

1 **Post-tensioned concrete bridge beams exposed to hydrocarbon fire**

2 Xi-qiang Wu¹; Ting Huang²; Francis Tat Kwong Au, M.ASCE³; Jing Li⁴

3 **Abstract**

4 This paper presents the experimental and numerical investigations of two types of
5 bonded post-tensioned concrete bridge beams under hydrocarbon fire, including the
6 box and tee beams. The factors considered included the load level and fire exposure
7 duration. Six specimens were tested. The surface temperatures, strand temperatures and
8 mid-span deflection of specimens were measured. Results showed that the box beam
9 under service load could sustain fire for 184 minutes, while the tee beam could only
10 endure for 105 minutes before collapse. The overloaded box beam could withstand fire
11 for around 165 minutes. For exposure to fire for 90 minutes followed by cooling down
12 to ambient temperature, the box and tee beams lost 11% and 38% of load-carrying
13 capacity, respectively. Post-fire observation also showed severe spalling at the mid-
14 span and support regions of the specimens. The test results were also used to validate
15 the finite element models established for predicting the thermal and structural responses
16 of the bridge beams under hydrocarbon fire.

¹Ph.D. candidate, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China. E-mail: wuxiqiang1988@gmail.com

²Ph.D., Department of Civil Engineering, The University of Hong Kong, Hong Kong, China. E-mail: ting.h0831@outlook.com

³Professor, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China (corresponding author). E-mail: francis.au@hku.hk

⁴Associate Professor, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China. E-mail: cvjingli@scut.edu.cn

17 **Keywords:** Bridge beam; fire tests; hydrocarbon fire curve; load level; post-tensioned
18 concrete bridge.

19 **Introduction**

20 The fire-induced collapse of MacArthur Maze Bridge near Oakland, California in
21 2007 has reminded engineers vividly of the fire risks of bridges. It incurred a loss of
22 nearly \$ 90 million (Giuliani et al. 2012), indicating the enormous loss once a bridge
23 fire occurs. Although fire safety is considered in building design, it is seldom required
24 for bridges. So far only very prescriptive requirements on the fire resistance of bridges
25 have been set out in codes such as that of American Association of State Highway and
26 Transportation Officials (AASHTO 2002). There have been limited investigations into
27 the damage caused by bridge fires. Most of these studies have concentrated on
28 composite bridges (Choi et al. 2012, Gong and Agrawal 2015, Peris-Sayol et al. 2015).

29 While about 17% of the total fire-induced bridge failures are of concrete bridges
30 (Wardhana and Hadipriono 2003), few studies have focused on them since concrete
31 structures are generally considered to have better fire resistance. However, apart from
32 the degradation of mechanical properties of materials at elevated temperatures, high
33 thermal creep and expansion, and intense concrete spalling may also contribute to
34 premature failure of concrete structures (Kodur 2000). The continuous heat penetration
35 from the outer part of concrete into the rebars or tendons inside may incur further
36 damage or even failure after fire (Giuliani et al. 2012).

37 Experimental work on the design of beams for buildings of high fire risk dates
38 back to the 1960s, when rectangular post-tensioned concrete beams exposed to the ISO
39 834 fire curve (ISO 1999) were tested by Ashton and Bate (1960), and bonded and
40 unbonded post-tensioned concrete tee beams exposed to the ASTM E119 standard fire
41 curve (ASTM 2016) were tested by Gustaferro (1973). More recently, bonded

42 prestressed continuous rectangular concrete beams under the ISO 834 standard fire
43 were investigated by Hou et al. (2015). These results for beams in buildings under fire,
44 however, may not apply to bridge girders because of their different cross-sections and
45 possibly more intense fire exposure. The frequent causes of bridge fires include crashes
46 of tanker trucks carrying highly flammable substance like gasoline (Garlock et al. 2012).
47 Such a crash can trigger an explosion and a blaze more intense than that described by
48 the temperature-time curves of compartment fires for building design, e.g. ISO 834 and
49 ASTM E119 (ASTM 2016). The hydrocarbon fire curve defined in Eurocode 1 Part 1-
50 2 (CEN 2002) featuring extremely fast increase of temperature, like that of a gasoline
51 or diesel pool fire, is thus more suitable for bridges in such cases. Owing to the expenses
52 of fire tests and the difficulty to monitor a real bridge fire, little experimental data is
53 available. More recently, scale fire tests were conducted on steel-concrete composite
54 bridge beams exposed to hydrocarbon fire by Alos-Moya et al. (2017). The responses
55 of pretensioned concrete tee-beams strengthened by carbon fiber-reinforced polymer
56 exposed to hydrocarbon fire were studied by Beneberu and Yazdani (2018). As the
57 potential damage of post-tensioned concrete bridges due to hydrocarbon fire has not
58 been studied extensively, further investigations are necessary.

59 This paper reports the experimental and numerical results of six scale post-
60 tensioned concrete bridge girders exposed to hydrocarbon fire. The effects of section
61 type, fire exposure duration and load level on their structural responses were studied.

62 **Fire experiments**

63 Six scale specimens labeled as S1 and F1 to F5 were fabricated, including
64 Specimens S1 and F1 - F3 of box section, and Specimens F4 and F5 of bulb-tee section.
65 Specimen S1 was the control specimen tested for its load-carrying capacity at ambient
66 temperature for validation of numerical model. The other specimens were subjected to

67 different levels of load and fire exposure as shown in Table 1. The load level is
68 expressed as a percentage of the load-carrying capacity of the corresponding case at
69 ambient temperature. Among the box specimens, Specimens F1 and F2 were loaded to
70 a lower level than Specimen F3. Specimens F1 and F3 were exposed to fire until
71 collapse at the respective load levels. Specimen F2 was heated for 90 minutes first, after
72 which it was cooled down to the ambient temperature before further loading to failure
73 to obtain the residual load-carrying capacity. The test schemes for Specimens F4 and
74 F5 were similar to those of Specimens F1 and F2, respectively.

75 **Specimen design and preparation**

76 All specimens have a span of 4300 mm and a total length of 4600 mm (Fig. 1) to
77 suit the furnace used. The depth of specimens is 400 mm with a span-depth ratio of
78 about 10:1. The concrete cover to the tendon duct is 50 mm with the concrete cover to
79 duct axis (i.e. axis distance “*ad*”) of 75 mm (Fig. 1 (b)). The concrete cover to steel
80 reinforcement is 20 mm.

81 Ready-mixed self-consolidating concrete with cube compressive strength of 50
82 MPa and mix shown in Table 2 was used for the specimens. Ordinary Portland cement,
83 granitic coarse aggregate of size 5 - 25 mm, fine aggregate with fineness modulus of
84 2.5 and polycarboxylate superplasticizer were used for concrete production. The
85 specimens were designed as fully prestressed with high-strength steel tendons initially
86 stressed to 65% of the ultimate strength of 1860 MPa. The box specimens had 15.2 mm
87 strands in 50 mm diameter corrugated steel ducts, while the tee specimens had 12.7 mm
88 strands in 40 mm ducts. The effective prestressing ratios after accounting for losses
89 according to Chinese standard GB50010-2010 (MOHURD 2010) were 49% and 51%,
90 respectively, for the box and tee specimens. In addition, nominal longitudinal
91 reinforcement and closed stirrups with 135° hooks at 100 mm spacing for shear

92 resistance were provided to GB50010-2010 by 8 mm deformed bars with yield strength
93 of 335 MPa.

94 Each specimen was tensioned after curing for 28 days. To avoid any damage, the
95 strands in each specimen were tensioned alternately to 10%, 50% and 105% of the
96 specified stress. GB50010-2010 requires that the tendons be tensioned to 105% of the
97 specified stress and held for 2 minutes before anchoring. Strain gauges were attached
98 to the top and bottom surfaces of the specimen at mid-span to monitor the strains during
99 prestressing. After tensioning, grouting by cement grout with water-cement ratio of
100 0.45 was conducted and the pressure was maintained for 10 more seconds.

101 **Test instrumentation**

102 Tests were conducted using the furnace shown in Fig. 2. The facility allowed
103 simultaneous or sequential application of loading and heating. The loading system
104 comprised a steel reaction frame and a 500 kN hydraulic jack. The interior of furnace
105 was 1.5 m in height, 3.0 m in width, and 4.0 m in length. All the interior surfaces of the
106 chamber were covered with polycrystalline alumina fiber materials. Twelve natural gas
107 burners and the same number of air inlets were alternately mounted on the chamber
108 walls for heating. Ten thermocouples protruding from the chamber wall for 200 mm
109 were uniformly distributed throughout the furnace chamber to monitor the gas
110 temperature. The gas temperature inside the chamber could be adjusted by controlling
111 the relative mass flux of fuel and air using a computer program to follow a particular
112 fire curve. The hydrocarbon fire curve as specified in Eurocode 1 Part 1-2 (CEN 2002)
113 was adopted to simulate the fire caused by a petroleum tanker truck. In view of the
114 drastic increase of temperature within a very short duration, the furnace was operated
115 at full capacity at the beginning of each test with an inflow rate of natural gas of 100
116 m³/hour. This is further discussed in Section 3.1. The burnt gases were exhausted

117 through holes at the bottom of the chamber. The internal pressure was monitored by a
118 sensor mounted on the wall.

119 Each specimen was simply supported by placing it on the recesses of the opposite
120 furnace walls, if possible, in order to be fully exposed to fire. The box specimen,
121 however, could not fit into the recesses due to their larger width. Instead, such
122 specimens rested on top of the furnace wall as shown in Fig. 2(b). As a result, unlike
123 the soffit of the box itself, the soffit of the outer top flanges and the exterior surfaces of
124 the web of the box specimen had limited fire exposure.

125 Strain gauges were attached to the soffit of the bottom flange of each specimen
126 around mid-span to monitor the development of local strains prior to fire exposure.
127 Eight linear variable differential transformers (LVDTs) were used to monitor the
128 deformations at various locations of the specimen as shown in Fig. 1. LVDTs H1 and
129 H2 were used to measure the horizontal displacements at the roller support and hinged
130 support, respectively. LVDTs H3 and H4 were used to measure the incidental vertical
131 displacements at the supports during the fire tests, which would be used for correction
132 in calculating the net mid-span deflection. LVDTs H7 and H8 were arranged as a pair
133 transversely and symmetrically disposed at mid-span to account for any incidental
134 influence of torsion. The surface temperatures of the specimen and the strand
135 temperatures at mid-span and quarter-span were measured. The thermocouples were
136 arranged as shown in Fig. 1. In particular, the temperatures at the interior surfaces of
137 the webs of the box specimen were also monitored. In total, 25 thermocouples were
138 provided for each box specimen, and 22 thermocouples were provided for each tee
139 specimen. The thermocouples for the surface temperature measurement were actually
140 embedded in concrete with a 2 mm cover.

141 **Testing procedure**

142 To simulate the stress state of fully-prestressed concrete bridges under normal
143 service load, the specimen was loaded at mid-span such that no cracking had occurred
144 before it was exposed to fire. The loads at which the box and tee specimens would crack
145 were estimated to be 175 kN and 72 kN, respectively, based on results from the
146 subsequent sections on numerical modeling. Thus, the loads applied on Specimens F1
147 - F2 and Specimens F4 - F5 were chosen to be 160 kN and 60 kN, respectively, which
148 were slightly below their predicted cracking loads. However, Specimen F3 was
149 purposely loaded beyond the cracking limit up to 240 kN to induce initial cracking to
150 simulate the response of an overloaded bridge. The ultimate load-carrying capacities of
151 the box and tee specimens at ambient temperature were estimated to be 401 kN and 214
152 kN, respectively, based on the numerical models. So the applied loads corresponded to
153 load levels of 0.28 to 0.60 as listed in Table 1.

154 Each specimen was loaded to the designated load level 15 minutes prior to fire
155 exposure, and the load was maintained constant throughout the fire test. For Specimens
156 F1, F3 and F4, the fire exposure lasted until the deflection rate exceeded the value $L^2 /$
157 $9000 d$ (unit: mm/minute) given in terms of the span length L and the depth of cross
158 section d (ISO 1999). For the tests on Specimens F2 and F5, fire exposure was
159 terminated after 90 minutes, and air at ambient temperature was then pumped into the
160 furnace to cool down the specimen. After cooling down to ambient temperature, these
161 specimens were further loaded to failure to obtain the residual load-carrying capacities.
162 The LVDTs were set to zero before the fire exposure. From then onwards, the
163 deflections at various locations were measured throughout the test.

164 **Numerical modeling**

165 The modeling of the structural-fire behavior is often performed by conducting first
166 heat transfer analysis with the surface temperatures of structure as thermal boundary
167 conditions and then temperature-dependent nonlinear structural analysis. A
168 sequentially coupled thermomechanical analysis was implemented by ABAQUS
169 (SIMULA 2014). Both the thermal and structural behavior of the bridge girders during
170 and after fire can then be analyzed.

171 **Heat transfer analysis**

172 By symmetry, only a quarter of each of the box and tee specimens was modeled
173 by finite element method as shown in Figs. 3(a) and 3(b). The concrete, grout and strand
174 were separately modeled with 8-node brick elements DC3D8. The rebars were modeled
175 with 2-node link elements DC1D2 embedded in the concrete elements. The thermal
176 boundaries at the exterior surfaces were defined by the specimen surface temperatures
177 measured in the tests. The ambient temperature was assigned as the initial temperature
178 to the interior surfaces of box specimens. The thermal properties of concrete,
179 prestressing steel and reinforcing steel as suggested by Eurocode 2 (CEN 2004) were
180 used. As the moisture content was not considered explicitly in the analysis, the specific
181 heat of concrete was assigned equivalent values depending on the moisture content
182 (CEN 2004). The moisture content of concrete in the specimens was measured as 4.0%.
183 The densities of the concrete and steel were taken as 2400 kg/m^3 and 7800 kg/m^3 ,
184 respectively.

185 Convection and radiation were considered at all the surfaces. The emissivity
186 coefficient for the concrete surface was taken as 0.8 (CEN 2002). The convective heat
187 transfer coefficient depends on the temperature. A value of $50 \text{ W}/(\text{m}^2 \cdot \text{K})$ was specified

188 for the fire-exposed concrete surfaces in the heating period, while a value of $9 \text{ W}/(\text{m}^2 \cdot \text{K})$
189 was specified in the cooling period and for the unexposed surfaces (CEN 2002).

190 **Mechanical analysis**

191 The models used for studying the deflection behavior of the specimens were
192 similar to those for heat transfer analysis, except that the models were built by different
193 types of elements and prestressing was imposed. The concrete, grout and strand were
194 modeled using solid element C3D8R. The bonding zone between the strand and grout
195 was modeled with 3-dimensional cohesive element COH3D8. The longitudinal
196 reinforcing bars and the stirrups were modeled with 3-dimensional truss element T3D2
197 embedded in the concrete element.

198 The pre-fire, firing, cooling and post-fire phases were modeled sequentially using
199 ABAQUS. The external load was applied with the prescribed magnitude in the pre-fire
200 phase and kept constant until the post-fire phase with the exception of Specimen F5 that
201 had load reduction in the cooling phase as elaborated in the subsequent section on
202 structural response. The temperature field results for the firing and cooling phases from
203 the prior heat transfer analysis were used to simulate the effects of fire exposure. For
204 specimens sustaining external load after fire exposure, further imposed displacement
205 mimicking the imposed loading after cooling down was applied at the mid-span of
206 specimen in the post-fire phase to determine the residual load-carrying capacity.

