
1

Deep Multi-Scale Convolutional LSTM Network for
Travel Demand and Origin-Destination Predictions

Kai-Fung Chu, Albert Y.S. Lam, and Victor O.K. Li

Abstract—Advancements in sensing and Internet of Things
(IoT) technologies generate huge amount of data. Mobility on De-
mand (MoD) service benefits from the availability of big data in
intelligent transportation system. Given the future travel demand
or origin-destination (OD) flows prediction, service providers
can pre-allocate unoccupied vehicles to the customers’ origins of
service to reduce waiting time. Traditional approaches on future
travel demand and OD flows predictions rely on statistical or ma-
chine learning methods. Inspired by deep learning techniques for
image and video processing, through regarding localized travel
demands as image pixels, a novel deep learning model called
Multi-Scale Convolutional Long Short-Term Memory network
(MultiConvLSTM) is developed in this work. Rather than using
traditional OD matrix which may lead to loss of geographical
information, we propose a new data structure, called OD Tensor
to represent OD flows, and a manipulation method, called OD
Tensor Permutation and Matricization, is introduced to handle
the high dimensionality features of OD Tensor. MultiConvLSTM
considers both temporal and spatial correlations to predict the
future travel demand and OD flows. Experiments on real-world
New York taxi data of around 400 million records are performed.
Our results show that MultiConvLSTM achieves the highest
accuracy in both one-step and multiple-step predictions and it
outperforms the existing methods for travel demand and OD flow
predictions.

Index Terms—travel demand prediction, origin-destination
prediction, deep learning, multi-scale convolutional LSTM net-
work, origin-destination tensor.

I. INTRODUCTION

NOWADAYS, we inevitably need to travel to different
places for various activities and thus an efficient intelli-

gent transportation system is important and valuable in a smart
city. Different from the public transport with established routes
and schedules, vehicles for hiring, like taxis, provide private
transportation services that best fit the passengers’ routes and
schedules. Traditionally, taxi drivers need to roam the streets
to look for passengers by chance in urban city and passengers
also have to wait on the streets for taxis by chance. In recent
years, a more traveler-centric transportation system – Mobility
on Demand (MoD), has emerged, such as Uber [2] and Lyft
[3], which allows passengers to actively submit travel requests
to specify their pickup locations. By incorporating autonomous
driving into MoD, a new form of transportation – Autonomous
MoD (AMoD), which utilizes autonomous vehicles as the
transportation service carriers with more service options, has
been proposed [4], [5]. However, the common shortcoming

A preliminary version of this paper was presented in [1].
The authors are with the Department of Electrical and Electronic Engineer-

ing, The University of Hong Kong, Hong Kong, and also with the Shenzhen
Institute of Research and Innovation, The University of Hong Kong, Hong
Kong (e-mail: kfchu@eee.hku.hk; ayslam@eee.hku.hk; vli@eee.hku.hk).

of all these transportation systems is that, after submitting
their travel requests, passengers have to wait until the assigned
vehicles arrive at the dedicated pickup locations. The waiting
time varies with the distance between the original location
of the assigned vehicle and the pickup point. If the vehicle
supply and service demand are imbalanced, there may be no
vehicles available nearby and a faraway vehicle may need
to be assigned, resulting in even longer waiting time for the
passenger. The survey done at San Francisco [6] shows that
most MoD services require less than 10 minutes waiting time
while taxi calling services need 10–20 minutes. The situation
becomes much worse during rush hours or in congested areas.
If vehicles can be pre-allocated to those areas with high travel
demand, the waiting time will be much reduced and the service
quality will then be improved. Moreover, unoccupied vehicles
on the road can be reduced, thus reducing energy consumption
and air pollution from vehicle emission. Hence, the location
and time information of travel demand in the city is valuable
for developing a re-balancing strategy.

Advancements in sensing and Internet of Things (IoT)
technologies enable analysis of our physical world with huge
amount of data. These technologies have been widely used
in transportation system, such as global positioning system
(GPS) for vehicle localization and navigation [7], vehicular
communication of road map data for autonomous driving [8],
traffic flow estimation by inductive loop or camera to count
and classify vehicles for traffic management [9], etc. With big
data, the traditional technology-driven transportation system
is being transformed into data-driven intelligent transportation
system [10]. Many vehicles are also equipped with various
sensors and communication units to collect information. This
facilitates many new applications, such as autonomous in-
tersection management [11], dynamic lane reversal [12], and
vehicular energy network [13]. The availability of traffic data
can also be used to construct static Origin-Destination (OD)
flows [14]. However, future dynamic travel demand and OD
flows are generally unknown. Unlike weather prediction which
can be more easily modeled due to physical laws, predicting
travel demand and OD flows is more challenging since there
are no clear rules available for guiding the complicated human
movements. Hence, we need an accurate prediction method for
predicting both the travel demand and OD flows.

In this paper, we investigate the incorporation of both
temporal and spatial correlations from historical transportation
and related data to predict the future travel demand and OD
flows. To do this, we “visualize” the travel demands in the
city at a particular moment as an image, where each small
area is considered as a pixel and its travel demand as the cor-

2

responding pixel value. For OD flows, we propose a new data
structure, called OD Tensor, that stores the OD flows without
losing any geographical information. We also introduce a
method called permutation and matricization to manipulate
OD Tensor to reduce the dimensionality. Inspired by deep
learning technique for image and video processing, a model
called Multi-Scale Convolutional Long Short-Term Memory
network (MultiConvLSTM) is proposed for travel demand and
OD flow predictions. MultiConvLSTM is able to handle either
historical demand data or matricized OD Tensor as the input
data. It performs convolution between the input and weights,
and stores the extracted features as in LSTM. Historical data
of different spatial resolutions and metadata, such as time
and weather information, can be used in MultiConvLSTM
to further enhance the prediction accuracy. Experiments are
conducted to evaluate the proposed deep learning model with
six and a half years (Jan. 2009 – Jun. 2015) of real world taxi
data, which contain around 400 million records for a selected
region of Manhattan, New York. Experimental results show
that the proposed methods outperform the existing methods.
The main contributions of this paper can be summarized as
follows:

1. A new deep learning model, called Multi-Scale Convo-
lution LSTM (MultiConvLSTM) Network, is developed
and applied for predicting travel demand and OD flows.

2. We propose a new data structure, called OD Tensor,
to represent OD flows that can preserve most of the
geographical information of the OD flows.

3. A manipulation method of OD Tensor, called OD Tensor
Permutation and Matricization, is introduced to handle
the high-dimension features of OD Tensor.

4. Extensive experiments on real-world New York taxi data
of around 400 million records are performed. Our results
show that MultiConvLSTM achieves the highest accuracy
in both one-step and multiple-step predictions and it
outperforms the existing methods for travel demand and
OD flow predictions.

The rest of this paper is organized as follows. Section
II reviews the existing methods for travel demand and OD
flows predictions. Section III defines the prediction problems
and presents our proposed data structure and data processing
methods for the data handling. We present our proposed deep
learning model in Section IV and experiments on real-world
trip data is given in Section V. Finally, Section VI concludes
this paper.

II. RELATED WORK

Future travel information is important to transportation
service providers for improving their quality of service. Many
researchers have paid effort on the related traffic data pre-
diction problems. Two types of traffic data are important:
travel demand and OD flows. The former is defined as the
total number of travel requests in specific pickup location and
time. Transportation service providers can balance the supply
and demand by considering future travel demand. The latter
represents the traffic flows between origins and destinations.
Travel strategies and operational efficiency can be optimized

with predicted OD flows. While various prediction methods
have been specifically proposed to predict travel demand
and OD flows individually, deep learning has been generally
applied to solve many traffic problems. In this section, we
review the existing prediction methods for travel demand and
OD flows. Deep learning approaches for solving various traffic
problems are also discussed.

