offset). Results show that the H∞

controller achieves more disturbance attenuation and higher
robustness margin while the PID controller crashed in one
of the extreme tests.

This paper is organized as follows: Section II derives
the first principle model of the system roll dynamics and
analyzes its non-minimum phase nature. Section III presents
the model identification details. Based on the identified
model, the controller is designed in Section IV using H∞

loop shaping techniques and is compared to a well-tuned
PID controller. Section V shows various flight experiments,
validating the performance and the stability margin of the
designed controllers. Finally, Section VI draws conclusions
and discusses future work.

II. SYSTEM DYNAMICS

In modeling the roll dynamics, we only retain those related
physical variables to ease the presentation. Readers may refer
to our prior work [3] for detailed explanation of the actuation
principle and the full system dynamics. Shown in Fig. 2, the
UAV tilts the two tandem rotors collectively by angle δ such
that their total thrust T offsets from the center of mass and
thereby produces a rolling torque τT , as follows:

τT = T H sinδ (1)
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T

Fig. 2. Roll dynamics of our bi-copter UAV.

Besides the thrust-induced torque, the servo rotor also
exerts a torque (termed as the “reactional torque τm”) to
the stator (hence the UAV body). Therefore, the UAV body
dynamics is:

Ibϕ̈ = T H sinδ − τm (2)

where Ib is the moment of inertia of the UAV on roll axis.
The same motor torque τm also applies to the servo rotor
in the opposite direction according to the Newton’s third
law, driving the rotor angles (w.r.t. an inertial frame). The
resulting rotor dynamics are:

Im(ϕ̈ + δ̈ ) = τm (3)
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Fig. 3. Undershoot in roll rate response.

Combining (2) and (3) leads to the roll dynamics from the
servo angle δ to the roll angle ϕ:

Ibϕ̈ = T H sinδ − Im(ϕ̈ + δ̈ ) (4)

In practice, the entire flight controller is usually a nested
control structure where the internal controller is on roll rate
[3]. Then linearizing the dynamics around the hovering state
where T = G = mg and sin(δ ) = δ , the roll rate dynamics
is:

Pr(s) =
GH− Ims2

(Ib + Im)s
(5)

Equation (5) implies an unstable zero z=
√

GH/Im, which
indicates a non-minimum phase system [10]. Its effects are
twofold: (1) the unstable zero will cancel the phase increment
contributed by the stable zero z = −

√
GH/Im, leading to

a constant zero phase in the numerator. The cancellation
in phase increment deteriorates the phase margin at the
crossover frequency and fundamentally limits the achievable
bandwidth of a linear controller [11]. More specifically, as
shown in [12], the unstable zero puts an upper bound to the
controller bandwidth which will be verified later in Section
IV; (2) the unstable zero will cause a significant undershoot
in the system response, shown in Fig. 3. While [10] gives a
theoretical proof for a general non-minimum phase system,
here we specifically explain the physical cause of the bi-
copter UAV: when a positive roll rate is expected, the servo
rotor should tilt positively (i.e., positive δ ), so does the servo
torque τm. However, this servo torque τm applies oppositely
to the UAV body, driving the body roll rate to the negative
direction. Since the servo torque always comes ahead of the
tilting angle (i.e., it takes time to build up angle δ when
τm applies) and diminishes as the servo angle converges, its
effect (i.e., driving the roll rate oppositely) is always ahead
of the thrust (which drives the roll rate closer to the expected
value) and is gradually dominated by the latter, causing
an undershoot in the response. Moreover, since the servo
torque (and its adverse effect) always comes with the tilting
(i.e., the roll rate actuation), this undershoot is an inherent
phenomenon regardless of the controller being used. The
undershoot always delays the response from the reference,
explaining the limitation on controller bandwidth.
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Fig. 4. Setup for identifying the servo model.

III. MODEL IDENTIFICATION

With the model in (5), this section presents the identifica-
tion of the model parameters, namely, the location of zeros
and poles of (5). Since the model in (5) only models the
dynamics from the servo angle to the body roll rate while in
practice, the command to the servo is pulse width modulation
(PWM) signals, there is an additional dynamics within the
servo. We therefore employ two identification steps: the first
on the servo and the second on the entire system.