207 **Material properties**

208 The cylinder strength of concrete at ambient temperature was 50 MPa. The
209 ultimate strength of prestressing strand and the yield strength of reinforcement at
210 ambient temperature were 1860 MPa and 460 MPa, respectively. The material
211 properties at elevated temperatures and after cooling were determined from those at
212 ambient temperature as elaborated below.

213 The compressive and tensile mechanical properties of concrete at elevated
214 temperatures were defined based on Eurocode 2 (CEN 2004) and the FIB code (FIB
215 2012), respectively. The mechanical properties of concrete after cooling were defined
216 based on Eurocode 4 (CEN 2005). The mechanical properties of steel reinforcement at
217 elevated temperatures and after cooling were defined based on Eurocode 2 (CEN 2004)
218 and Eurocode 4 (CEN 2005), respectively. The mechanical properties of prestressing
219 strand at elevated temperatures and after cooling were defined based on Eurocode 2
220 (CEN 2004) and Zhang et al. (2017), respectively. The bond-slip relationship of
221 prestressing strand at elevated temperatures as proposed by Khalaf and Huang (2016)
222 was adopted for the bonded zone. The bond properties in the cooling phase were taken
223 to be those at the maximum temperature experienced.

224 **Results and discussions**

225 **Load-carrying capacity at ambient temperature**

226 The load-deflection curve for Specimen S1 tested at ambient temperature is shown
227 in Fig. 4. The first cracking load and ultimate load-carrying capacity of the box
228 specimen were obtained experimentally as 170 kN and 400 kN, respectively, which
229 agreed well with the corresponding calculated values of 175 kN and 401 kN, thereby
230 verifying the numerical models at ambient temperature. The first cracking load and
231 ultimate load-carrying capacity of the tee specimen at ambient temperature were
232 calculated as 72 kN and 214 kN, respectively. Unless otherwise stated, these calculated
233 values are used as applicable.

234 **Gas temperature**

235 The gas temperature inside the furnace was set to follow the hydrocarbon fire
236 curve from Eurocode 1 Part 1-2 (CEN 2002) as shown in Fig. 5, and the deviations
237 were controlled by the lower and upper bounds according to BS EN 1363-2 (CEN 1999).

238 Fig. 5 showing the measured gas temperature curves obtained from the thermocouples
239 along with the expected curve indicates that, even with the maximum inflow of natural
240 gas, it took the furnace approximately 100 minutes to reach the hydrocarbon fire curve
241 with a characteristic temperature of 1100 °C, which was longer than the 20 minutes
242 specified. Nevertheless, the gas temperature curves obtained were mostly above the
243 ISO 834 fire curve for building fire (ISO 1999) in this period. Beyond this initial period
244 of 100 minutes, the furnace was able to follow the designated hydrocarbon fire curve.
245 For tests on Specimens F2 and F5 which were intended for 90-minute fire exposure
246 only, the gas temperatures were found to drop below 200 °C in 60 minutes after cooling
247 air was pumped in and continued to decrease gradually as shown in Fig. 5.

248 The time equivalence method has been widely used to quantify the severity of the
249 actual fire exposure in relation to the standard fire (Phan et al. 2010). The equal area
250 method (Kodur et al. 2010), as one application of the time equivalence method, has
251 been adopted in the ASTM standard (ASTM 2016) for the correction of results from
252 test temperature curves inside a furnace. In this method, the equivalent fire duration for
253 each test is calculated considering the deviation of the measured temperature curve
254 from the designated hydrocarbon fire curve. The adjusted fire resistance periods shown
255 in Table 3 can facilitate comparison on the same basis. Nevertheless, unless otherwise
256 stated hereafter, the fire resistance period or exposure will be the experimental value
257 without adjustment.

258 **Thermal response**

259 **Surface temperature of specimen**

260 The surface temperatures of specimen at the soffit of the top and bottom flanges
261 and at the exterior surface of web are marked as top flange, bottom flange and web,
262 respectively, and the results for the box and tee specimens are shown in Figs. 6(a) and

263 6(b), respectively. The temperature at the interior surface of web of the box specimen
264 is also shown in Fig. 6(a). For those specimens heated to failure, the ultimate
265 temperatures at the soffit of bottom flange measured 2 mm from the surface reached
266 about 1000 °C as shown in both Figs. 6(a) and 6(b), which were slightly lower than the
267 surrounding gas temperatures of around 1100 °C. In general, the surface temperature
268 of the specimen was the highest at the bottom flange and the lowest at the top flange
269 for the heating period considered. For the tee specimen, however, the surface
270 temperature at the soffit of the top flange was initially slightly higher than that at the
271 web for approximately 40 minutes. A vortex might have formed near the surface of the
272 web thereby weakening the heat transfer, due to the geometric shape.

273 **Strand temperature**

274 The strand temperatures as shown in Figs. 7(a) and 7(b) for the box and tee
275 specimens, respectively, were normally lower than the surface temperatures of
276 specimen due to the protective effect of the concrete cover. There was invariably an
277 apparent plateau at about 100 - 140 °C during the rise of the strand temperature. This
278 was caused by the evaporation of moisture in the cement grout and concrete taking
279 away heat. Liquid water was found near the anchorages about 17 minutes after the fire
280 exposure, which coincided with the start of the temperature plateau for strands in the
281 box specimens and the bottom strands in the tee specimens. The cement grout thus acted
282 as an insulator at this temperature range and provided extra protection to the strand. It
283 is also noted that the top strands in the tee specimens experienced a later occurrence of
284 temperature plateau of longer duration during fire exposure as shown in Fig. 7(b). The
285 strand temperatures for the box specimens and the lower and upper strand temperatures
286 for the tee specimens were generally well predicted as shown in Fig. 7, indicating the
287 reliability of the thermal properties and coefficients adopted in heat transfer analysis.

288 However, the simulation tended to underestimate the strand temperatures at the
289 beginning and overestimate afterwards. The plateaus observed in the experimental
290 strand temperature curves were not as obvious in the numerical curves. This can be
291 caused by that the actual moisture content of grout exceeding the 4.0% measured for
292 concrete. A higher value of moisture content in grout would theoretically yield a more
293 visible plateau phase in the strand temperature curves.

294 As the temperature in the voids of the box specimens remained nearly unchanged
295 after reaching around 105 °C as shown in Fig. 6(a) among various curves with an
296 upward trend, there was most probably water accumulated inside the void coming from
297 the concrete section during the heating process, which evaporated at around 100 °C,
298 thereby taking away heat and stabilizing the temperature inside the void for a certain
299 period. After the temperature plateau, the strand temperature continued increasing with
300 fire exposure. However, the strand temperature in the tee specimen increased much
301 faster than that in the box specimen. After fire exposure of 90 minutes, the strands in
302 the box specimens attained about 210 °C while the bottom strands in the tee specimens
303 attained about 430 °C. As the lower strands of the tee section were close to a few fire-
304 exposed surfaces including the soffit and sides, they absorbed more heat compared to
305 the strands of the box section, which were exposed to heat from one single side only.
306 After termination of fire, the strand temperatures in Specimens F2 and F5 did not drop
307 immediately but rather increased by about 40 °C and 170 °C, respectively, due to the
308 penetration of residual heat.

309 The maximum strand temperatures attained during or after fire exposure are also
310 summarized in Table 3. The strand temperature is generally regarded as a key parameter
311 in the assessment of the fire resistance of prestressed concrete members. Eurocode 2
312 has specified a critical strand temperature of 350 °C for a load ratio of 0.7 together with

313 a prestressing ratio of 0.60 and a safety factor of 1.15 (CEN 2004). Except for Specimen
314 F2, the maximum strand temperatures in these scale bridge beams are found to range
315 from 347 °C to 600 °C for the load ratio of 0.6 - 0.28 and prestressing ratio of about
316 0.5, indicating their limited capability in resisting hydrocarbon fire.

317 **Structural response**

318 Fig. 8 shows the measured strains at the soffit of bottom flange when the
319 specimens were loaded to the designated load levels prior to fire exposure. As expected,
320 no signs of cracking were found except for Specimen F3 that was meant to be
321 overloaded.

322 The vertical displacements measured at the two ends and the horizontal
323 displacement measured at the hinged end were very small. However, the horizontal
324 displacement measured by LVDT H1 at the roller end was much larger, i.e. up to 40
325 mm, as shown in Fig. 9 where the negative value denotes inward displacement. Only
326 the initial part of displacement is presented for Specimen F1 as the LVDT was found
327 to be disturbed after testing.

328 The evolvement of the fire-induced mid-span deflection of specimens is shown in
329 Figs. 10(a) and 10(b). For Specimens F1, F3 and F4 heated to failure, the evolvement
330 of mid-span deflection can be divided into three distinct phases: (a) initial rapid increase,
331 (b) gradual increase, and (c) accelerating increase. The mid-span deflections increased
332 rapidly to 16 - 24 mm in the first 40 minutes of fire exposure, primarily because of the
333 great thermal gradient and the resulting variations of longitudinal expansion across the
334 section depth of the specimen, or the thermal bowing effect. After then, the increase of
335 the deflection slowed down with only slight increment being observed, which might be
336 related to the loss of stiffness of concrete near the fire exposed surface and the
337 consequent rebound as in prestressed members (Gales et al. 2015). Then just prior to

338 the failure of specimens, the deflections showed drastic increases again, possibly being
339 dominated by further loss of prestress in tendon due to thermal creep. These phenomena
340 of the mid-span deflection have also been observed in some previous experiments
341 (Dwaikat and Kodur 2009, Gales et al. 2015, Hou et al. 2015, Wu et al. 2018). The
342 simulated evolutions of mid-span deflection throughout the fire tests agree reasonably
343 well with the corresponding experimental results as shown in Fig. 10. The discrepancy
344 between the numerical and experimental deflection curves can be attributed to the
345 missing plateau phase in the strand temperature curve from numerical simulation. The
346 deflection was generally underestimated at the beginning but overestimated afterwards
347 by the simulation, having the same trend as the prediction of strand temperature.
348 Similarly, the predicted temperatures and deflections tended to exceed the
349 corresponding test results in the later part of the tests. This indicates that the structural-
350 fire behavior, including the fire resistance, of prestressed concrete structures depends
351 largely on the strand temperature. Both the test and simulation results of Specimens F1
352 and F3 show longer fire resistance durations accompanied by lower strand
353 temperatures.

354 The ultimate fire-induced mid-span deflections and fire resistance periods for
355 Specimens F1, F3 and F4 are summarized in Table 3. In particular for the box
356 specimens, the fire resistance period of Specimen F1 was 184 minutes, while Specimen
357 F3 at a higher load level had a lower fire resistance period of 165 minutes. Compared
358 with the box specimens, Specimen F4 of tee section only sustained a much shorter
359 period of 105 minutes. The increase in mid-span deflection of Specimen F3 had been
360 much higher than that of Specimen F1 since the start of fire exposure as shown in Fig.
361 10(a). The pre-cracking of Specimen F3 at higher load level had allowed easy heat
362 penetration to the interior parts of concrete and strand (Ba et al. 2016), thereby

363 accelerating the degradation of concrete and loss of prestress in tendon. Specimen F4,
364 like Specimen F1, were also uncracked before fire exposure, but F4 exhibited a much
365 shorter phase of gradual increase in the evolvement of mid-span deflection and failed
366 much earlier, primarily because of the faster rising strand temperature in the tee
367 specimen.

368 Fig. 10 shows that the responses of Specimens F2 and F5 before termination of
369 fire after 90 minutes were almost identical to those of Specimens F1 and F4,
370 respectively, but the post-fire evolvements of mid-span deflections of Specimens F2
371 and F5 were quite different. As the strand temperatures kept rising even when cooling
372 air was pumped in upon turning off the gas, the mid-span deflections continued to
373 increase. After Specimen F2 of box section had a small increase in fire-induced mid-
374 span deflection, it gradually recovered and stabilized at 19 mm, therefore verifying that
375 it survived the 90-minute hydrocarbon fire exposure. Although Specimen F5 of tee
376 section was also expected to sustain the applied load after the fire, the mid-span
377 deflection had increased so fast in the residual heat showing signs of collapse, and the
378 applied load was gradually reduced from 60 kN to 30 kN until the fire-induced
379 deflection stabilized at 109 mm. The post-fire maximum strand temperatures and
380 residual fire-induced mid-span deflections of Specimens F2 and F5 are also shown in
381 Table 3. That the strand temperature in Specimen F5 continued rising up to 600 °C after
382 fire should have brought it close to potential failure.

383 **Residual load-carrying capacity**

384 After cooling down to ambient temperature, Specimens F2 and F5 were further
385 loaded to failure to obtain the residual load-carrying capacities as shown in Table 3.
386 When the destructive test was conducted, the specimen had already cooled down, with
387 the surface temperature of the specimen and the strand temperature measured to be

388 around 40 °C. The load-deflection curves for the fire-damaged Specimens F2 and F5
389 are shown in Fig. 4. The residual load-carrying capacities are determined as 355 kN
390 and 117 kN, respectively. In other words, Specimen F2 of box section under a service
391 load level of 0.4 could retain 89% of the load-carrying capacity after exposure to
392 hydrocarbon fire for 90 minutes, while Specimen F5 of bulb-tee section under a service
393 load level of 0.28 retained 55% or less for the same fire exposure. Fig. 4 also shows
394 that both Specimens F2 and F5 suffered reduction in stiffness, particularly Specimen
395 F5. The experimental and simulated load-deflection curves of Specimens F2 and F5
396 after fire exposure agree reasonably well with each other as shown in Fig. 4. The load-
397 carrying capacity of Specimen F5 was overestimated by the simulation possibly
398 because of the higher maximum temperature experienced by the prestressing strand due
399 to concrete spalling, which was not considered in the numerical model.

400 **Concrete spalling and cracking**

401 Post-fire evaluation was conducted mainly focusing on the concrete spalling
402 pattern, cracking patterns and failure mode of specimen. Spalling is often observed in
403 fire tests, but the mechanism of concrete spalling is still not well understood. It is
404 generally accepted that concrete spalling at elevated temperatures is caused by pore
405 pressure due to moisture and / or thermal stress due to restrained thermal expansion
406 (Kodur 2000). In the latter case, compressive stress in concrete will be induced by
407 restrained thermal expansion in a direction parallel to the fire exposed surface. Upon
408 reaching a threshold, this compressive stress is eventually released by means of
409 breaking away of the outer layer of concrete, leading to sudden occurrence of spalling
410 (Kodur 2000). Concrete spalling may occur earlier in those cases in which the concrete
411 is already under high compressive stress before fire exposure. However, concrete

412 spalling was not considered in the finite element models due to the difficulty of
413 implementation.