A. Travel Demand Prediction

Travel demand is valuable for reducing the service waiting
time. Various prediction methods have been proposed to pre-
dict travel demand using historical travel demand. Autoregres-
sive integrated moving average (ARIMA) [15] is well-known
for addressing the short-term time-series prediction problem
and it was used to predict the travel demand in [16]. [17]
presented a time-series prediction technique based on time-
varying Poisson model and ARIMA with improved accuracy.
[18] modeled the demand data using time-series analysis and
further improved the accuracy by the multi-level clustering
technique. [19] analyzed the maximum predictability of taxi
demand with the entropy of taxi demand sequence by con-
sidering both randomness and the temporal correlation. Three
different prediction algorithms, namely, the probability-based
Markov predictor, the sequence-based Lempel-Ziv-Welch pre-
dictor, and machine learning based Neural Network predictor,
were developed to validate the maximum predictability theory
[19]. In [20], historical taxi trajectory data were analyzed
to identify hotspots in different time slots and regions, and
a hotness score could be determined by an exponentially
weighted moving average. The top k hot-spots would be
recommended to a taxi driver based on the hotness score and
the driver’s location.

B. OD Flow Prediction

OD flows are commonly represented in the form of OD
matrix. The row and column indexes stand for origin and
destination, respectively, and each entry quantifies the travels
of the corresponding origin-destination pair. OD flows can
be estimated through static and dynamic predictions. Many
works estimated the static OD matrix with other data sources,
such as vehicular traffic size [14], [21], [22], communica-
tion data [23], [24], [25] and GPS [26], [27], [28], [29].
For dynamic OD flow prediction, temporal correlation of
historical data was considered and modeling methods, such
as least-square modeling [30] and Kalman-filter approach
[31], were applied to predict the future OD flows. Stochastic
approximation algorithms, such as Simultaneous Perturbation
Stochastic Approximation (SPSA) [32] and cluster-wise SPSA
[33], were also shown to be able to find good solutions based
on gradient approximation. However, predicting the dynamic
OD flows for specific time and location is not trivial due to the
high dimensionality of OD flows. Hence, dimension reduction
and OD matrix approximation based on Principal Component
Analysis were developed to address the dimensionality issue
[34]. [35] proposed an algorithm based on Nonnegative Matrix
Factorization and Autoregressive to decompose the OD matrix.
However, all these methods based on OD matrix may suffer

3

from the loss of geographical information. An OD flow
representation without geographical information loss is desired
for prediction. In [36], OD is modeled by a four-order tensor
which consists of four attributes: origin, destination, vehicle
type, and time. Through tensor decomposition, the time factor
matrix is extracted and used to predict the future OD flows.
With the additional vehicle type and time information, the
prediction accuracy is improved when compared to ordinary
OD matrix. However, tensor decomposition may still result in
data loss. There are no existing efficient prediction algorithms
which can process the high dimensional tensor data without
data loss.

C. Deep Learning for Transportation

Due to its recent success in applications to various disci-
plines [37], [38], [39], [40], [41], deep learning [42], [43]
has been applied to address many transportation problems.
For example, [44] and [45] used a deep neural network
to predict traffic flow with high accuracy. [46] applied the
Restricted Boltzmann Machine (RBM) and Recurrent Neural
Network (RNN) to predict traffic congestion evolution. Lane
detection [47] and autonomous driving [48], [49] were also
facilitated by deep learning. A novel deep learning model
called Diffusion Convolutional Recurrent Neural Network was
proposed to predict traffic speed based on spatial and temporal
correlations [50]. In particular, [51] and [52] used RNN to
predict taxi demand and [53] developed a multi-pattern data
fusion model that divided the dataset into different clusters
based on the data pattern and used a deep belief network
for each cluster for bus passenger flow forecasting. However,
the spatial correlation may be overlooked if RNN is solely
used to handle the sequential nature of taxi demand. Thus
we need a model that considers both the temporal and spatial
correlations of the historical data to further improve the future
travel demand and OD flows prediction. In the preliminary
version of this work [1], we proposed MultiConvLSTM, which
explores the temporal and spatial correlations of historical
travel demand data to predict the future travel demand. A
parallel work [54] employs a similar concept but with different
architecture to predict travel demand. However, having only
travel demand predicted may be insufficient for many services.
OD flows are also important in an intelligent transportation
system. To the best of our knowledge, there is no deep learning
approach that predicts OD flows using temporal and spatial
correlations of historical data. A deep learning approach which
simultaneously employs temporal and spatial correlations to
predict both travel demand and OD flows is important for
intelligent transportation system.

III. PROBLEM FORMULATION

In this section, we define two traffic data prediction prob-
lems, i.e., travel demand prediction and OD flows prediction,
and present the corresponding data pre-processing methods.

A. Travel Demand Prediction

1) Problem definition: We aim to predict the travel demand
for a specific region A and time period T , which are equally

divided into m×n grid cells and T time intervals, respectively.
Each interval has a duration of τg , typically in the order of
minutes. The travel demand θtij is defined as the total number
of travel requests originated at the grid cell (i, j) ∈ A in
the time interval t ∈ T . While historical travel demands
are the major source of information for the prediction, some
other metadata, such as the day, time, and weather, may also
have correlations with travel demand. For example, higher
demand is expected during the rush hours in working days.
Thus they may optionally be considered to further improve
the prediction. The objective is to predict the demand of each
grid cell (i, j) ∈ A for the future τ ≥ 1 intervals. Suppose
we are in the Tcth interval. We predict the travel demands,
Θ̂ = {θTc+1

ij , . . . , θTc+τij ,∀(i, j) ∈ A}, based on the historical
travel demand Θ = {θtij ,∀(i, j) ∈ A, t ∈ 1, 2, . . . , Tc} and
other optional metadata.

2) Pre-processing: We model each travel demand data
record r ∈ R by the 3-tuple 〈tr, or, dr〉, where tr ∈ T is
the time of submitting the request r. or ∈ A and dr ∈ A are
the origin and destination of travel request r, respectively. To
facilitate the deep learning process, we group r’s based on each
interval, resulting in a set of matrices Θ = {(θtij), t ∈ T }. To
do this, we set θtij to be the total number of r which occurs in t
with the same origin (i, j), i.e., θtij = |{r|or ∈ (i, j), tr ∈ t}|.
For grid cell (i, j) and time interval t with no travel requests,
we have θtij = 0.

B. OD Flow Prediction

1) Problem definition: An OD flow captures the number
of travels for specific origin-destination pairs in a particular
time period. An OD matrix is commonly used to represent
OD flows. Consider a region A equally divided into m × n
grid cells. The OD flows originated at time interval t ∈ T are
represented byMt = (atod) ∈ RN×N , where N = m×n is the
total number of grid cells and atod denotes the number of flows
from origin o ∈ A departed in t ∈ T to destination d ∈ A.
Suppose we are in interval Tc. Our objective is to predict
the OD flows {M̂Tc+1, . . . ,M̂Tc+τ}, for the future τ ≥ 1
intervals, based on the historical OD flows {M1, . . . ,MTc}
and other optional metadata.

Using OD matrix as the data structure to represent OD flows
may result in degradations of prediction accuracy. For m,n >
1, the grid cells are naturally arranged as a two-dimensional
array retaining the actual geographical information. Each grid
cell generally has certain spatial correlation with its neighbor-
ing grid cells since neighborhoods are likely to be of similar
land-use and people around may share similar travel behaviors.
To construct an OD matrix, the two-dimensional array (m×n)
is first vectorized into a one-dimensional vector (N × 1) and
then we form the corresponding N ×N OD matrix. However,
such vectorization of two-dimensional array leads to loss of
geographical information in the resultant OD matrix. As will
be discussed in Section IV, our deep learning model includes
the features of Convolutional Neural Network (CNN), which
is inspired by human visual system and is commonly applied
to analyze visual imagery. The model can achieve higher
accuracy if the input image has stronger visual pattern. We

4

can see that OD matrix may degrade the prediction due to
the absence of visualization of geographical information. To
overcome the shortcomings of the OD matrix, we propose a
new data structure, called OD Tensor, to represent OD flows.
We will also process the OD Tensor using permutation and
matricization to retain the visualization of spatial correlation
for higher prediction accuracy. The matricized OD Tensor can
be applied to our deep learning model for prediction.