A. Servo model identification

To identify the servo model, we install a flight controller
on the servo to provide angular rate measurements (see Fig.
4). A chirp signal with frequency range [0.8Hz,20Hz] is
used to excite the servo dynamics [13]. Then the Spectral
Analysis with Frequency-Dependent Resolution(SPAFDR)
method [14] is applied to the collected data to obtain the
gain and phase delay of the system dynamics in the frequency
domain, leading to Fig. 5.
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Fig. 5. Frequency response of servo dynamics and its fitted model.

Two spikes appearing around 6Hz and 7Hz are due to
loss of data in the logging process, thus should be viewed as
noises. The data in Fig. 5 suggests that the servo dynamics
can be accurately modeled as a first-order system with a pure
time delay:

Pm(s) = e−0.03s 0.764
0.0332s+1

(6)
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Fig. 6. The location of sweep signal in control loop.

B. Roll rate model identification

The identification of the entire roll rate model is similar to
that of the servo, except that a baseline feedback controller
(e.g., PID) is used to stabilize the roll dynamics such that
the drone will not crash during the data collection, and that
the excitation signal is injected at the controller output (see
Fig. 6). The output (i.e., the roll rate) is measured by the
onboard IMU. The obtained frequency response is shown in
Fig. 7.
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Fig. 7. Roll rate frequency response and its fitted model.

We use a parametric model to fit the measured frequency
response. Recall that the entire system dynamic model is the
concatenation of the servo model (6) and the first principle
model (5). Additionally, the IMU data is pre-filtered by a
second order Butterworth filter with 75Hz cutoff frequency.
Hence the lumped model is

P(s)=
Ae−Tds

τs+1
· GH/Im− s2

(Ib/Im +1)s
· 2.221×105

s2 +666.4s+2.221×105 (7)

where the parameters to be identified are the DC gain
A/(Ib/Im + 1), time constant τ , pure delay Td and zero√

GH/Im. It should be noticed that the servo parameters (i.e.,
A, τ , Td) are not fixed at values identified in the previous
section because the servo dynamics will slightly change at
different load.

We optimize the parameters in (7) via a nonlinear least
square nlinfit in MATLAB. The resulting system model is

P(s) =
0.0887e−0.032s

0.0256s+1
· 422− s2

s
· 2.221×105

s2 +666.4s+2.221×105
(8)



It can be seen that the identified servo delay Td is very
close to that in (6), while the time constant changes slightly
due to the change of load. Other parameters are in the
expected range implied by our physical system. Finally,
shown in Fig. 7, the identified parametric model fits well
with the actual data, validating our derived first principle
model in Section II.

IV. CONTROLLER DESIGN

The identified frequency-domain model (8) is used for
controller design. We use a H∞ loop shaping technique to
design a high-gain robust roll rate controller. H∞ loop shaping
is a sensible method to design flight controller [15] and has
been widely used in manned and unmanned aircraft, such as
an experimental Harrier aircraft [16], [17], the Bell airborne
simulator [18], and the Yamaha robotic helicopter [19]. In
this section, we go through the key steps of H∞ loop shaping
and focus on its application to our system.

Step 1: Choose of W1 and W2
To obtain good attenuation for low frequency disturbances

and high frequency measurement noise, it is necessary to
shape the plant model P with frequency dependent weights
W1 and W2. As in [19], W1 is usually a proportional-integral
filter to ensure sufficient disturbance attenuation and W2 is a
low-pass filter with a lead compensator to ensure sufficient
noise attenuation. In our case,

W1 =
0.03511(s+0.3419)

s
(9)

W2 =
307.5(s+3.816)

(s+11.35)(s+103.4)
(10)

W1 and W2 push the gain crossover frequency of the weighted
plant Ps =W2PW1 as high as possible while not destabilizing
the system.