414 Spalling was mostly found around the mid-span and support regions. The spalling
415 phenomena in these two regions of each specimen are shown in Fig. 11. Severe spalling
416 had occurred to Specimens F1, F4 and F5 due to either protracted fire exposure or easy
417 heat penetration. Most of the concrete cover at the soffit and / or the bulb part of bottom
418 flange had spalled and spalling even extended upwards over a certain height of the web.
419 The outside of transverse reinforcement was generally exposed after concrete spalling.
420 The spalling could even reach the longitudinal reinforcement as shown in Figs. 11(a)
421 and 11(j). The thickest spalled layer was found to be 60 mm. Less severe spalling was
422 generally observed for prestressed concrete beams tested under the ISO 834 and ASTM
423 E119 fire curves (Ashton and Bate 1960, Gustaferro 1973, Hou et al. 2015).

424 Although being exposed to fire for limited time, Specimen F2 also suffered from
425 some minor spalling at mid-span and more severe spalling close to the support.
426 Specimens F1 and F2 were essentially the same in construction except that F2 was
427 subjected to a shorter fire exposure of 90 minutes only. The concrete spalling might
428 have started from the region near the support, as the soffit of bottom flange near the end
429 was under higher compression because of prestressing, while that around mid-span was
430 under lower compression or even tension under the combined effects of prestressing
431 and external loading. That more severe spalling occurring close to the support than
432 around mid-span was also observed on Specimen F3. Specimen F3 did not have as
433 much spalling as Specimen F1 around mid-span over slightly shorter fire exposure, as
434 the existing cracks on Specimen F3 under a higher service load level might have helped
435 relieve the pore pressure and thermal stresses.

436 All specimens exhibited some form of flexural failure. Fig. 12 shows typical
437 flexural cracks near mid-span position of specimens. These cracks originated from the
438 bottom flange and extended towards the top flange. During all the tests, with the
439 exception of Specimen F2, a loud noise probably associated with the fracture of strand
440 was heard just before the crushing of concrete beneath the loading beam, soon after
441 which the specimen failed. Specimen F2 also failed by crushing of concrete at the top
442 flange beneath the loading beam, but without the loud noise.

443 Transverse cracks were observed on some of the surfaces unexposed to fire, e.g.
444 the top surface of the top flange. These cracks were distributed along the beam and
445 typically aligned with the stirrups as shown in Fig. 13. The simulation results also show
446 that the concrete at the top flange are in tension upon cooling. The location of these
447 cracks coincided with the stirrups since the tensile resistance of concrete at the cross
448 section where a stirrup was located had been slightly reduced compared with that of the
449 cross section without a stirrup.

450 **Conclusions**

451 Hydrocarbon fire tests were carried out on bonded post-tensioned concrete beams,
452 including the single-cell box section and the tee section commonly adopted as bridge
453 girders, to study the effect of load level on the fire resistance period. Based on the results,
454 the following conclusions can be drawn:

455 • The fire resistance of the box beam is superior to the tee beam. For a concrete cover
456 to duct axis of 75 mm and a load level of around 0.3 – 0.4, the box beam could
457 sustain hydrocarbon fire for 184 minutes, which is comparable to the performance
458 of building components under standard fire. However, the tee beam could only
459 endure it for 105 minutes, revealing the vulnerability of this type of sections to
460 hydrocarbon fire. The number of fire exposure surfaces surrounding the strand is

461 therefore a key factor as the fire resistance of a prestressed structural member is
462 heavily dependent on the strand temperature. In the tee beam, the heat can be
463 transferred to the strand from both sides of the web as well as from the soffit of
464 bottom flange. However, in the box beam, the heat can reach the strand mainly from
465 one side of the web only and therefore the rise of strand temperature is much slower
466 and lower.

- 467 • Fire exposure of the structure may result in residual deflection and loss of load-
468 carrying capacity. After 90-minute exposure to hydrocarbon fire followed by
469 cooling, the box beam had a residual fire-induced deflection of 19 mm and it lost
470 11% of load-carrying capacity. By contrast, the tee beam under the same fire
471 exposure and cooling had a much larger residual fire-induced deflection of 109 mm
472 and it lost 38% of load-carrying capacity. Therefore, after such a bridge is exposed
473 to fire, proper assessment is necessary to evaluate the need for retrofitting.
- 474 • Compared to the standard fire curve for buildings, the potential hydrocarbon fire
475 that may occur to bridges can cause more severe spalling, which can even reach the
476 longitudinal reinforcement. More severe spalling was observed at the support region
477 due to the high compressive stresses caused by the prestressing.
- 478 • The load level is a key parameter in relation to both the fire resistance and structural
479 response. A higher load level normally causes not only shorter fire resistance period
480 but also larger residual deflection. However, the cracks associated with a higher
481 load level can relieve the pore pressure and compressive stresses caused by thermal
482 expansion, which may alleviate the extent of spalling.
- 483 • The fire-induced collapse of the bridge beam can take place during the cooling
484 phase after the fire is put out, as the residual heat continues to penetrate into the

485 structure and elevate the strand temperature. Immediate use of the bridge after the
486 fire should be avoided.

487 • The numerical models validated with the test results can be used to predict the
488 response of bonded post-tensioned concrete bridge beams of such types of section
489 under various load levels and fire durations.

490 Owing to the limitations of the experimental facilities, the gas temperature inside
491 the furnace was unable to follow the designed hydrocarbon fire curve in the initial 100
492 minutes. Therefore, lower fire resistance, lower post-fire residual load-carrying
493 capacity and more severe concrete spalling could have resulted for both types of
494 specimen if the gas temperature had followed the designed curve. In addition, the sides
495 of box beams had limited fire exposure due to their mounting arrangement on the
496 furnace. More severe damage would be expected if they could be lowered further into
497 the furnace.

498 **Supplementary materials**

499 Figs. S1–S4 are available online in the ASCE Library (ascelibrary.org), covering the
500 assumed material properties, and calculated degradation of load-carrying capacity and
501 stiffness.

502 **References**

503 AASHTO (American Association of State Highway and Transportation Officials).
504 (2002). *Standard Specifications for Highway Bridges*, Washington, DC.

505 Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., and Rinaudo, P. (2017). "Valencia
506 bridge fire tests: Experimental study of a composite bridge under fire." *J Constr Steel
507 Res*, 138, 538-554.

508 Ashton, L. A., and Bate, S. C. C. (1960). "The fire-resistance of prestressed concrete
509 beams." *P I Civil Eng*, 17(1), 15-38.

510 ASTM (American Society for Testing and Materials). (2016). "Standard test methods
511 for fire tests of building construction and materials." *E 119-16*, West Conshohocken,
512 PA.

513 Ba, G., Miao, J., Zhang, W., and Liu, C. (2016). "Influence of Cracking on Heat
514 Propagation in Reinforced Concrete Structures." *J Struct Eng*,
515 10.1061/(ASCE)ST.1943-541X.0001483, 04016035.

516 Beneberu, E., and Yazdani, N. (2018). "Performance of CFRP-Strengthened Concrete
517 Bridge Girders under Combined Live Load and Hydrocarbon Fire." *J Bridge Eng*,
518 10.1061/(ASCE)BE.1943-5592.0001244, 04018042.

519 CEN (European committee for standardization). (1999). "Fire resistance tests, Part 2:
520 Alternative and additional procedures." *BS EN 1363-2*, Brussels, Belgium.

521 CEN (European committee for standardization). (2002). "Actions on Structures, Part 1-
522 2." *Eurocode 1*, Brussels, Belgium.

523 CEN (European committee for standardization). (2004). "Design of Concrete Structures,
524 Part 1-2." *Eurocode 2*, Brussels, Belgium.

525 CEN (European committee for standardization). (2005). "Design of composite steel and
526 concrete structures, part 1-2." *Eurocode 4*, Brussels, Belgium.

527 Choi, J., Haj-Ali, R., and Kim, H. S. (2012). "Integrated fire dynamic and
528 thermomechanical modeling of a bridge under fire." *Struct Eng Mech*, 42(6), 815-829.

529 Dwaikat, M. B., and Kodur, V. K. R. (2009). "Response of restrained concrete beams
530 under design fire exposure." *J Struct Eng*, 10.1061/(ASCE)ST.1943-541X.0000058,
531 1408-1417.

532 FIB (International Federation for Structural Concrete). (2012). *FIB Model Code for*
533 *Concrete Structures 2010*, Lausanne, Switzerland.

534 Gales, J., Hartin, K., and Bisby, L. A. (2015). *Structural fire performance of*
535 *contemporary post-tensioned concrete construction*, Springer.

536 Garlock, M. E. M., Paya-Zaforteza, I., Kodur, V. K. R., and Gu, L. (2012). "Fire hazard
537 in bridges: review, assessment and repair strategies." *Eng Struct*, 35, 89-98.

538 Giuliani, L., Crosti, C., and Gentili, F. (2012). "Vulnerability of bridges to fire." *Proc.,*
539 *6th Int. Conf. on Bridge Maint., Saf. and Management*, Abingdon, U.K., 8-12.

540 Gong, X., and Agrawal, A. K. (2015). "Numerical Simulation of Fire Damage to a
541 Long-Span Truss Bridge." *J Bridge Eng*, 10.1061/(ASCE)BE.1943-5592.0000707,
542 04014109.

543 Gustaferro, A. H. (1973). "Fire resistance of post-tensioned structures." *J Prestressed*
544 *Concr Inst*, 18(2), 38-63.

545 Hou, X. M., Kodur, V. K. R., and Zheng, W. Z. (2015). "Factors governing the fire
546 response of bonded prestressed concrete continuous beams." *Mater Struct*, 48(9), 2885-
547 2900.

548 ISO (International Organization for Standardization). (1999). "Fire-resistance tests-
549 Elements of building construction, part 1." *ISO 834*, Geneva, Switzerland.

550 Kodur, V. K. R. (2000). "Spalling in high strength concrete exposed to fire: concerns,
551 causes, critical parameters and cures." *Proc., Structures Congress*, Philadelphia, PA, 1-
552 9.

553 Khalaf, J., and Huang, Z. H. (2016). "Analysis of the bond behaviour between
554 prestressed strands and concrete in fire." *Constr Build Mater*, 128, 12-23.

555 Kodur, V. K. R., Pakala, P., and Dwaikat, M. B. (2010). "Energy based time equivalent
556 approach for evaluating fire resistance of reinforced concrete beams." *Fire Saf J*, 45(4),
557 211-220.

558 MOHURD (Ministry of Housing and Urban-Rural Development of the People's
559 Republic of China). (2010). "GB50010-2010: Code for Design of Concrete Structures."
560 Beijing, China (in Chinese).

561 Peris-Sayol, G., Paya-Zaforteza, I., Alos-Moya, J., and Hospitaler, A. (2015). "Analysis
562 of the influence of geometric, modeling and environmental parameters on the fire
563 response of steel bridges subjected to realistic fire scenarios." *Comput Struct*, 158, 333-
564 345.

565 Phan, L. T., McAllister, T. P., Gross, J. L., and Hurley, M. J. (2010). "Best practice
566 guidelines for structural fire resistance design of concrete and steel buildings." *NIST*
567 *Technical Note 1681*, National Institute of Standards and Technology, Gaithersburg,
568 MD.

569 SIMULA. (2014). Analysis User's Manual. Providence, RI: Dassault Systèmes.

570 Wardhana, K., and Hadipriono, F. C. (2003). "Analysis of recent bridge failures in the
571 United States." *J Perform Constr Fac*, 10.1061/(ASCE)0887-3828(2003)17:3(144),
572 144-150.

573 Wu, X. Q., Au, F. T. K., and Li, J. "Experimental investigation of post-tensioned
574 concrete bridge beams exposed to hydrocarbon fire." *Proc., 10th Int. Conf. on Struct.*
575 *in Fire*, Belfast, U.K., 505-512.

576 Zhang, L., Au, F. T. K., Wei, Y., and Li, J. (2017). "Mechanical properties of
577 prestressing steel in and after fire." *Mag Concrete Res*, 69(8), 379-388.

578

579

580

581

582

583

584 Fig. 1. Details of specimens (unit: mm) and layout of instrumentation

585 Fig. 2. Furnace for fire tests: (a) overview; (b) section (unit: mm)

586 Fig. 3. Finite element quarter models: (a) box specimen; (b) tee specimen

587 Fig. 4. Load-deflection curves of Specimens S1, F2 and F5

588 Fig. 5. Gas temperatures inside furnace

589 Fig. 6. Temperatures at surface of specimen (a) F1 - F3; (b) F4 - F5

590 Fig. 7. Temperatures of prestressing strands for specimens: (a) F1 - F3; (b) F4 - F5

591 Fig. 8. Strains at soffit prior to fire test

592 Fig. 9. Evolvement of horizontal displacement at roller end

593 Fig. 10. Evolvement of fire-induced mid-span deflection during and after fire: (a) F1 - F3; (b) F4 - F5

594 Fig. 11. Concrete spalling of specimens: (a) F1 at mid-span; (b) F1 at support; (c) F2 at mid-span; (d) F2 at support; (e) F3 at mid-span; (f) F3 at support; (g) F4 at mid-span; (h) F4 at support; (i) F5 at mid-span; (j) F5 at support

595 Fig. 12. Flexural cracks near mid-span for specimens: (a) S1; (b) F1 and F3; (c) F2; (d) F4 and F5

596 Fig. 13. Typical thermal contraction cracks on top flange

597

598

599

600

601

602

603

604

605

606

607

608

Table 1. Key test parameters

Specimen	Type of section	Prestressing ratio		Load level	Fire exposure (minute)
		Initial	Effective		
S1	Box	65%	49%	To failure	0
F1	Box	65%	49%	0.40	Until failure
F2	Box	65%	49%	0.40	90
F3	Box	65%	49%	0.60	Until failure
F4	Tee	65%	51%	0.28	Until failure
F5	Tee	65%	51%	0.28	90