2) OD Tensor: A tensor is a multidimensional array, whose
order is the dimensionality. For instance, a matrix is a second-
order tensor since two indexes are used to represent a matrix.
An OD Tensor is a general data structure that can repre-
sent OD flows without geographical information loss.1 Let
O ⊆ A and D ⊆ A be the sets of origin and destination,
respectively. The OD Tensor at time interval t is given as
Ωt = (ωt(io,jo),(id,jd)) ∈ Rm×n×m×n, where (io, jo) ∈ O
and (id, jd) ∈ D. ωt(io,jo),(id,jd) denotes the total number
of flows from (io, jo) departed in t to (id, jd). Since OD
Tensor can retain spatial relationship of OD flows with its four
indexes representing the geographical locations of both the
origin and destination, predicting OD flows from OD Tensor is
a better option. However, OD Tensor is hard to process by most
existing deep learning models due to its high dimensionality.
Hence, we apply permutation and matricization on OD Tensor
to reduce its order while avoiding the loss of geographical
information.

3) Permutation and matricization: The permutation and
matricization process can be considered as a function f :
Rm×n×m×n → Rm2×n2

. Recall that the indexes of an OD
Tensor are arranged as (io, jo), (id, jd). In this process, for an
input tensor Ωt = (ωt(io,jo),(id,jd)), we first pair up the indexes
of the corresponding origins and destinations, i.e., permuting
the structure (io, jo), (id, jd) into (io, id), (jo, jd) such that
we get the permuted OD Tensor Ω̃t = (ω̃t(io,id),(jo,jd)) ∈
Rm×m×n×n. Then we matricize the permuted OD Tensor by
combining (io, id) and (jo, jd) into ki and kj , respectively,
where ki = io + id × m and kj = jo + jd × n. The
resultant matricized OD Tensor at time interval t is given as
Ω̄t = (ω̄tki,kj) ∈ Rm2×n2

. The process of converting Ωt to (Ω̃t

and then to) Ω̄t can reduce the order of OD Tensor from 4 to 2,
leading to an m2×n2 matrix. Although the number of elements
in Ω̄t is the same as that in the original OD matrixMt which
has mn×mn elements, the geographical information in OD
Tensor is reserved. To see this, we examine the simple example
given in Fig. 1, which represents a region in terms of 2 × 3
(m×n) grid cells with the arrows indicating three flows to cell
2 from cells 1, 3 and 5, respectively. The OD flows of this
region form a tensor Ωt =

(
ωt(io,jo),(id,jd)

)
∈ R(2×3×2×3).

The tensor ωt(io,jo),(id,jd) denotes the total number of OD flows
from grid cell (io, jo) to (id, jd). The tensor of the example

1We only consider land transportation in this work and thus it is sufficient
to divide A into two-dimensional grid cells. But OD Tensor is extensible to
regions with dimensions higher than two. For instance, we need higher order
OD Tensor for aircrafts that fly in three-dimensional space.

is:

ωt(io,jo),(id,jd) =


1, if (io, jo), (id, jd) = (1, 0), (0, 1),

1, if (io, jo), (id, jd) = (1, 1), (0, 1),

1, if (io, jo), (id, jd) = (1, 2), (0, 1),

0, otherwise.

Then we perform permutation and matricization on the tensor.
For permutation, Ωt =

(
ωt(io,jo),(id,jd)

)
∈ R(2×3×2×3) is

transformed to Ω̃t =
(
ω̃t(io,id),(jo,jd)

)
∈ R(2×2×3×3) by

permuting the structure (io, jo), (id, jd) to (io, id), (jo, jd).
The resulting permuted tensor is:

ωt(io,id),(jo,jd) =


1, if (io, id), (jo, jd) = (1, 0), (0, 1),

1, if (io, id), (jo, jd) = (1, 0), (1, 1),

1, if (io, id), (jo, jd) = (1, 0), (2, 1),

0, otherwise.

For matricization, Ω̃t =
(
ω̃t(io,id),(jo,jd)

)
∈ R(2×2×3×3) is

matricized to Ω̄t =
(
ω̄tki,kj

)
∈ R(22×32) by combining (io, id)

and (jo, jd) into ki and kj , respectively, where ki = io + id

and kj = jo + jd. The matricized OD Tensor is:

ωt(ki,kj) =


1, if (ki, kj) = (1, 3),

1, if (ki, kj) = (1, 4),

1, if (ki, kj) = (1, 5),

0, otherwise.

Fig. 3 gives the output of the permutation and matricization
process, Ω̄t =

(
ω̄tki,kj

)
∈ R(22×32), which is a 4 × 9

(m2 × n2) matrix. For comparison, Fig. 2 gives the ordinary
OD matrix Mt corresponding to the example in Fig. 1. We
can see that Mt cannot illustrate the geographical movement
of the three flows while Ω̄t can. At the macroscopic level,
Fig. 3 is a 2 × 3 matrix of blocks, each of which also
contains 2 × 3 elements. The number of blocks is equal
to the number of grid cell, in which each block represents
the corresponding grid cell. Sum of each block indicates the
total number of flows with destination at the corresponding
grid cell. For example, sum of all elements in block 2, i.e.,
ω̄t0,3+ω̄t1,3+ω̄t0,4+ω̄t1,4+ω̄t0,5+ω̄t1,5 = 0+1+0+1+0+1 = 3,
indicates three flows to grid cell 2 (c.f. Fig. 1). That is, if the
destinations of the three flows are grid cell 2, the sum of
block 2 will be three. At the microscopic level, within each
block, each element represents the corresponding grid cell and
its value indicates the number of flows originated from the
corresponding grid cell. For instance, ω̄t1,3 shows that there
is one flow from grid cells 1 to 2 (c.f. Fig. 1). The sum of
ω̄t1,0, ω̄t3,0, ω̄t1,3, ω̄t3,3, ω̄t1,6 and ω̄t3,6 also indicates the total
number of flows originated from grid cell 1. That is, if the
origin of the three flows are the bottom three grid cells, the
ones appearing in block 2 will be at the bottom three entries of
block 2. The patterns of both origin and destination of the OD
flows are preserved in the matricized OD Tensor. From this,
we can visually infer the OD flows from cells 1, 3 and 5 to
cell 2 shown in Fig. 1 accordingly. But the three 1’s in the OD
matrix cannot visually provide this geographical information if

5

Fig. 1. Region with 6 grid cells.

Fig. 2. Example of OD matrix of the region.

Fig. 3. Example of matricized OD Tensor of the region.

the grid cell arrangement is not given. Hence, the permuted and
matricized OD Tensor Ω̄t can retain geographical information
and visualize the OD flows. It can be utilized in our proposed
deep learning model directly.

4) Pre-processing: Similar to travel demand prediction, we
need to convert the travel records R into OD Tensor Ω̄ for
further processing. Recall that each r ∈ R is modeled by the 3-
tuple 〈tr, or, dr〉, where tr ∈ T is the departure time of r. or ∈
A and dr ∈ A are the origin and destination of travel record r,
respectively. To transformR to Ω̄t, we group r’s based on each
interval, resulting in a set of OD Tensors {Ωt, t ∈ T }, where
Ωt = (ωt(io,jo),(id,jd)). We set ωt(io,jo),(id,jd) to be total number
of r which happened in t with the same origin and destination,
i.e., ωt(io,jo),(id,jd) = |{r|or ∈ (io, jo), dr ∈ (id, jd), tr ∈ t}|.
For example, consider three travel records, namely, 〈1:03pm,
cell 1, cell 2〉, 〈1:07pm, cell 1, cell 3〉, and 〈1:14pm, cell 1,
cell 4〉. If the length of a time-step is equal to 10 minutes,
then we have ω1:00pm

(1,0),(0,1) = 1, ω1:00pm
(1,0),(1,1) = 1, ω1:10pm

(1,0),(0,2) = 1.
For grid cell pair ((io, jo), (id, jd)) and time interval t with
no traffic flows, we have ωt(io,jo),(id,jd) = 0. Ωt is premuted
to Ω̃t, which is then matricized to Ω̄t following the methods
stated in Section III-B3.

IV. MULTI-SCALE CONVOLUTIONAL LSTM NETWORK

We incorporate both the temporal and spatial correlations
of historical data to predict the future travel demand and OD
flows. The basic unit used in our model is ConvLSTM [55],
which performs convolution between the input and weights,
and stores the extracted feature as in LSTM. However, the
spatial correlation captured in ConvLSTM is of short range.

Fig. 4. RNN architecture. Fig. 5. Unfolded RNN architecture.