Step 2: H∞ loop shaping
The standard H∞ block diagram is depicted in Fig. 8. With

the W1 and W2, H∞ loop shaping method minimizes the H∞

norm of the transfer function from disturbance [w1,w2]
T to

errors [z1,z2]
T over all stable K∞ (see Fig. 8). More formally,

min
stableK∞

∥∥∥(w1
w2

)
→
(

z1
z2

)∥∥∥
∞

=

min
stableK∞

∥∥∥(K∞

I

)
(I−PsK∞)

−1 (I Ps
)∥∥∥

∞

= γ (11)

where Ps = W2PW1 denotes weighted plant. The optimal
value γ indicates the performance degradation and the ro-
bustness level after H∞ loop shaping. Typically, γ < 3 implies
small performance degradation and good stability margin
[19].

We use the MATLAB function ncfsyn to solve (11). To
avoid the pure delay in P, which usually causes difficulties
in the solver, we approximate it by a three order system using
the MATLAB function pade. Then solving (11) with ncfsyn
leads to γ = 1.748 and an optimal K∞. This value far exceeds
the required threshold, so we manually increase the controller
gain (i.e., gain boosting) so that the controller bandwidth is

P2W 1W

K

1w 2w

2z 1z

Fig. 8. Standard H∞ loop shaping block diagram.

maximized. Denoting the gain boosted controller as K∞, the
whole controller should then be W1K∞W2.

Step 3: Controller order reduction
A problem of the H∞ controller is that its order is usually

very high. In our case, W1K∞W2 is of 12 orders. Such a high
order controller is computationally expensive for embedded
implementation. We therefore conduct a model reduction
using the implicit balancing techniques [20] implemented in
MATLAB. The reduced controller is only 5 orders, as follow:

C =
24.02(s+54.01)(s+0.2474)(s2 +139.3s+2.624×104)

s(s2 +24.14s+8544)(s2 +232.4s+7.041×104)
(12)

As shown in Fig. 9, the reduced controller is very close to
the original H∞ controller. With both the gain boosting and
the order reduction, the final value of γ is 2.862, well below
the required threshold.
Step 4: Robustness and performance analysis

Then we conduct frequency analysis of our final controller
(12) and compare it with a well-tuned PID controller. Fig.
10 shows the loop transfer function L = PC. For the H∞ con-
troller, the phase margin is 65.8◦ at gain crossover frequency
1.47Hz and gain margin is 7.25dB. While for the PID, the
phase margin is 64.9◦ at 1.58Hz and gain margin is 6.90dB.
It can be seen that both crossover frequencies are lower than
the system unstable zero at 6.68Hz. The stability margins are
comparable among the two controllers. We further consider
large nonparametric model uncertainties: Pa = P(1 + ∆),
where ∆ is the model uncertainty with arbitrary phases. As
shown in [12], for the system PaC to be stable, ∆ needs to
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Fig. 10. The loop transfer function of H∞ controller and PID.

meet
|∆|<

∣∣∣∣1+PC
PC

∣∣∣∣= ∣∣∣∣ 1
T

∣∣∣∣ (13)

where T = PC/(1 + PC) is the complementary sensitivity
function. (13) implies smaller T allows larger model un-
certainty (i.e., more stability margin). Fig. 11 shows the
complementary sensitivity function of our H∞ controller and
the PID. It is seen that the PID has a notable peak around
27.8Hz, leading to poor robustness around that frequency.
On the other hands, our H∞ controller has no such peak.
Moreover, the faster decaying rate at high frequency range
shows a better high frequency noise attenuation using the
H∞ controller. Finally, as shown by the sensitivity function
in Fig. 12, H∞ loop shaping controller also shows a better
(i.e., more than 20dB) low frequency disturbance attenuation.

Step 5 : Controller implementation
As discussed in [15], the H∞ loop shaped controller

W1K∞W2 has many different implementation forms. It could
be placed on the forward path to reduce the rising time, on
the feedback path to reduce overshoot, or implemented in an
observer form which compromises between these two. The
observer form is used on a YAMAHA helicopter in [19].
Since our bi-copter requires more agility and faster response
so that the other nested outer loop controllers (e.g., attitude
controller, velocity controller, and position controller as in
[3]) can achieve higher gains, we place H∞ controller in the
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Fig. 11. Complementary sensitivity T = PC/(1+PC).
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Fig. 12. Sensitivity S = 1/(1+PC).
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Fig. 13. Control structure of roll rate.

forward path as shown in Fig. 13.
Finally, the controller is discretized by the Tustin method

[21] at a sampling rate of 250Hz. The discretized controller
is implemented on the Pixhawk flight controller [22]. Other
considerations, such as integrator windup has also been
resolved in the implementation.