Table 2. Mix proportions of concrete

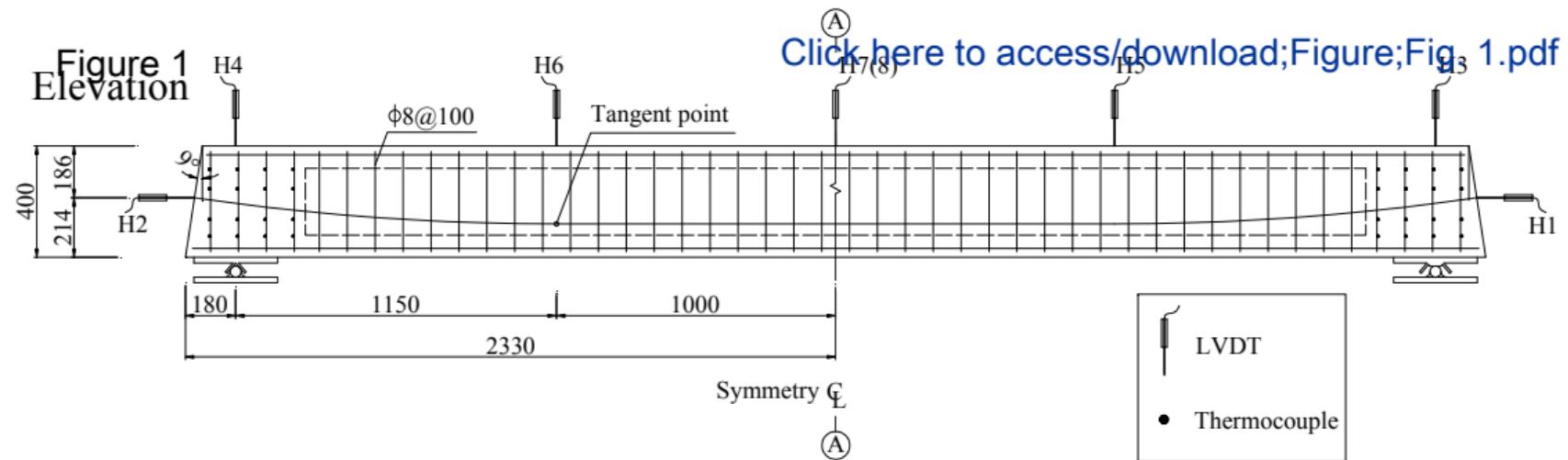
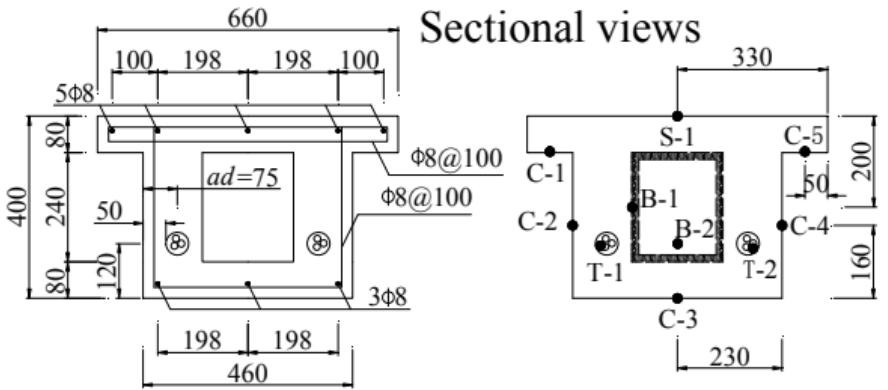
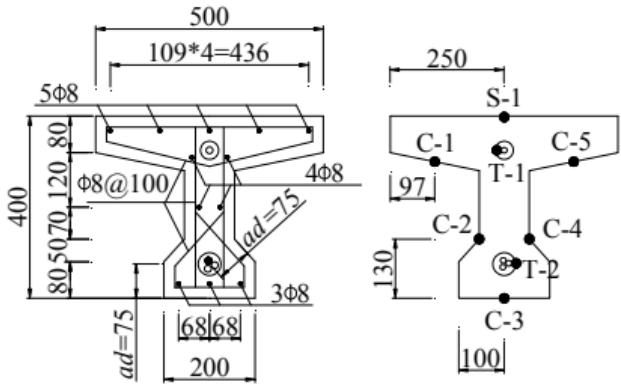

Materials	Mix proportions (kg/m ³)
Cement	393
Coarse aggregate	1115
Fine aggregate	601
Fly ash	95
Additive	6.34
Water	156

Table 3. Summary of thermal and structural responses


Specimen	Fire resistance period		Maximum exposure	Maximum strand temperature	Maximum mid-span deflection (mm)	Maximum post-fire strand temperature (°C)	Residual mid-span deflection (mm)	Residual load-carrying capacity (kN)
	Experimental value (minute)	Adjusted value (minute)	temperature (°C)	during fire (°C)				
F1	184	180	1176	448	96	-	-	-
F2	90	79	1017	210	22	251	19	355 (89%)
F3	165	153	1119	347	117	-	-	-
F4	105	93	1113	438	84	-	-	-
F5	90	82	1110	433	33	600	109	117 (55%)

[Click here to access/download;Figure;Fig. 1.pdf](#)

Figure 1
Elevation



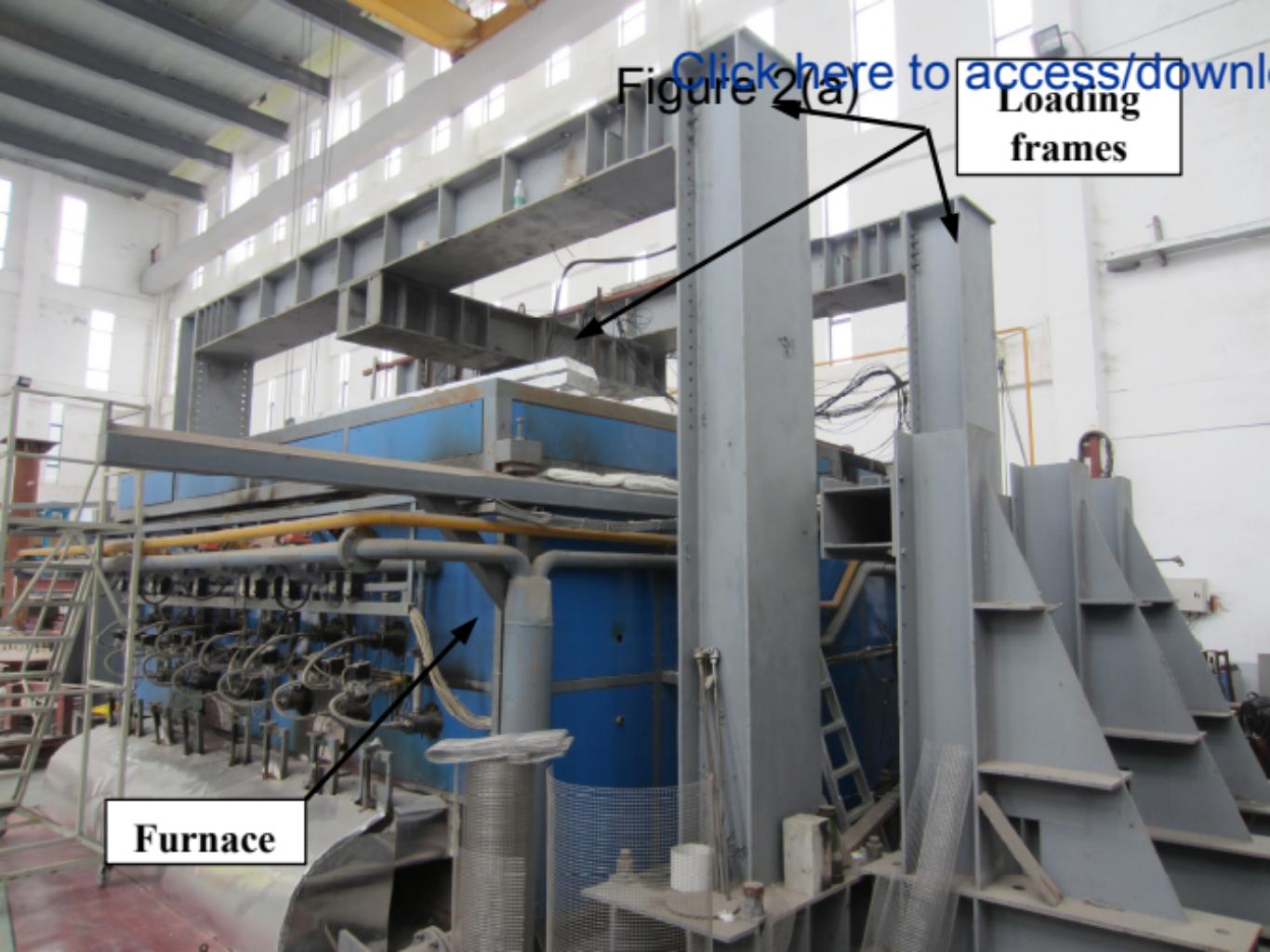
Sectional views

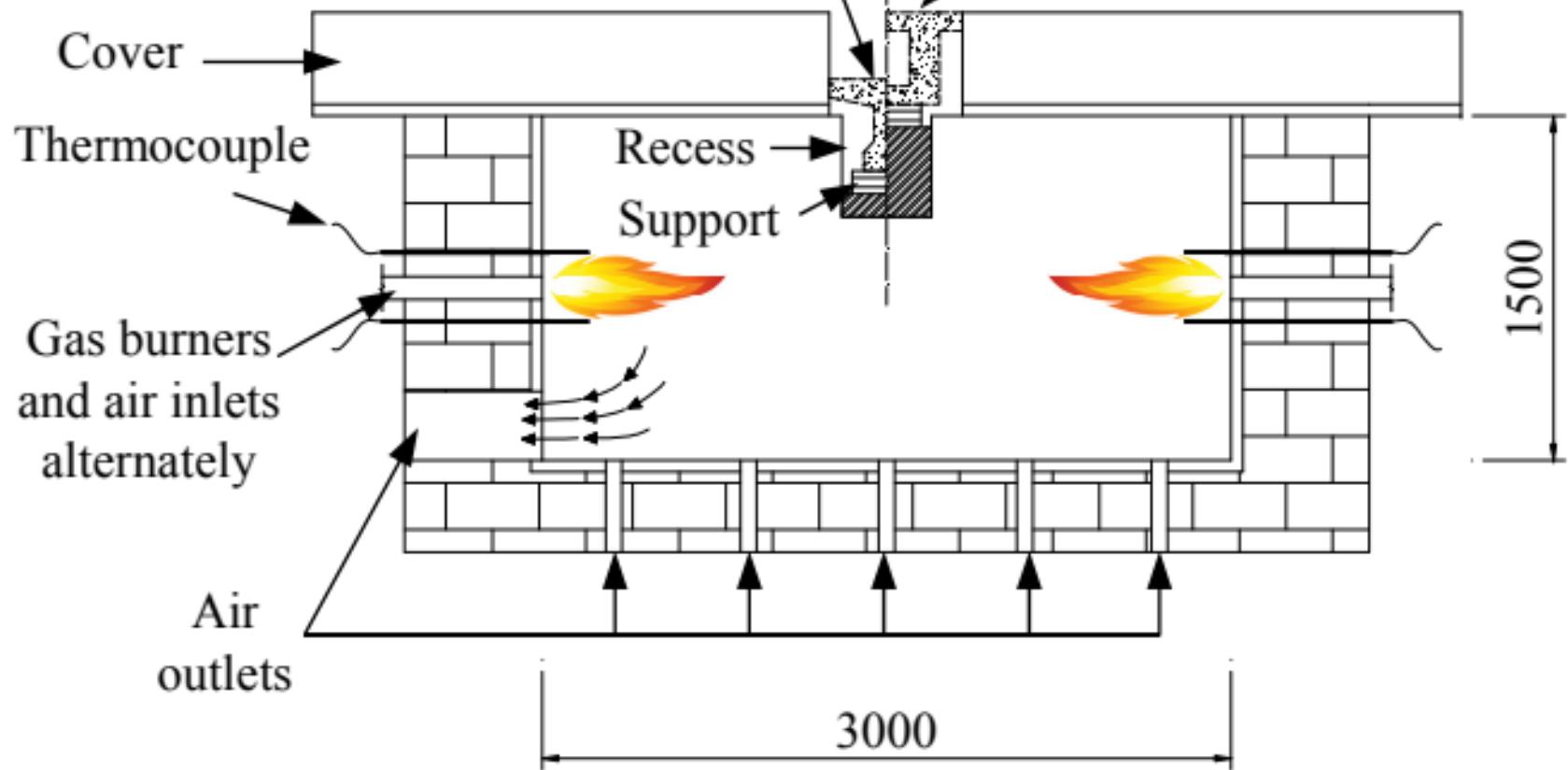
Specimens S1 and F1-F3

Thermocouples at section A of Specimens F1-F3

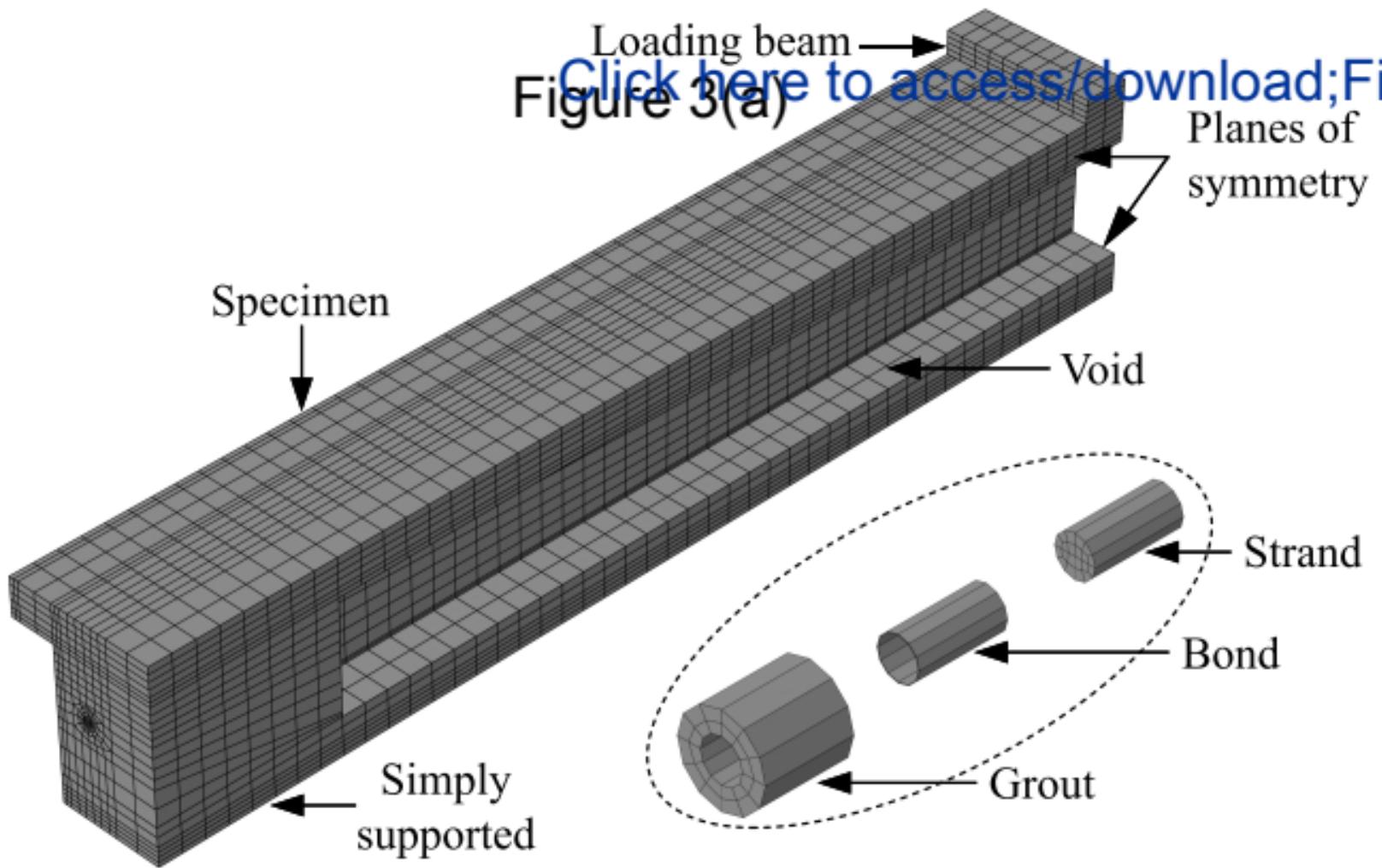
Specimens F4-F5

Thermocouples at section A of Specimens F4-F5




Figure 2(a)