Increasing the kernel size may improve the accuracy but re-
quires higher computational power. Moreover, since the output
resolution is the same as that of the input, the pooling layer
is not required in ConvLSTM. The resolution of data remains
the same throughout the network. However, since the inclusion
of the pooling layer can improve the performance of CNN,
incorporation of different resolution data within the network
may further improve the prediction accuracy. Therefore, we
consider a multi-scale network and propose MultiConvLSTM
for the travel demand and OD predictions. In this section, we
first review two related popular neural network architectures,
namely, RNN and CNN, and then discuss our proposed deep
learning model.

A. Recurrent Neural Network

Predicting travel demand and OD flows is similar to se-
quence prediction and thus RNN may be a good model
to handle time-series data in travel demand prediction. It
makes use of a series of historical data as input and it stores
information extracted from previous inputs in its memory for
later prediction. This is achieved by recurrently computing all
elements of the input sequence to output the results. A loop is
used to pass the information from one time-step to the next.
Fig. 4 shows a typical structure of RNN with input x, hidden
state h, output y, and the corresponding weights Wx, Wh, Wy .
All these input, hidden state, output and weights are usually
scalars or vectors in RNN. If input data are given in the matrix
form, they will be flattened to vectors before being applied to
the model. In practice, the infinite loop can be unfolded to
a finite number of input time-steps as shown in Fig. 5. The
hidden state ht at time t can be considered as the memory of
the network, computed as follows:

ht = f(Whht−1 +Wxxt), (1)

where f is an activation function, such as tanh or ReLU .
A popular kind of RNN is Long Short-Term Memory

(LSTM) [56], which is capable of learning long-term depen-
dencies. The main difference is the inner structure of the
repeating cell. Recall that inside the cell of standard RNN,
there is a single tanh or ReLU layer only. However, in LSTM,
a memory cell state, ct, is added and there are four layers
interacting together as shown in Fig. 6. A “Forget gate layer”,
ft, is used to decide which information from the previous
cell should be forgotten. An “Input gate layer”, it, is for
deciding which part of the information from the current input
and hidden state should be stored. We use a tanh layer to

6

Fig. 6. LSTM architecture.

Fig. 7. CNN architecture.

extract the information from ht−1 and xt, and combined with
it, ft and ct−1 to get the new cell state ct. An “Output gate
layer”, ot, acts as a filter to extract the information from the
cell state to produce the output. More specifically, ft, it, ct,
ot, and ht are updated as follows:

ft = σ(Wfc ◦ ct−1 +Wfhht−1 +Wfxxt + bf), (2)
it = σ(Wic ◦ ct−1 +Wihht−1 +Wixxt + bi), (3)
ct = ft ◦ ct−1 + it ◦ tanh(Wchht−1 +Wcxxt + bc), (4)
ot = σ(Woc ◦ ct +Wohht−1 +Woxxt + bo), (5)
ht = ot ◦ tanh(ct), (6)

where ◦ denotes the Hadamard product.

B. Convolutional Neural Network

Since neighboring locations may share similar travel de-
mand patterns, adjacent grid cells may have certain spatial
correlations. Handling the travel demand with RNN-LSTM
alone may overlook this spatial information. One popular
architecture to capture such high dimensional spatial infor-
mation is CNN, which has been applied with great success to
many challenging computer vision problems, such as object
detection and recognition. CNN consists of a number of
convolutional and pooling layers followed by a fully connected
layer at the end of the network. A convolutional layer is used
to extract high-dimensional features. It has k kernels of size
n-by-n as filters, each of which computes the dot product
between the weights of the kernel and a small part of the
input until it slices through the whole image. A pooling layer
performs subsampling of the image, where the max operation
is a typical pooling method that selects the maximum value for
each m-by-m pixel. The fully connected layer computes the
output based on the extracted features from the convolutional
and pooling layers. Fig. 7 shows a typical CNN for image
classification.

Fig. 8. ConvLSTM architecture.

C. Convolutional LSTM Network

Convolutional LSTM Network (ConvLSTM) [55] contains
hidden state and cell state units and preserves the ability of
LSTM to store the extracted information. In LSTM, the input
and hidden states are multiplied by the weights. However, in
ConvLSTM, instead of multiplying input and hidden states by
the weights directly, we perform convolution with the weights
as well. Fig. 8 shows the architecture of ConvLSTM and the
key equations are as follows:

ft = σ(Wfc ◦ ct−1 +Wfh ∗ ht−1 +Wfx ∗ xt + bf), (7)
it = σ(Wic ◦ ct−1 +Wih ∗ ht−1 +Wix ∗ xt + bi), (8)
ct = ft ◦ ct−1 + it ◦ tanh(Wch ∗ ht−1 +Wcx ∗ xt + bc),

(9)
ot = σ(Woc ◦ ct +Woh ∗ ht−1 +Wox ∗ xt + bo), (10)
ht = ot ◦ tanh(ct), (11)

where ◦ and ∗ denote the Hadamard product and the convolu-
tion operator, respectively. In this way, the spatial correlation
of data can also be considered in the prediction. Note that
ConvLSTM can be reduced to RNN-LSTM by setting the
kernel size to 1× 1.

D. Multi-Scale Network

The pooling layer is important for CNN to extract the
features from the input as different features can be extracted
from adjacent grid cells in different resolutions using a fixed
size of kernel. However, the pooling function is missing in
ConvLSTM since the output of ConvLSTM has the same
resolution as the input and the data flow in ConvLSTM is
similar to that in LSTM. Therefore, without the pooling layer,
the convolution in ConvLSTM can only account for short-
range spatial correlation and only data of the same resolution
can be considered. If lower-resolution data is inputted to the
model, long-range spatial correlation can only be considered
by the kernel with same size. To address this issue, we convert
the model into a multi-scale network by inputting lower-
resolution versions of the same set of data [57]. A pixel in
lower resolution data is combined with several nearby pixels
of higher resolution data. Thus, the pixels in high-resolution
data are condensed resulting in fewer pixels for the low-
resolution data. Hence, with the same kernel size, more pixels

7

can be considered, which works like a pooling layer. Let
λs be the resolution of the input data, for s = 1, 2, . . . , S,
where s and S are the resolution index and the highest
resolution index, respectively. Let Xλs−1 and Y λs−1 be the
lower resolution data sets of Xλs and Y λs , respectively,
where Xλs = {xλs1 , . . . , xλsT−1, x

λs
T } is the historical data

and Y λs = {yλsT+1} is the future value. We aim to predict
future demand, Y λS , with input data in different resolutions,
{Xλ1 , Xλ2 , . . . , XλS}. The input data are prepared by dupli-
cating the data in origin resolution, XλS , and scaling down to
different resolutions. The input data in different resolutions,
{Xλ1 , Xλ2 , . . . , XλS}, are then input to the corresponding
layers of the model. The prediction of Y λS is computed by:

Ŷ λS = ConvLSTM(XλS , up(Ŷ λS−1)), (12)

where ConvLSTM(·) and up(·) are the ConvLSTM network
and upsampling operations, respectively.

E. Multi-Scale Convolutional LSTM
We develop our deep learning model MultiConvLSTM for

travel demand and OD predictions by integrating ConvLSTM
with the multi-scale network and Fig. 9 shows its architecture.
The basic unit in the model is ConvLSTM, and there are
multiple ConvLSTMs for different resolutions. They form a
hierarchical structure such that the output of lower-resolution
ConvLSTM is fed to the input of the next level for higher
resolution. Metadata such as time and weather information can
also be input and a fully connected neural network (FCNN) is
used to convert the metadata into predicted output denoted
by ψλS , of the same dimension as the predicted demand,
concatenated with the input data. The function of FCNN is
to convert the potentially useful metadata, such as time and
weather information, into an m × n matrix ψλS . It is in the
same format as xλst , where xλSt is the historical data of travel
demand or matricized OD Tensor in λS resolution. ψλS is
purposely designed to share the same format with xλSt such the
it can be inputted to the final layer of MultiConvLSTM. Such
metadata may contain some hidden information that correlates
with travel demand and OD flows. For example, traffic will be
high during rush hours as people go to work in the morning
and return home in the evening during weekdays. They may
be less willing to go out if the weather is bad.