V. EXPERIMENTS

To verify the performance and robustness of the designed
controllers, extensive experiments are conducted on our
bi-copter UAV prototype. Besides the roll rate controller,
the onboard flight controller also runs other angular rate
controllers, attitude controllers, and position controllers, so
the UAV’s full position is under active control. Readers
may refer to our prior work [3] for details of the prototype
development and the full control architecture. We conducted
three groups of experiments as below. The experiment video
is also available at http://youtu.be/jSepJtBDNYs.

A. Normal flight

The first test is conducted on our nominal bi-copter
prototype. After the UAV takes off and hovers at the target
position, a test pilot commands different lateral velocity
via a remote controller to excite the roll dynamics. The
roll rate response of the two controllers is shown in Fig.
14. Roll rate commands are tracked well with both the
H∞ and PID controller. Nevertheless, the H∞ controller has
better noise attenuation. The PID controller leads to noisy
response around 125Hz with 15◦/s amplitude due to the
IMU noise. This difference in noise attenuation agrees with
the complementary sensitivity function in Fig. 11.

B. Hanging disturbance

In our second test, we hang a 1m pendulum with a 134g
mass attached to the end as shown in Fig. 15. After the
UAV takes off the ground and hovers at the target position,

http://youtu.be/jSepJtBDNYs
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Fig. 14. Roll rate response in normal condition.

the pendulum is lifted to a height and then released to
swing at 0.5Hz, causing a disturbance at that frequency.
Inspecting the data in Fig. 16, we find that the roll rate
command is mainly concentrated on 0.5Hz and 1Hz due to
the reaction of the outer loop position controller and the
possible excitation of nonlinear effect. Under such roll rate
command, the H∞ controller and the PID controller achieve
comparable tracking performance, which agrees with the
sensitivity function in the previous section.

C. Center of mass offset

We finally study the controller stability with both model
mismatch and disturbances. Shown in Fig. 17, we attach a
water bottle of 324g on one side of the UAV, causing a
constant disturbance and a mismatch in the system model
(e.g., inertia is changed). Then the UAV is commanded to
hover at a prescribed position right after taking off. The
response of the H∞ controller is shown in Fig. 18, the
roll rate response converges nicely to the reference. After
convergence, the tracking performance is almost the same
as the normal condition (see Fig. 14). This verifies that our

Fig. 15. The UAV is attached by a pendulum (134g mass) leading to a
sinusoidal disturbance torque.
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Fig. 16. Roll rate response when hanging a pendulum.

Fig. 17. The UAV carries a 324g water bottle on one side leading to a
constant disturbance torque and model mismatch.
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designed controller can effectively compensate the constant
disturbance and is robust to model uncertainties. In contrast,
the PID controller fails to track the reference and crashes at
t = 12s. When inspecting the data in Fig. 18, we can see that
the gap between the reference and the response is more or
less constant (slightly increasing), meaning that the crash can
be caused by either the slow convergence or the insufficient
stability margin of the PID controller. Either way, it agrees
to the theoretical analysis conducted in the previous section.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we precisely derive and identify the model
of a bi-copter UAV roll dynamics, which is a non-minimum
phase system. Based on the identified model, a robust and
well-performed controller is designed using H∞ loop shaping
techniques. Robustness is analyzed in the frequency domain
and compared with a well-tuned PID controller. Finally, flight
tests are conducted, which verifies that the H∞ loop shaping
controller has better performance on noise and disturbance
attenuation. In the presence of large model uncertainty, the
H∞ also exhibits better robustness and can stabilize the
system well.

Future work will focus on the outer loop controller design,
especially the lateral position/velocity control, to achieve
precise hovering with the bi-copter UAV.
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