[Click here to access/download](#)
Loading frames


Furnace

For tee-section
specimens
Figure 2(b)

[Click here to access/download; Figure 2\(b\)](#)

Click here to access/download; Figure 3(a)

Click here to access/download; Figure 3(b)

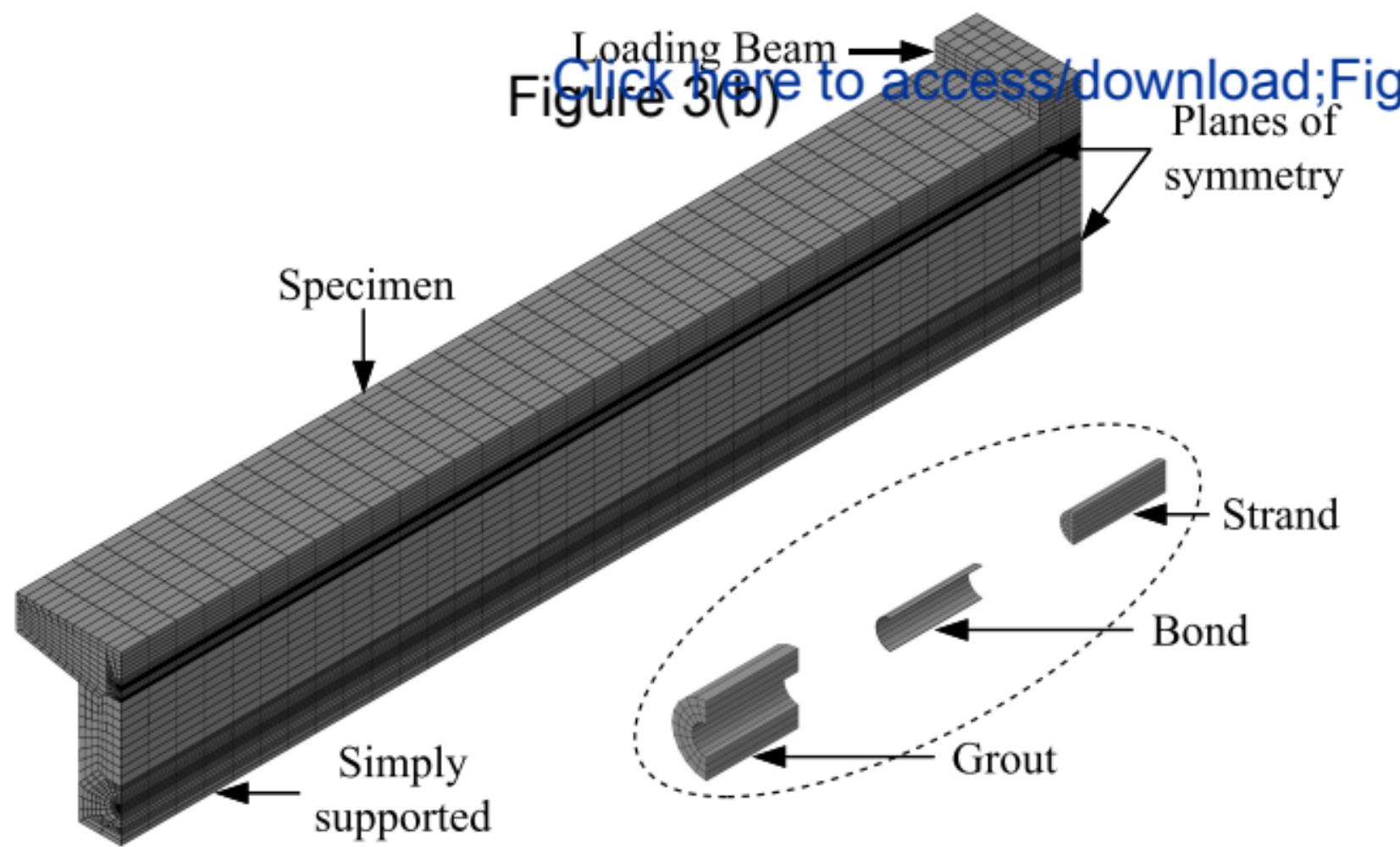


Figure 4 [Click here to access/download](#)

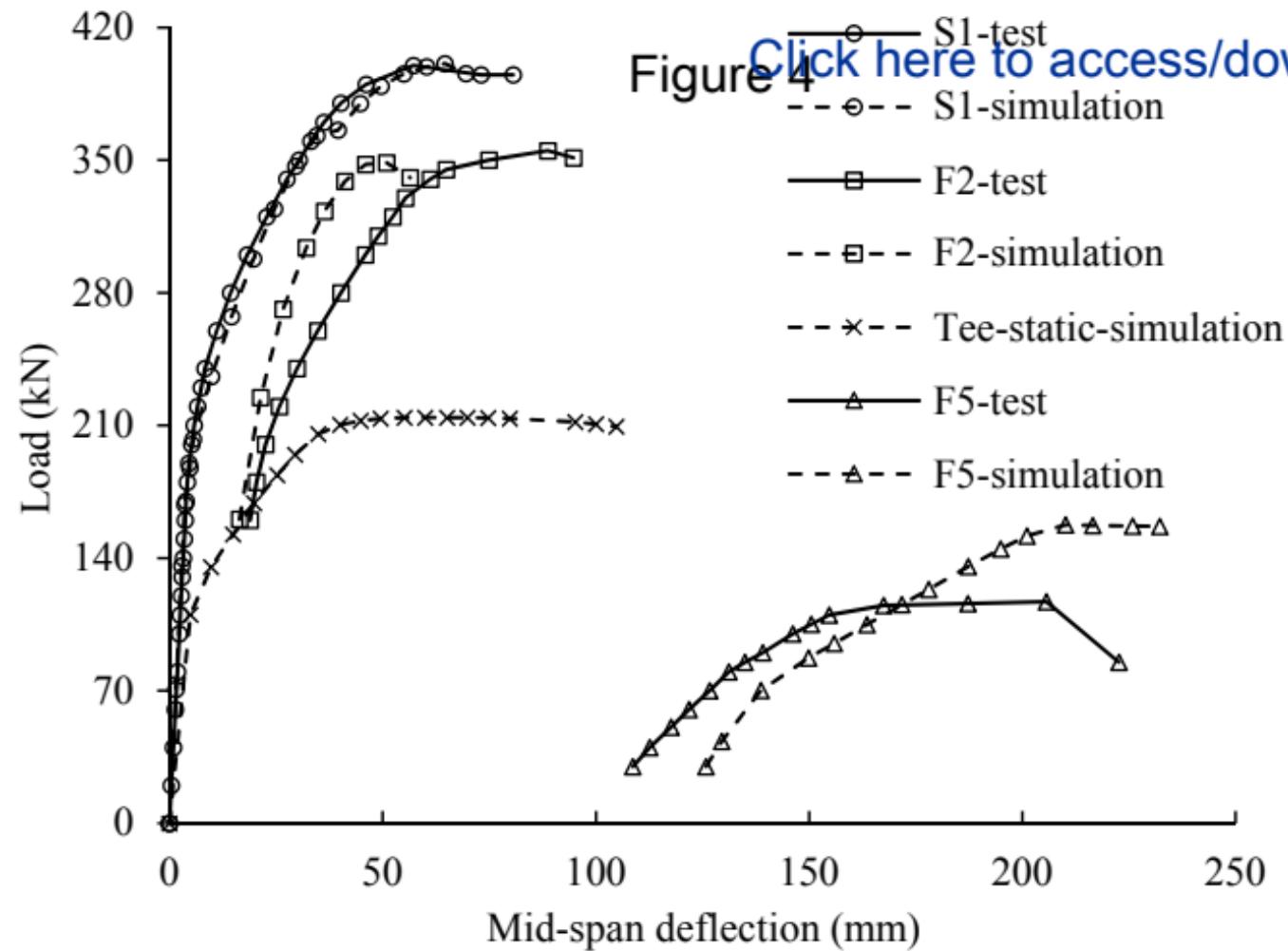
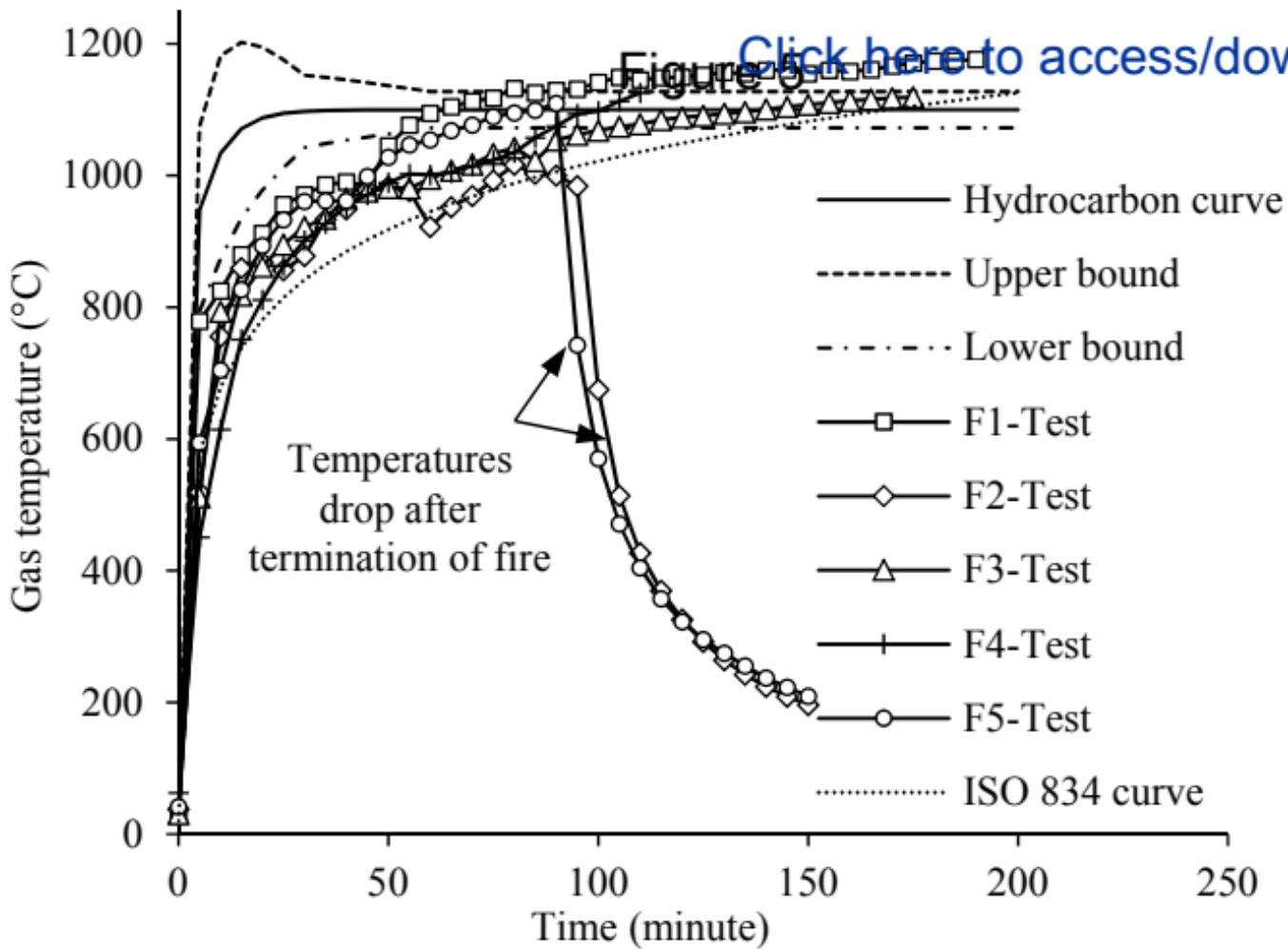
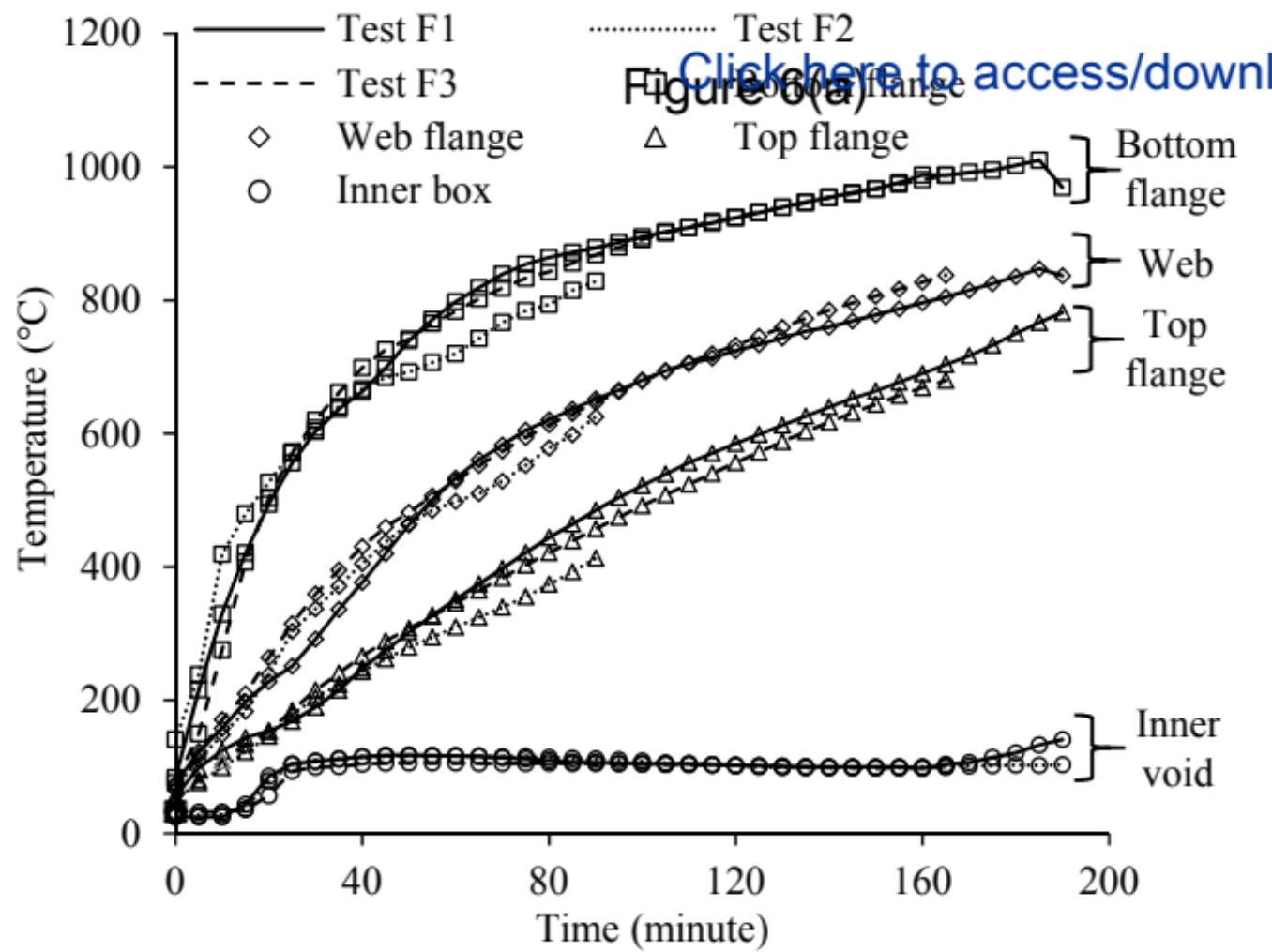
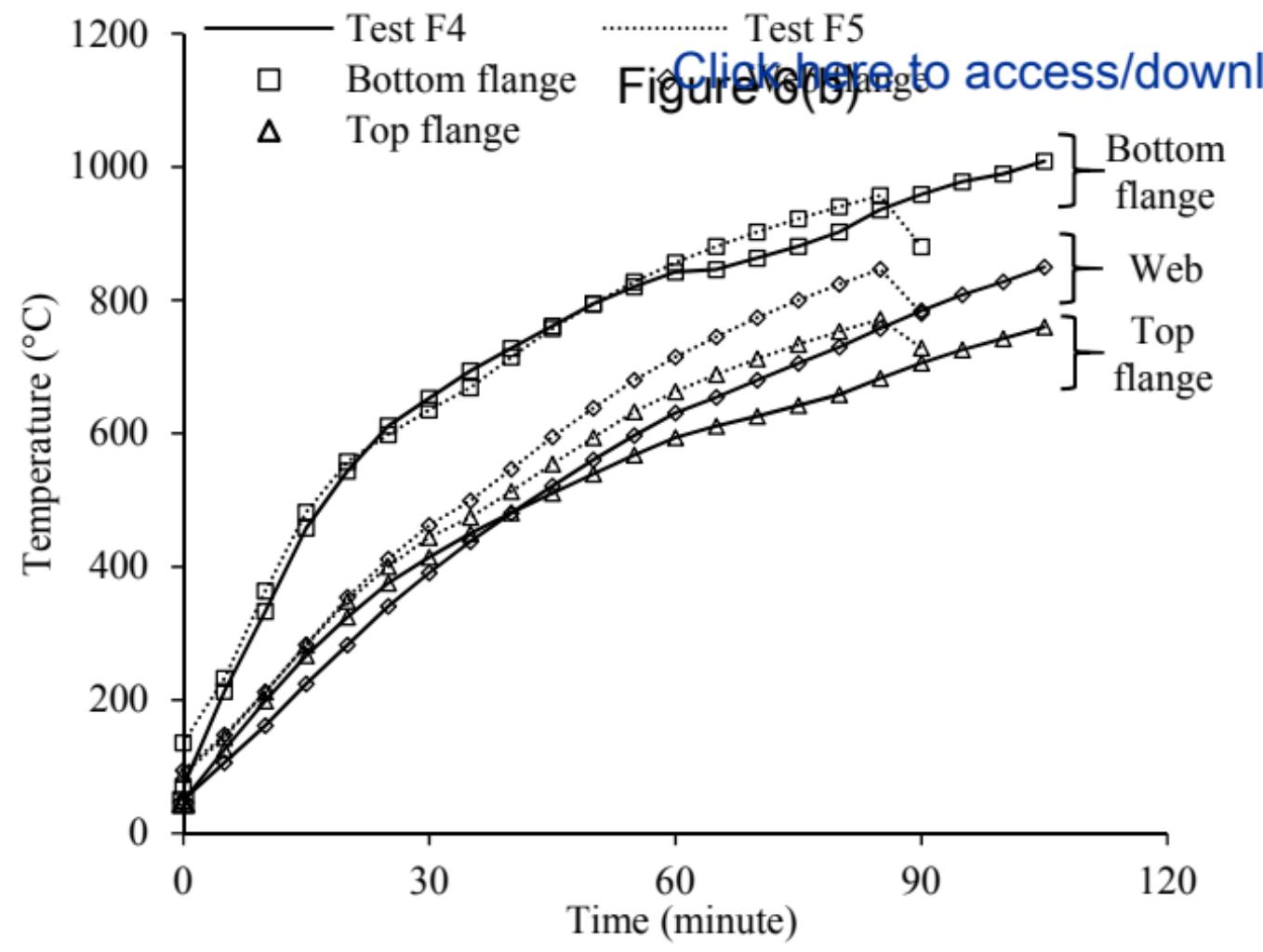