In order to overcome the degradation of such a deep
network, we employ the technique from deep residual learning
[58], in which the average of ψλS and up(Ŷ λS−1) (i.e. ψ

λS

2 +
up(Ŷ λS−1)

2) are added to the output. ψλS and up(Ŷ λS−1) are
expected to have similar values as the ground truth during
the training process. This allows the ConvLSTM in the last
layer to model the residual, which is easier to be optimized in
the training process, instead of the original predicted future
demand. Although MultiConvLSTM can only predict one
future time-step in each execution, subsequent time-steps can
be predicted by using historical data and the recently predicted
demand as the input.

V. EXPERIMENTS

We evaluate the proposed MultiConvLSTM deep learning
model using the New York taxi dataset [59], which contains the

pickup and dropoff times, and pickup and dropoff locations of
taxi services recorded in New York from January 2009 to June
2015. Every record in the dataset represents a taxi service with
origin, destination, pickup, and dropoff time. The time and
location information is precise to the nearest second and six
decimal places of latitude and longitude format, respectively.
Due to the extremely high resolution of the New York dataset,
our general model cannot process these raw data directly.
Therefore, we pre-process the raw data into the format of
travel demand or OD Tensor for the use of our proposed model
which is in lower resolution according to the Section III-A2
and III-B4, respectively. There are around 400 million taxi
traveling records. The duration of one time-step is set to 10
minutes. We extract 80% of the data as training data while
the rest are for testing. The experiments are divided into two
parts for travel demand and OD flows predictions.

Three commonly used performance metrics are used in
our study: root mean square error (RMSE), mean absolute
error (MAE) and symmetric mean absolute percentage error
(SMAPE), which are computed as follows:

RMSE(y, ŷ) =

√√√√ 1

N

N∑
i=1

(y − ŷ)2 (13)

MAE(y, ŷ) =
1

N

N∑
i=1

|y − ŷ| (14)

SMAPE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi|
yi + ŷi + c

, (15)

where yi and ŷi are the ground truth and predicted values,
respectively, and c is a positive constant to avoid division
by zero as yi + ŷi in the denominator may equal to zero. A
common practice is to set c = 1, as indicated in [60]. Hence,
we follow this practice in our simulation. All the models were
developed using Tensorflow [61] and Python. The experiments
are run on a GPU machine with GeForce GTX 1080 Ti. The
default values of different parameters are summarized in Table
I. The hyperparameters are selected by trial-and-error. We
have tested several commonly used hyperparameter values and
selected the one with the best performance. For example, we
test the performance with kernel size of 1×1, 3×3 and 5×5
and determine 3× 3 as the best kernel size for the models.

A. Travel Demand Prediction

Fig. 10 shows the region in Manhattan selected for the study.
It is divided into 28×20 grid cells, each of which has an area
of 220 × 170 m2. The time-steps of MultiConvLSTM is 12.
The kernel size is 3×3. Three levels of resolutions are used,
including 28× 20, 14× 10 and 7× 5. The following models
are also used to compare with MultiConvLSTM to evaluate
the performance:

1. Autoregressive Integrated Moving Average (ARIMA)
[15]: a well known statistical analysis method for time
series data.

2. FCNN [62]: two hidden layers with 256 hidden units in
each layer.

8

Fig. 9. MultiConvLSTM architecture.

TABLE I
DEFAULT VALUE OF DIFFERENT PARAMETERS IN THE EXPERIMENTS.

Parameters Definition Value

m× n Grid cells arrangement 28× 20

N Number of grid cells 560

τg Length of a time-step 10 mins

τ Number of time-steps to be predicted 12

S Highest resolution index of MultiConvLSTM 3

T Number of input historical time-steps 12

c Positive constant in SMAPE 1

Kernel size 3× 3

Learning rate of Adam 0.001

Batch size 50

3. CNN [37]: Four convolutional layers with filters size of
16, 32, 16, 1. The kernel size is 3× 3.

4. RNN-LSTM [56]: 12 time-step input and the input data of
each time-step composed of demand data and metadata.

5. ConvLSTM [55]: 12 time-steps input and 3×3 kernel
size.

The activation function used in the models is RELU except
the one in between the fully connected layers which is sigmoid.
Mean square error (MSE) is used as the loss function for all
the models except ARIMA for training:

MSE(y, ŷ) =
1

N

N∑
i=1

(y − ŷ)2, (16)

where N is the total number of grid cells. The training
algorithm is Adam optimization [63] with 0.001 learning rate.
The batch size is set to 50 and the number of training steps is
set to 100,000 where one training step (also called iteration)
represents a parameters update process. We consider time
information metadata, represented as a 5-tuple vector 〈month,
day, hour, minute, day of week〉. All the experimental results
in the following sections are the average value of predictions
using 10,000 testing data.

1) One-step prediction: Table II shows the RMSE, MAE
and SMAPE results of different methods for predicting one
future time-step, i.e., τ = 1. ARIMA provides the baseline per-
formance in time-series analysis. Although FCNN and CNN

Fig. 10. Selected region in Manhattan.

are powerful for classification in general, their performances
are not satisfactory for travel demand prediction. We can see
that MultiConvLSTM achieves the lowest RMSE (1.5405),
MAE (0.9255) and SAMPE (0.1663) among all the methods.
ConvLSTM and RNN-LSTM have similar performance. We
may calculate the prediction accuracy by (1 – SMAPE) from
the results shown in Tables II. The accuracy of our proposed
model MultiConvLSTM is 1 - 0.1663 = 83.37%, which
outperforms that of RNN-LSTM (1 - 0.1766 = 82.34%) by
1.03% as shown in Table II. As discussed in Section IV-C,
ConvLSTM can be reduced to RNN-LSTM by setting the
kernel size to 1 × 1. The kernel size is set as 3 × 3 of
ConvLSTM in this experiment which only accounts for short
range dependence and thus, the results computed by RNN-
LSTM and ConvLSTM are similar. The performance is further
improved with MultiConvLSTM since it can account for long-
range dependence even with the same kernel size of 3 × 3.

2) Multi-step prediction: The length of a time-step in our
experiment is 10 minutes which may not be appropriate for
some applications. Demand in more distant future may also be
more useful for certain applications. Subsequent time-steps can
be predicted by using historical data and the recently predicted
demand as the input. Figs. 11(a), 11(b) and 11(c) show the
multi-step prediction errors, RMSE, MAE and SMAPE of
different models, respectively, in which 12 future time-steps

9

TABLE II
TRAVEL DEMAND PREDICTION ERRORS OF DIFFERENT PREDICTION

MODELS FOR τ = 1.

RMSE MAE SMAPE

FCNN 1.9609 1.1337 0.2140

CNN 1.8561 1.1252 0.1949

ARIMA 1.7671 1.0711 0.1840

RNN-LSTM 1.6243 0.9682 0.1766

ConvLSTM 1.6485 0.9825 0.1776

MultiConvLSTM 1.5405 0.9255 0.1663

TABLE III
AVERAGE TRAVEL DEMAND PREDICTION ERROR FOR 12 STEPS

PREDICTION OF DIFFERENT PREDICTION MODELS

RMSE MAE SMAPE

FCNN 2.6893 1.6066 0.3002

CNN 2.2625 1.3061 0.2134

ARIMA 2.0774 1.2168 0.2050

RNN-LSTM 2.3295 1.4450 0.2700

ConvLSTM 1.7645 1.0328 0.1828

MulitConvLSTM 1.6683 0.9764 0.1720

(a total of 2 hours) are considered for all methods. Table III
shows the average RMSE, MAR and SMAPE for 12 time-
steps of different models. In general, the errors of all models
increase with more time-steps due to error accumulation.
Our proposed model, MultiConvLSTM, achieves the lowest
RMSE, MAE and SMAPE in prediction for all time-steps.
While RNN-LSTM is the second best in one-step prediction,
the error increases and accumulates dramatically with more
time-steps. It is because RNN-LSTM focuses on temporal
prediction only. Even when metadata are concatenated with
demand data as the input, the prediction still mainly depends
on the historical data. When noise and error are present in
the historical data, RNN-LSTM cannot identify and filter out
the noise. As a result, the error accumulates in multi-step
prediction. On the other hand, the errors of MultiConvLSTM
and ConvLSTM increase sightly in multi-step prediction. They
can extract both temporal and spatial features from historical
data and metadata for prediction and account for the demand
in time and space. Even though noise and error appear in
historical data, their effect can be suppressed.