Figure 1. Click here to access/download

Click here to access/download
Figure 7(a)

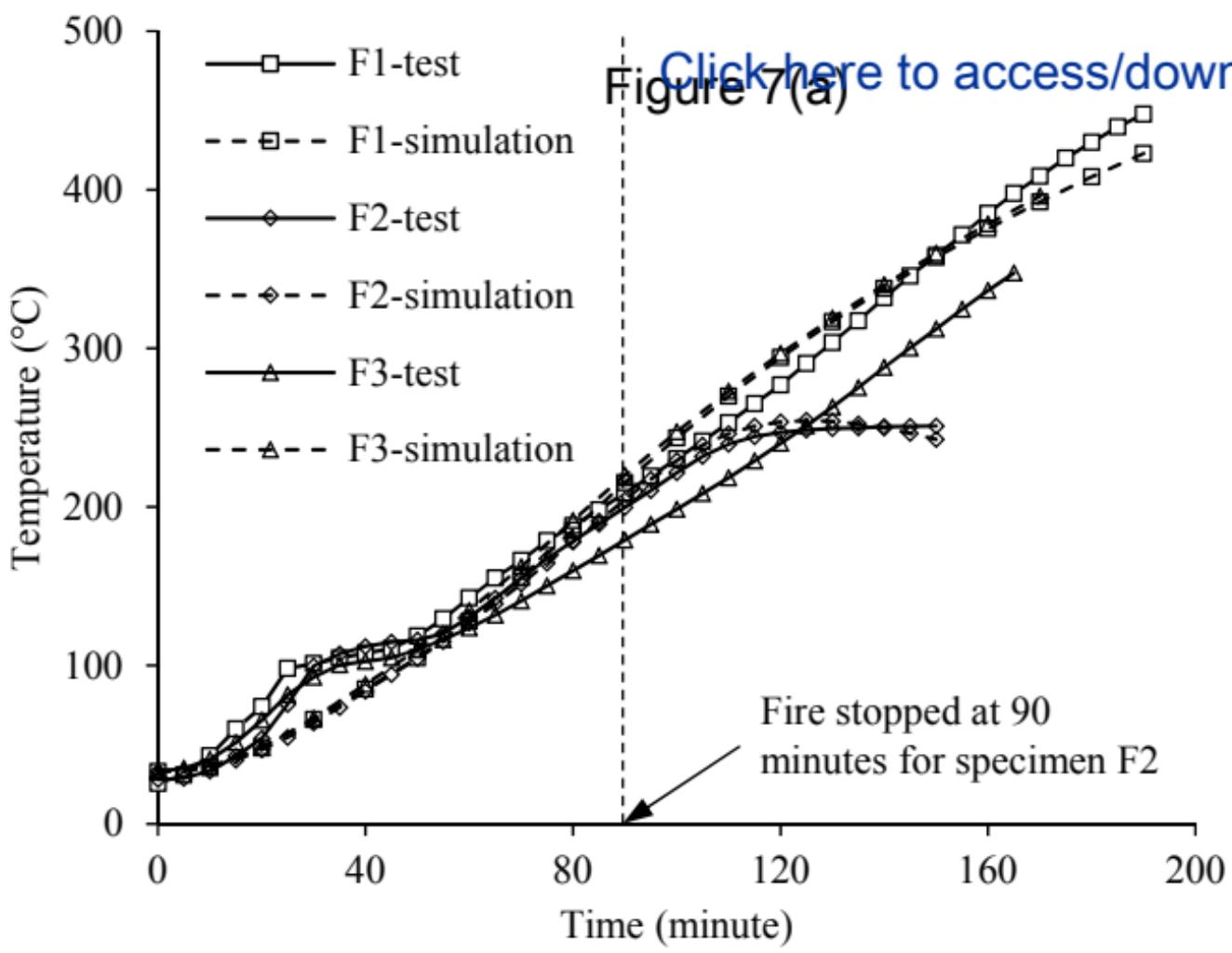


Figure 7(a) [Click here to access/download](#)
F4-upper-test
F4-upper-simulation
F5-upper-test
F5-upper-simulation