3) Time of Day: The prediction error varies with differ-
ent times of day. We investigate the relationship between
prediction error and the average number of travel requests.
The average prediction error of specific time and average
number of travel requests are shown in Fig. 12. As shown
in the figure, the error is proportional to the average number
of travel requests. The number of travel requests illustrate
human mobility, where two travel demand valleys and one
peak appeared in 4-5am and 4pm, and 7pm, respectively. The
higher the travel demand, the higher the prediction error.

4) Day of Week: Similar to the experiment on Time of Day,
prediction error and the average number of travel requests vary
with different days of a week. Fig. 13 shows the prediction er-
ror and the average number of travel requests by day of week.

TABLE IV
TRAVEL DEMAND PREDICTION ERRORS WITH AND WITHOUT TIME

INFORMATION FOR τ = 1.

Model With time info? RMSE MAE SMAPE

RNN-LSTM
No 1.7439 1.0224 0.1911
Yes 1.6243 0.9682 0.1766

ConvLSTM
No 1.6616 0.9980 0.1811
Yes 1.6485 0.9825 0.1776

MulitConvLSTM
No 1.6107 0.9723 0.1789
Yes 1.5405 0.9255 0.1663

As expected, the number of travel requests is higher on Friday
and Saturday while it is the lowest on Monday. The trend of
prediction error and number of travel requests is consistent.
In other words, as the number of travel requests increases, the
performance of the model degrades. The conclusion may not
be related to the noise of the data, the model architecture, or
the processing techniques. We suggest it is due to the sparsity
of the dataset. When we reduce the resolution of the dataset
temporally and spatially, the matrices contain many zeroes and
small numbers for travel demand. Given such sparse matrices
as the training set for the deep learning model, we expect a
small bias toward zero for the prediction. Hence, the lower the
number of travel requests, the lower the prediction error.

5) Effect of time information: The time information is used
as the metadata incorporated in the deep learning models in
Sections V-A1 to V-A4. As discussed, it is converted to an m×
n matrix ψλS , which share the same format as of xλSt . Such
metadata may contain some hidden information that correlates
with travel demand and OD flows. For example, traffic will be
high during rush hours as people go to work in the morning
and return home in the evening during weekdays. They may
be less willing to go out if the weather is bad. We investigate
the effect of incorporating the time information as input to the
deep learning models for travel demand prediction. Table IV
shows the travel demand prediction errors of different deep
learning models with and without the metadata. In general,
the travel demand prediction accuracy without the metadata
are lower than that with the metadata. For simplicity, weather
data is not in this work. However, [64] showed that adding
weather to traffic flow prediction can improve the prediction
accuracy. Hence, we can conclude that including relevant data
to the deep learning model can improve the travel demand
prediction accuracy.

B. OD Flow Prediction

The region selected in Section V-A is also considered for
OD flow prediction. However, due to the high dimensionality
of OD flows, the region is re-divided into 8 × 4 grid cells
instead, resulting in an OD matrix and matricized OD Tensor
with 1024 elements. Other hyper parameters and training
methods of MultiConvLSTM follow those utilized in Sec-
tion V-A. In addition, the-state-of-the-art non-deep learning
method called Nonnegative Matrix Factorization AutoRegres-
sive (NMF-AR) [35] is reproduced for comparison. We follow
the parameters setting given in [35] where the number of basic

10

(a) RMSE (b) MAE (c) SMAPE

Fig. 11. Multi-step error of travel demand prediction.

Fig. 12. Average travel demand prediction error by time of day.

Fig. 13. Average travel demand prediction error of by day of week.

patterns and the order of autoregressive model are equal to 6
and 2, respectively.

1) One step prediction: Table V shows the RMSE, MAE
and SMAPE results of different methods for predicting one
future time-step, i.e., τ = 1. Among all the compared
methods, MultiConvLSTM with matricized OD Tensor input
achieves the best prediction accuracy in terms of all three
performance metrics (RMSE: 0.9899; MAE: 0.6015; SMAPE:
0.1723). Even without the permutation and matricization in
pre-processing, prediction based on traditional data structure

TABLE V
OD FLOWS PREDICTION ERRORS OF DIFFERENT PREDICTION MODELS FOR

τ = 1.

RMSE MAE SMAPE

ARIMA 1.7796 0.9620 0.2686

FCNN 1.2809 0.7168 0.2079

CNN 1.2171 0.7524 0.2037

NMF-AR 1.2319 0.6910 0.1867

RNN-LSTM 1.1208 0.6470 0.1873

ConvLSTM 1.0876 0.6367 0.1826

MultiConvLSTM (OD matrix) 1.0229 0.6242 0.1807

MultiConvLSTM (OD Tensor) 0.9899 0.6015 0.1723

(OD matrix) with MultiConvLSTM can still outperform all
other methods including the-state-of-the-art NMF-AR. We
may calculate the prediction accuracy by (1 – SMAPE) from
the results shown in Table V. The accuracy is 1 - 0.1723 =
82.77% using MultiConvLSTM with OD tensor method as
shown in Table V. This is better than those by ConvLSTM
(1-0.1826 = 81.74%) and MultiConvLSTM with OD matrix
method (1 - 0.1807 = 81.93%) by 1.03% and 0.84%, respec-
tively. In addition, the training times of the machine learning
methods are provided in Table VI. The time required to convert
the OD flows to tensor form is basically negligible as it only
takes around thirty milliseconds for each time-step. However,
in practice training is usually done before implementation in
real systems. The length of training time will not affect the
actual prediction of the well trained model. Therefore, there is
almost no significant difference in computational cost between
the compared machine learning methods when the model is
ready for prediction.

2) Multi-step prediction: Similar to travel demand predic-
tion, we predict subsequent time-steps by using historical data
and the recently predicted OD flows as the input. Figs. 14(a),
14(b), and 14(c) show the multi-step prediction errors, RMSE,
MAR and SMAPE, of different models, respectively, in which
12 future time-steps (a toal of 2 hours) are considered for
all methods. We can see that MultiConvLSTM performs the
best among all compared methods for all time-steps with
respect to RMSE, MAE, and SMAPE. With the additional
permutation and matricization to pre-process the OD Tensor,

11

TABLE VI
TRAINING TIME OF DIFFERENT PREDICTION MODEL.

Training time (s)

FCNN 2.0× 105

CNN 1.7× 105

RNN-LSTM 2.0× 105

ConvLSTM 2.3× 105

MultiConvLSTM (OD matrix) 2.5× 105

MultiConvLSTM (OD Tensor) 2.5× 105

TABLE VII
AVERAGE OD FLOWS PREDICTION ERROR FOR 12 STEPS PREDICTION OF

DIFFERENT PREDICTION MODELS.

RMSE MAE SMAPE

ARIMA 1.8004 0.9710 0.2711

FCNN 1.6564 0.9062 0.2557

CNN 1.3445 0.8051 0.2132

NMF-AR 1.2444 0.6981 0.1905

RNN-LSTM 1.3154 0.7883 0.2244

ConvLSTM 1.1131 0.6552 0.1869

MultiConvLSTM (OD matrix) 1.0500 0.6373 0.1835

MultiConvLSTM (OD Tensor) 1.0157 0.6202 0.1768

the accuracy is further improved. We can also see that NMF-
AR has a valley shape and reaches its minimum point among
its 12 predicted time-steps at about 3 to 5 future time-steps
while other prediction methods incur increasing errors with
increasing time steps. The average prediction error for 12
steps is shown in Table VII. Although errors are generally
accumulated with more time-steps, the increment in error of
our methods is still smaller than other methods.

3) Time of Day: We analyze the variation in prediction error
with different times of day with respect to OD flows. The
average number of travel requests and prediction error vary
during the day as shown in Fig. 15. In particular, there are
two valleys at 4-5am and 4pm, and a peak at 7pm, which
aligned with travel demand discussed in Section V-A3. The
prediction error is also proportional to the number of travel
demand. The higher the number of travel requests, the higher
the prediction error.