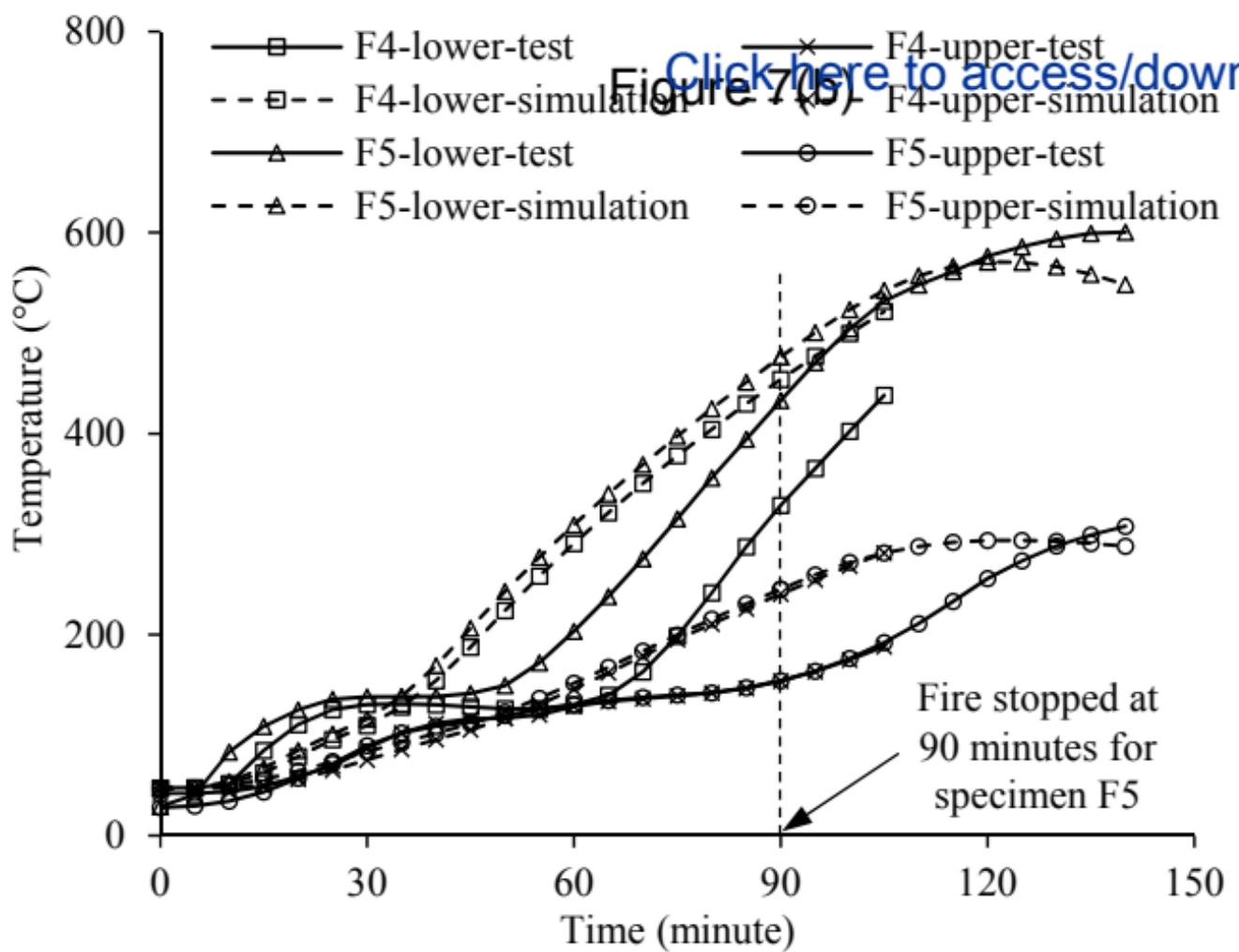
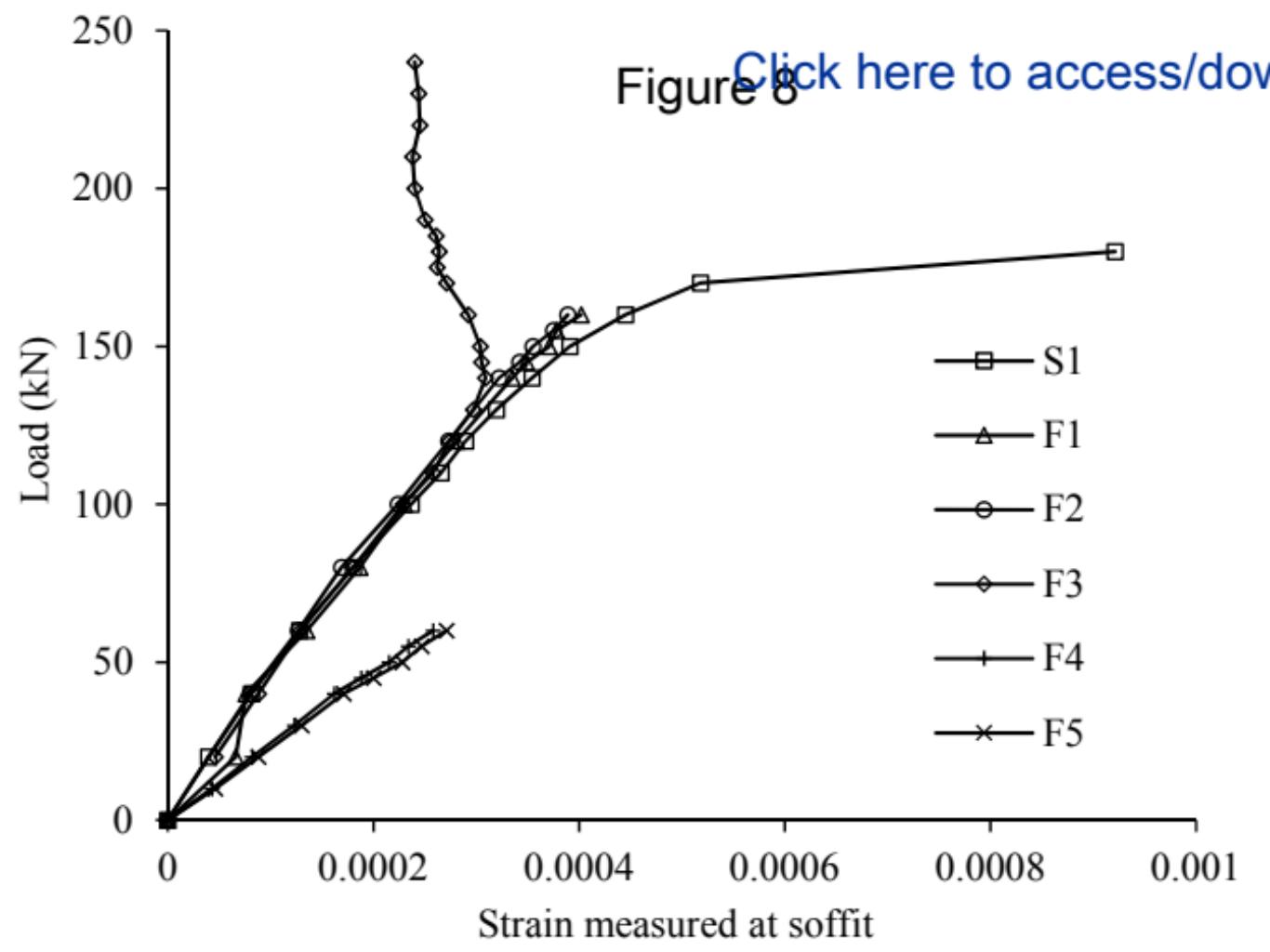
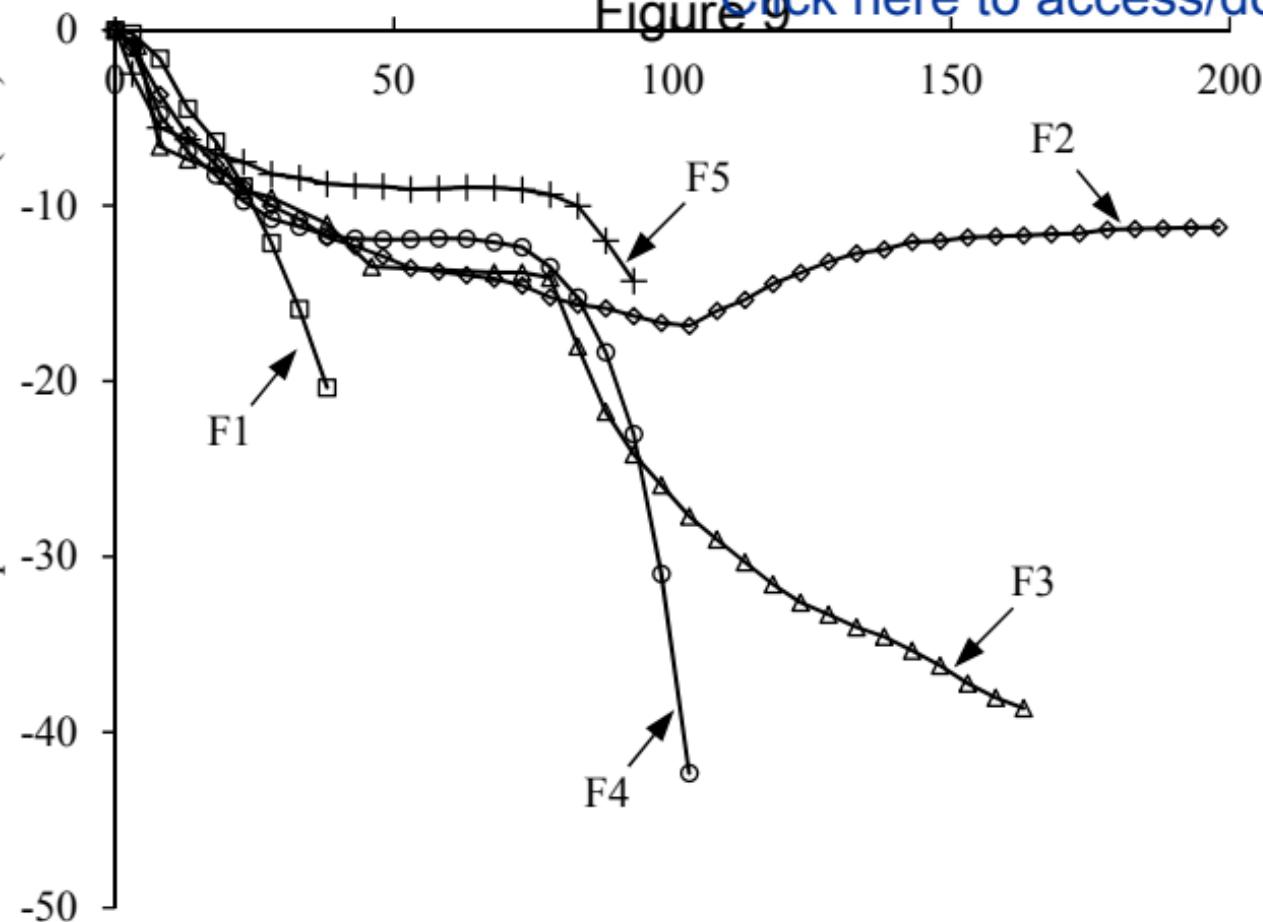
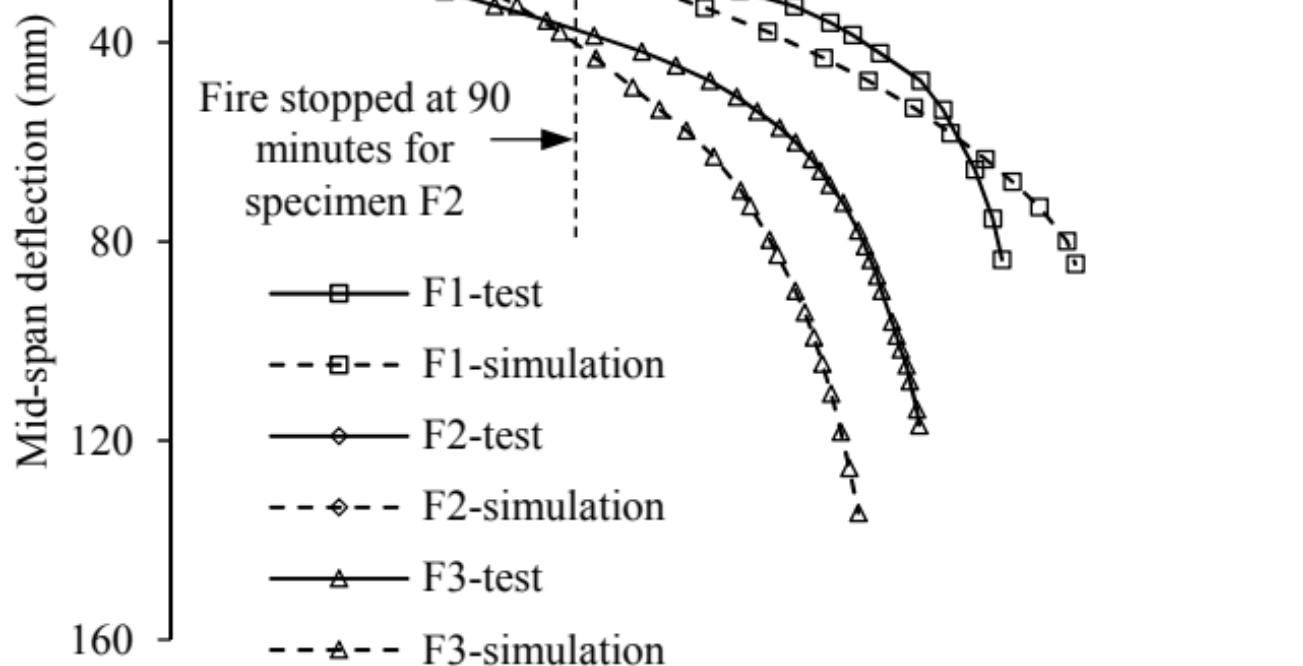



Figure 8 [Click here to access/download](#)

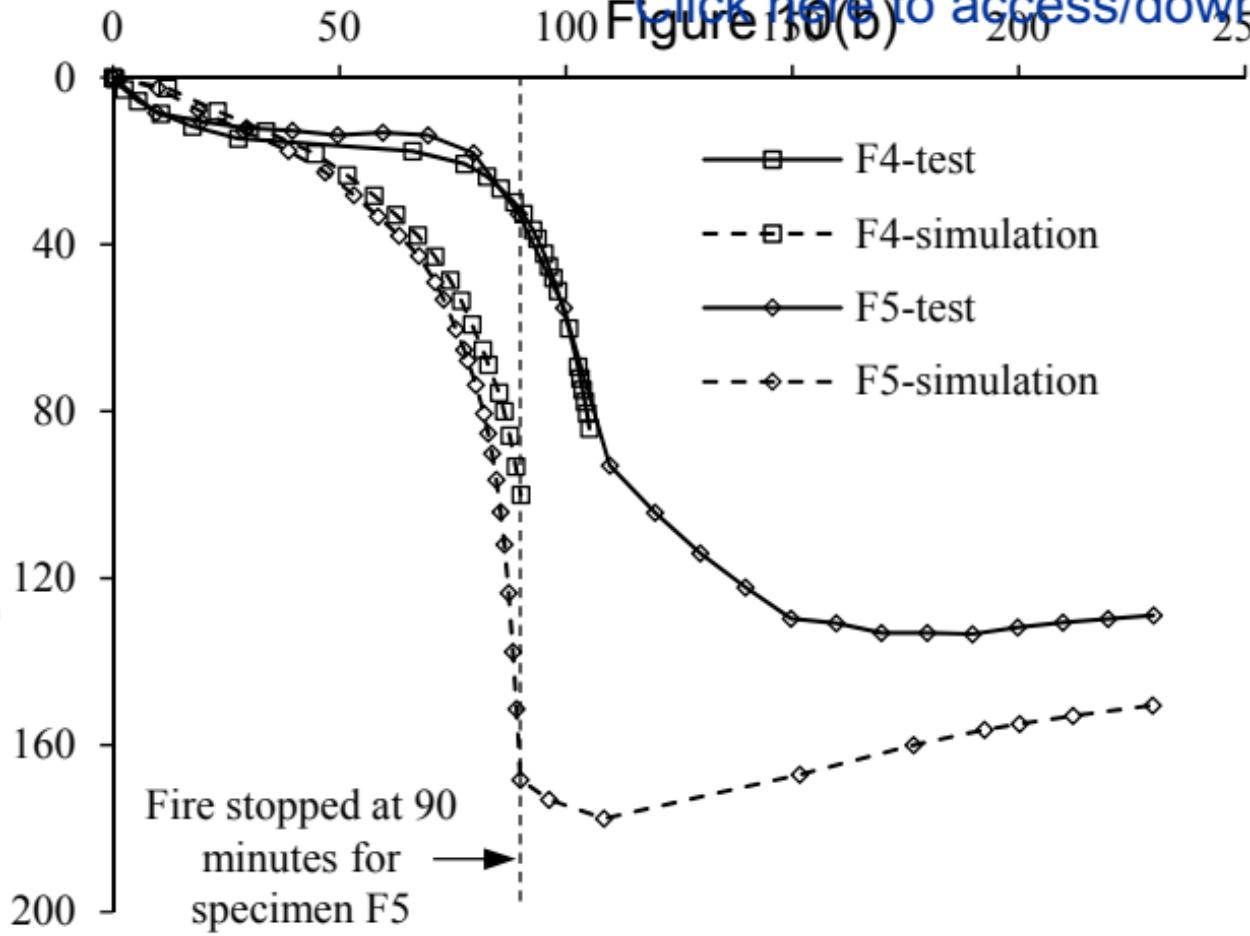


Time (minute)


Figure 9

[Click here to access/download](#)

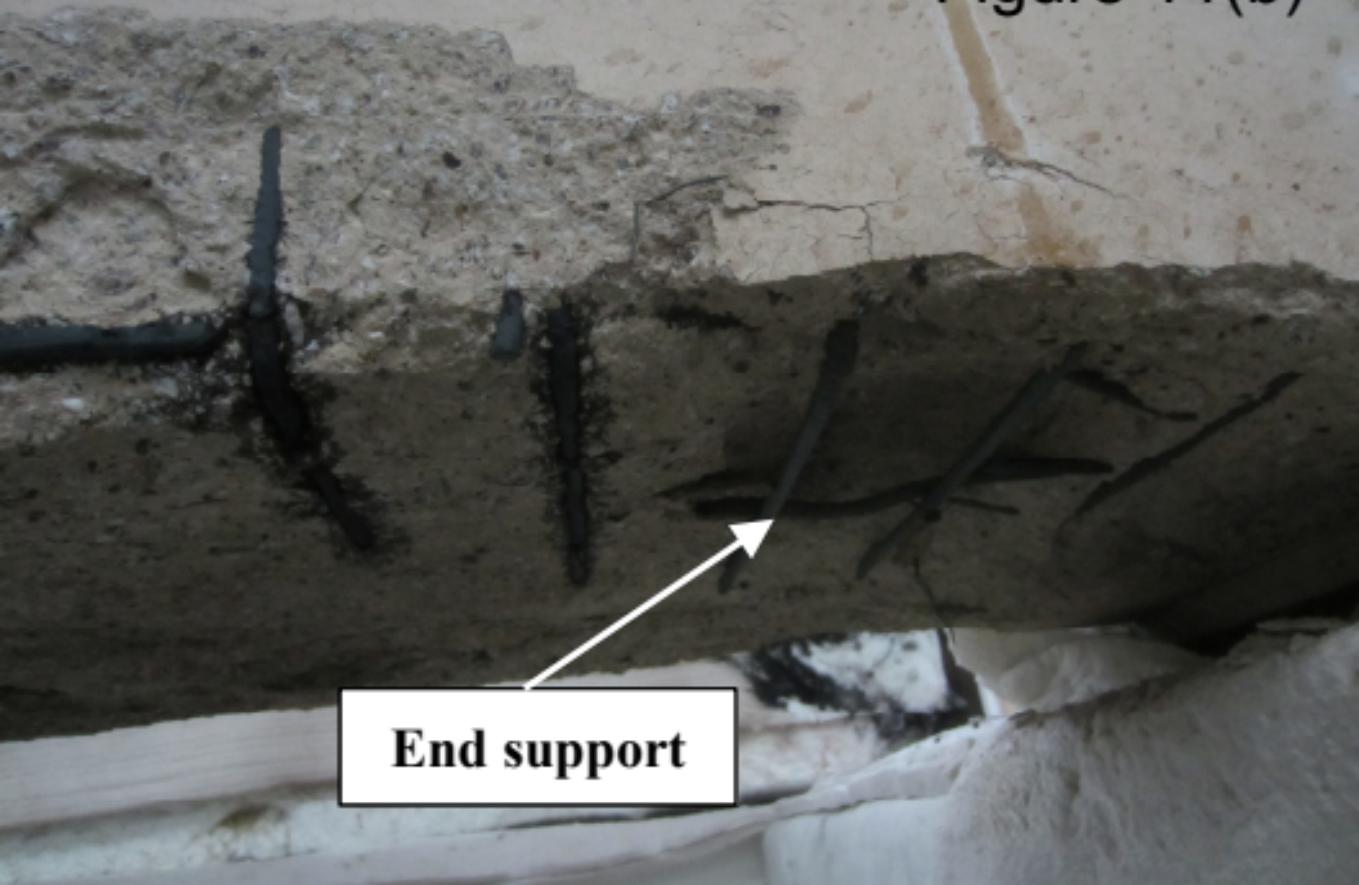
Horizontal displacement at roller end (mm)



Time (minute)
Figure 10(a)
Click here to access/download

Time (minute)
Figure 150(b)
Click here to access/download

Mid-span deflection (mm)



[Click here to access/download](#)
Figure n(a)