4) Day of Week: Similarly, the relationship between the
number of travel requests and prediction error are illustrated
in Fig. 16. The prediction error is proportional to the number
of travel requests. The higher the number of travel requests,
the higher the prediction error. Similar to travel demand
prediction, we suggest it is due to the sparsity of the dataset.
When we reduce the resolution of the dataset temporally and
spatially, the matrices contain many zeroes and small numbers
for OD flows. Given such sparse matrices as the training set for
the deep learning model, we expect a small bias toward zero
for the prediction. Hence we can conclude that the prediction
error is proportional to the number of travel requests.

5) Effect of time information: The time information is
used as the metadata that incorporated in the deep learning
models in Section V-B1 to V-B4. We investigate the effect

TABLE VIII
OD FLOW PREDICTION ERRORS WITH AND WITHOUT TIME INFORMATION

FOR τ = 1.

Model With time info? RMSE MAE SMAPE

RNN-LSTM
No 1.2044 0.6781 0.1936
Yes 1.1208 0.6470 0.1873

ConvLSTM
No 1.1815 0.6738 0.1933
Yes 1.0876 0.6367 0.1826

MulitConvLSTM
No 1.0524 0.6434 0.1852
Yes 0.9899 0.6015 0.1723

of incorporating the time information as input to the deep
learning models for OD flows prediction. Table VIII shows the
OD flow prediction error of different deep learning model with
and without metadata. The OD flow prediction accuracy of
deep learning models without the metadata are lower than that
with the metadata. Hence, we can conclude that incorporating
some relevant data to the deep learning model can improve
the OD flow prediction accuracy.

VI. CONCLUSION

In most existing on-demand transportation services, pas-
sengers have to wait until the assigned vehicles arrive at the
passengers’ pick up points. In order to reduce the unnecessary
waiting time, we propose a new deep learning model Multi-
ConvLSTM to accurately predict the future travel demand and
OD flows, such that unoccupied vehicles can be pre-allocated
to potential customers’ origin of service. MultiConvLSTM
is designed based on the multi-scale network and ConvL-
STM, and it can extract both temporal and spatial features
from historical data and metadata to predict future demand
and OD flows. The travel demand and OD flow prediction
problems are presented and pre-processing methods for both
the travel demand and OD flows are discussed. To preserve
geographical information, we propose a novel data structure
called OD Tensor to store the OD flows and apply permutation
and matricization to OD Tensor for dimension reduction.
Experiments on real-world New York transportation dataset
with around 400 million records show that MultiConvLSTM
outperforms the existing prediction methods in both one-step
and multiple-step predictions. The OD Tensor permutation and
matricization method can help the deep learning model achieve
higher prediction accuracy when compared to the traditional
OD matrix representation.

In the future, additional data analyzing methods can be
applied to the OD Tensor to study the OD flows. Besides,
a re-balancing strategy is worth investigation to further re-
duce the waiting time. Optimizing the operational efficiency
by alternating the travel strategies with the consideration of
predicted OD flows is another potential application.

REFERENCES

[1] K. F. Chu, A. Y. S. Lam, and V. O. K. Li, “Travel demand prediction
using deep multi-scale convolutional LSTM network,” in Proc. 21st
IEEE Int. Conf. on Intell. Transp. Syst., Nov 2018, pp. 1402–1407.

[2] Uber. (2018) Uber. [Online]. Available: https://www.uber.com/
[3] Lyft. (2018) Lyft. [Online]. Available: https://www.lyft.com/

12

(a) RMSE (b) MAE (c) SMAPE

Fig. 14. Multi-step error of OD flows prediction.

Fig. 15. Average OD flows prediction error by time of day.

Fig. 16. Average OD flows prediction error by day of week.

[4] A. Y. S. Lam, “Combinatorial auction-based pricing for multi-tenant
autonomous vehicle public transportation system,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 3, pp. 859–869, March 2016.

[5] A. Y. S. Lam, Y. W. Leung, and X. Chu, “Autonomous-vehicle public
transportation system: Scheduling and admission control,” IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 5, pp. 1210–1226, May 2016.

[6] L. Rayle, D. Dai, N. Chan, R. Cervero, and S. Shaheen, “Just a
better taxi? a survey-based comparison of taxis, transit, and ridesourcing
services in san francisco,” Transport Policy, vol. 45, pp. 168 – 178, 2016.

[7] S. Sukkarieh, E. M. Nebot, and H. F. Durrant-Whyte, “A high integrity
imu/gps navigation loop for autonomous land vehicle applications,”
IEEE Trans. Robot. Autom., vol. 15, no. 3, pp. 572–578, Jun 1999.

[8] K. F. Chu, E. R. Magsino, I. W.-H. Ho, and C.-K. Chau, “Index coding
of point cloud-based road map data for autonomous driving,” in Proc.
2017 IEEE 85th Veh. Technol. Conf., June 2017, pp. 1–7.

[9] S. S. M. Ali, B. George, L. Vanajakshi, and J. Venkatraman, “A multiple
inductive loop vehicle detection system for heterogeneous and lane-less
traffic,” IEEE Trans. Instrum. Meas., vol. 61, no. 5, pp. 1353–1360, May
2012.

[10] J. Zhang, F. Y. Wang, K. Wang, W. H. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 4, pp. 1624–1639, Dec 2011.

[11] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” J. of artificial intelligence research, vol. 31,
pp. 591–656, 2008.

[12] K. F. Chu, A. Y. S. Lam, and V. O. K. Li, “Dynamic lane reversal routing
and scheduling for connected autonomous vehicles,” in Proc. 3rd IEEE
Annu. Int. Smart Cities Conf., Sept 2017, pp. 1–6.

[13] A. Y. S. Lam, K. C. Leung, and V. O. K. Li, “Vehicular energy network,”
IEEE Trans. Transport. Electrific., vol. 3, no. 2, pp. 392–404, June 2017.

[14] T. Abrahamsson, “Estimation of origin-destination matrices using traffic
counts-a literature survey,” 1998.

[15] G. E. P. Box and D. A. Pierce, “Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models,” J. of
the American Statistical Assoc., vol. 65, no. 332, pp. 1509–1526, 1970.

[16] X. Li, G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, and Z. Wang,
“Prediction of urban human mobility using large-scale taxi traces and
its applications,” Frontiers of Comput. Sci., vol. 6, no. 1, pp. 111–121,
Feb 2012.

[17] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi-passenger demand using streaming data,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1393–1402, Sept
2013.

[18] N. Davis, G. Raina, and K. Jagannathan, “A multi-level clustering
approach for forecasting taxi travel demand,” in Proc. IEEE 19th Int.
Conf. on Intell. Transp. Syst., Nov 2016, pp. 223–228.

[19] K. Zhao, D. Khryashchev, J. Freire, C. Silva, and H. Vo, “Predicting taxi
demand at high spatial resolution: Approaching the limit of predictabil-
ity,” in Proc. IEEE Int. Conf. on Big Data, Dec 2016, pp. 833–842.

[20] K. Zhang, Z. Feng, S. Chen, K. Huang, and G. Wang, “A framework
for passengers demand prediction and recommendation,” in Proc. IEEE
Int. Conf. on Services Computing, June 2016, pp. 340–347.

[21] L. G. Willumsen, “Estimation of an od matrix from traffic counts–a
review,” 1978.

[22] H. Yang and J. Zhou, “Optimal traffic counting locations for origin–
destination matrix estimation,” Transp. Res. Part B: Methodological,
vol. 32, no. 2, pp. 109–126, 1998.

[23] M. A. Munizaga and C. Palma, “Estimation of a disaggregate multimodal
public transport origin–destination matrix from passive smartcard data
from santiago, chile,” Transp. Res. Part C: Emerging Technologies,
vol. 24, pp. 9–18, 2012.

[24] J. Barceló, L. Montero, L. Marqués, and C. Carmona, “Travel time fore-
casting and dynamic origin-destination estimation for freeways based on
bluetooth traffic monitoring,” Transp. Res. Rec.: J. of the Transp. Res.
Board, no. 2175, pp. 19–27, 2010.

[25] F. Calabrese, G. D. Lorenzo, L. Liu, and C. Ratti, “Estimating origin-
destination flows using mobile phone location data,” IEEE Pervasive
Computing, vol. 10, no. 4, pp. 36–44, April 2011.