**Severe spalling at
soffit and corner**

[Click here to access/download](#)
Figure 11(b)

End support

[Click here to access/download](#)
Figure H(c)

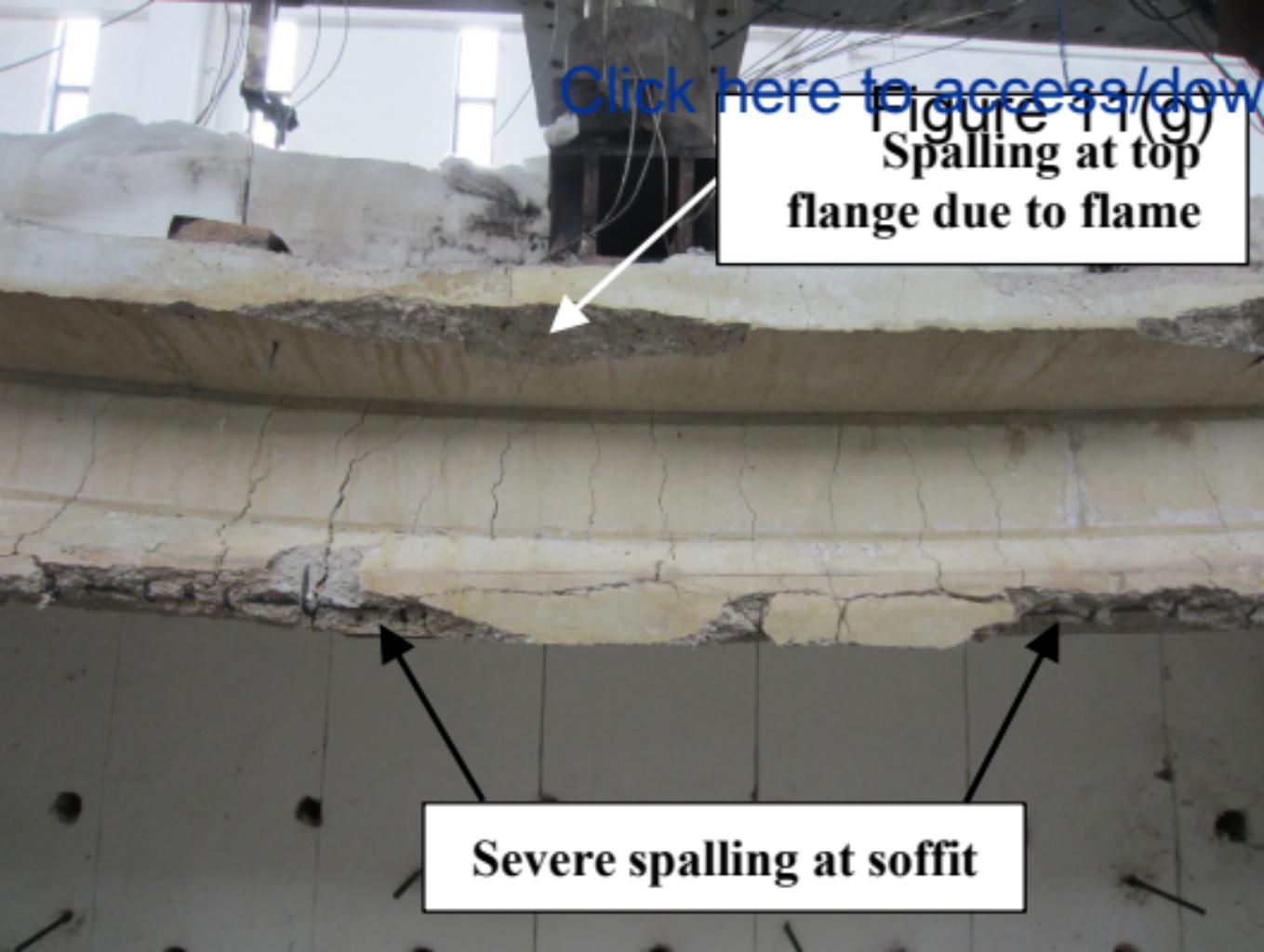
Minor spalling at soffit

[Click here to access/download](#)
Figure H(a)

**Severe spalling at corner
with 1.5m from support**

**Severe spalling at
soffit near support**


[Click here to access/download](#)
Figure 11(e)

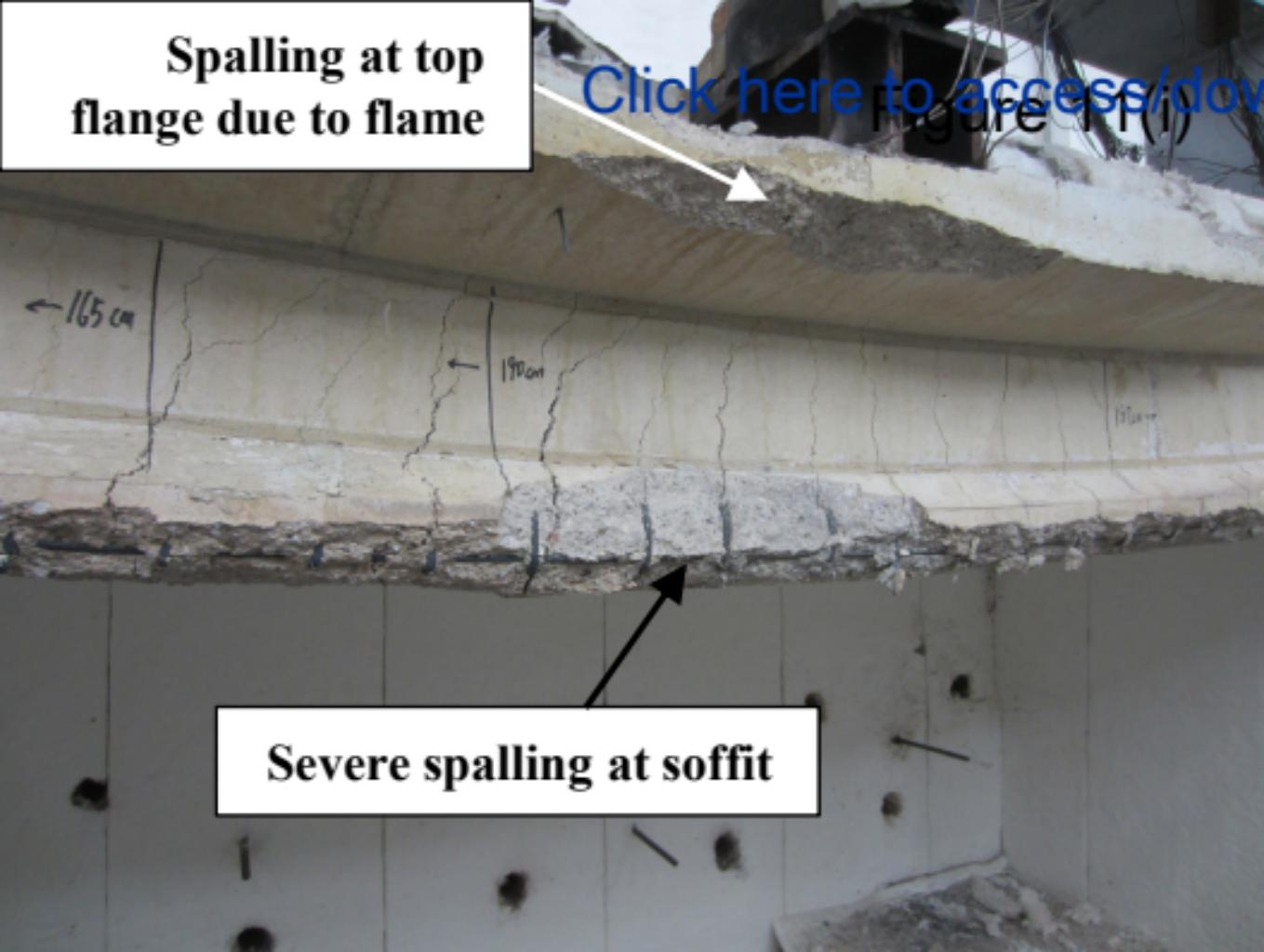

Minor spalling at soffit

[Click here to access/download](#)
Figure 11(1)

**Severe spalling at soffit
within 1.5m from support**

[Click here to access/download](#)
Figure H(9)
Spalling at top
flange due to flame

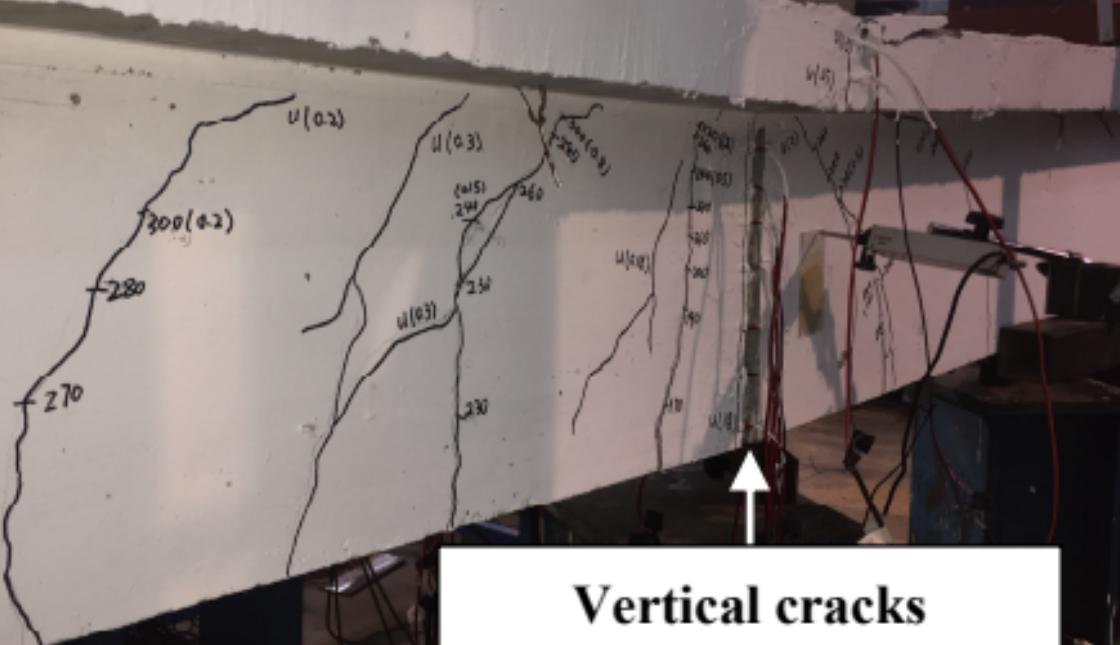
Severe spalling at soffit


[Click here to access/download](#)
Figure 11(h)

Severe spalling at soffit

Spalling at top flange due to flame

[Click here to access/download figure 11\(i\)](#)


Severe spalling at soffit

Click here to access/download
Figure 110

Severe spalling at soffit

Click here to access/download Figure 12(a)

Vertical cracks originated from soffit

[Click here to access download](#)
Figure 12(b)

Vertical cracks
originated from soffit

Cracks developed to
the top concrete fibre

Concrete crush

[Click here to access/download](#)

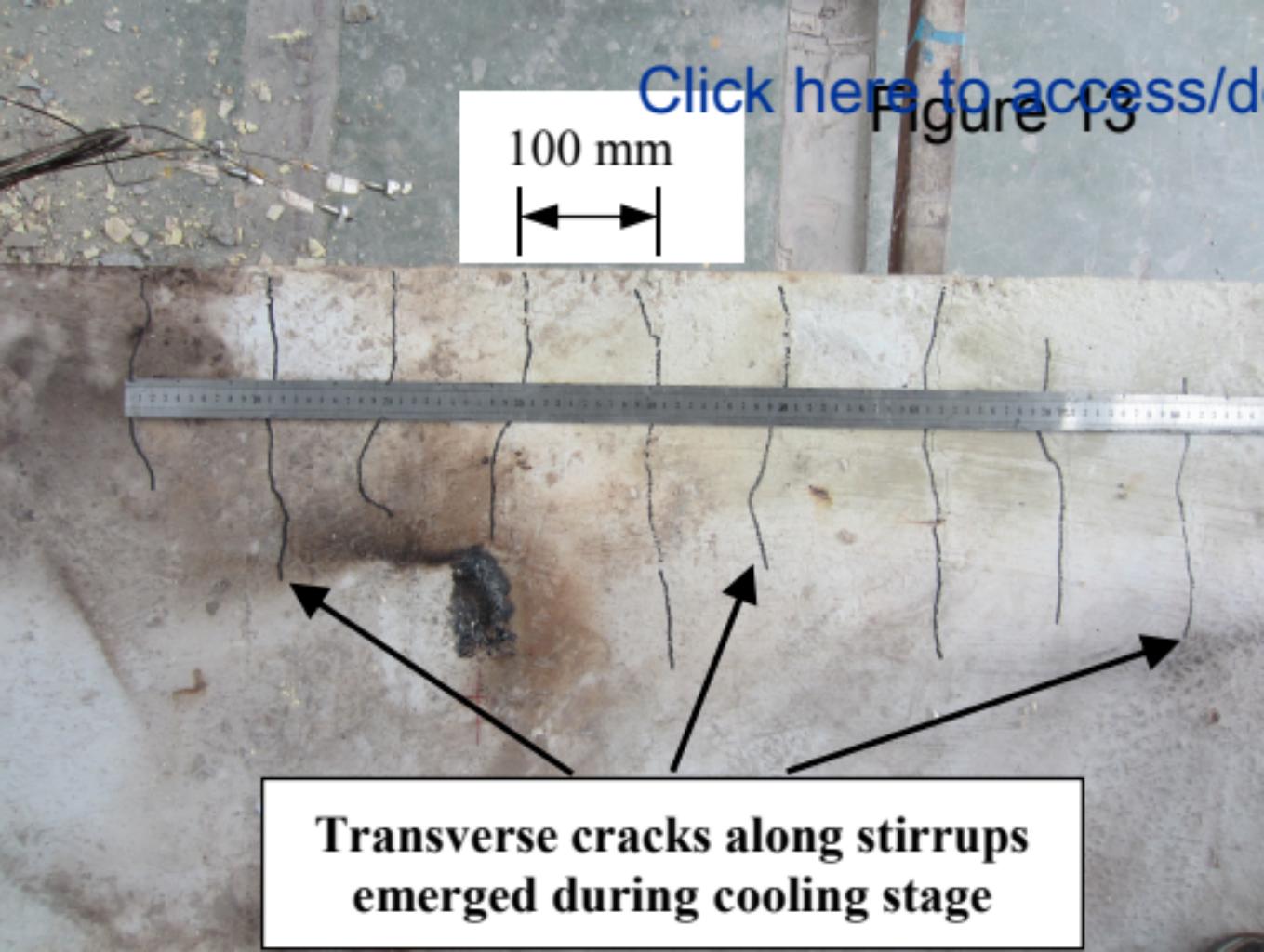
Figure 12(c)

Vertical cracks
originated from soffit

[Click here to access/download](#)

Figure 12(a)

Concrete crush



**Vertical cracks
originated from soffit**

[Click here to access/d](#)

Figure 13