[26] J. Farzin, “Constructing an automated bus origin-destination matrix
using farecard and global positioning system data in sao paulo, brazil,”
Transp. Res. Rec.: J. of the Transp. Res. Board, no. 2072, pp. 30–37,
2008.

13

[27] J. Tang, F. Liu, Y. Wang, and H. Wang, “Uncovering urban human mo-
bility from large scale taxi gps data,” Physica A: Statistical Mechanics
and its Appl., vol. 438, pp. 140–153, 2015.

[28] Y. Yue, Y. Zhuang, Q. Li, and Q. Mao, “Mining time-dependent
attractive areas and movement patterns from taxi trajectory data,” in
Proc. 2009 17th Int. Conf. on Geoinformatics, Aug 2009, pp. 1–6.

[29] Z. Deng and M. Ji, “Spatiotemporal structure of taxi services in
shanghai: Using exploratory spatial data analysis,” in Proc. 2011 19th
Int. Conf. on Geoinformatics, June 2011, pp. 1–5.

[30] M. Bierlaire and F. Crittin, “An efficient algorithm for real-time estima-
tion and prediction of dynamic od tables,” Operations Research, vol. 52,
no. 1, pp. 116–127, 2004.

[31] J. Barceló Bugeda, L. Montero Mercadé, M. Bullejos, O. Serch, and
C. Carmona, “A kalman filter approach for the estimation of time
dependent od matrices exploiting bluetooth traffic data collection,” in
Proc. of Transp. Res. Board 91st Annu. Meeting, 2012, pp. 1–16.

[32] E. Cipriani, M. Florian, M. Mahut, and M. Nigro, “A gradient approx-
imation approach for adjusting temporal origin–destination matrices,”
Transp. Res. Part C: Emerging Technologies, vol. 19, no. 2, pp. 270 –
282, 2011.

[33] A. Tympakianaki, H. N. Koutsopoulos, and E. Jenelius, “c-spsa: Cluster-
wise simultaneous perturbation stochastic approximation algorithm and
its application to dynamic origin–destination matrix estimation,” Transp.
Res. Part C: Emerging Technologies, vol. 55, pp. 231 – 245, 2015.

[34] T. Djukic, G. Flötteröd, H. van Lint, and S. Hoogendoorn, “Efficient
real time od matrix estimation based on principal component analysis,”
in Proc. 15th Int. IEEE Conf. on Intell. Transp. Syst., Sept 2012, pp.
115–121.

[35] X. Li, J. Kurths, C. Gao, J. Zhang, Z. Wang, and Z. Zhang, “A hybrid
algorithm for estimating origin-destination flows,” IEEE Access, vol. 6,
pp. 677–687, 2018.

[36] J. Ren and Q. Xie, “Efficient od trip matrix prediction based on tensor
decomposition,” in Proc. 2017 18th IEEE Int. Conf. on Mobile Data
Management, May 2017, pp. 180–185.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Advances in Neural
Inform. Process. Syst. Curran Associates, Inc., 2012, pp. 1097–1105.

[38] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov 2012.

[39] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[40] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[41] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841–851, Jan 2019.

[42] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[44] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic
flow prediction: Deep belief networks with multitask learning,” IEEE
Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2191–2201, Oct 2014.

[45] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 865–873, April 2015.

[46] X. Ma, H. Yu, Y. Wang, and Y. Wang, “Large-scale transportation
network congestion evolution prediction using deep learning theory,”
PLOS ONE, vol. 10, no. 3, pp. 1–17, 03 2015.

[47] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network for
structural prediction and lane detection in traffic scene,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 690–703, March 2017.

[48] M. Bojarski et al., “End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

[49] ——, “Explaining how a deep neural network trained with end-to-end
learning steers a car,” arXiv preprint arXiv:1704.07911, 2017.

[50] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. Int. Conf. on
Learning Representations, 2018.

[51] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut, “Real-time prediction
of taxi demand using recurrent neural networks,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 8, pp. 2572–2581, Aug 2018.

[52] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber,” in Proc. Int. Conf. on
Machine Learning Time Series Workshop, 2017.

[53] Y. Bai, Z. Sun, B. Zeng, J. Deng, and C. Li, “A multi-pattern deep
fusion model for short-term bus passenger flow forecasting,” Applied
Soft Computing, vol. 58, Sept 2017.

[54] H. Yao et al., “Deep multi-view spatial-temporal network for taxi
demand prediction,” in Proc. of AAAI Conf. on Artificial Intelligence,
2018.

[55] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C.
Woo, “Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” in Proc. Advances in Neural Inform. Process.
Syst., 2015, pp. 802–810.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[57] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” arXiv preprint arXiv:1511.05440,
2015.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. 2016 IEEE Conf. on Comput. Vision and Pattern
Recognition, June 2016, pp. 770–778.

[59] New York City. (2017, Oct.) New york city open data. [Online].
Available: https://opendata.cityofnewyork.us/

[60] E. T. Jaynes, Probability theory: the logic of science. Cambridge
university press, 2003.

[61] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[62] R. J. Schalkoff, Artificial neural networks. McGraw-Hill New York,
1997, vol. 1.

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[64] A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic flow pre-
diction with weather information in connected cars: A deep learning
approach,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9508–9517,
Dec 2016.

Kai-Fung Chu (S’17) received the B.Eng. (First
Class Honors) and M.Sc. degrees both in electronic
and information engineering from The Hong Kong
Polytechnic University, Hong Kong, in 2013 and
2016, respectively. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Electronic Engineering, The University of Hong
Kong, Hong Kong. He was a Project Engineer
from 2013 to 2016. His research interests include
deep learning and reinforcement learning, artificial
intelligence, distributed control, optimization, and

intelligent transportation systems.

Albert Y.S. Lam (S’03–M’10–SM’16) received the
BEng degree (First Class Honors) in Information
Engineering and the PhD degree in Electrical and
Electronic Engineering from the University of Hong
Kong (HKU), Hong Kong, in 2005 and 2010, re-
spectively. He was a postdoctoral scholar at the
Department of Electrical Engineering and Computer
Sciences of University of California, Berkeley, CA,
USA, in 2010-–12. Now he is the Chief Scientist
and the Chief Technology Officer at Fano Labs, and
an adjunct assistant professor at the Department of

Electrical and Electronic Engineering of HKU. He is a Croucher research
fellow. His research interests include optimization theory and algorithms,
artificial intelligence, smart grid, and smart city.

14

Victor O.K. Li (S’80-–M’81-–F’92) received SB,
SM, EE and ScD degrees in Electrical Engineering
and Computer Science from MIT. Prof. Li is Chair
of Information Engineering and Cheng Yu-Tung Pro-
fessor in Sustainable Development at the Department
of Electrical & Electronic Engineering (EEE) at the
University of Hong Kong. He is the Director of
the HKU-Cambridge Clean Energy and Environment
Research Platform, and of the HKU-Cambridge AI
to Advance Well-being and Society Research Plat-
form, which are interdisciplinary collaborations with

Cambridge University. He was the Head of EEE, Assoc. Dean (Research)
of Engineering and Managing Director of Versitech Ltd. He serves on the
board of Sunevision Holdings Ltd., listed on the Hong Kong Stock Exchange
and co-founded Fano Labs Ltd., an artificial intelligence (AI) company with
his PhD student. Previously, he was Professor of Electrical Engineering at
the University of Southern California (USC), Los Angeles, California, USA,
and Director of the USC Communication Sciences Institute. He served as
Visiting Professor at the Department of Computer Science and Technology
at the University of Cambridge from April to August 2019. His research
interests include big data, AI, optimization techniques, and interdisciplinary
clean energy and environment studies. In Jan 2018, he was awarded a USD
6.3M RGC Theme-based Research Project to develop deep learning techniques
for personalized and smart air pollution monitoring and health management.
Sought by government, industry, and academic organizations, he has lectured
and consulted extensively internationally. He has received numerous awards,
including the PRC Ministry of Education Changjiang Chair Professorship at
Tsinghua University, the UK Royal Academy of Engineering Senior Visiting
Fellowship in Communications, the Croucher Foundation Senior Research
Fellowship, and the Order of the Bronze Bauhinia Star, Government of the
HKSAR. He is a Fellow of the Hong Kong Academy of Engineering Sciences,
the IEEE, the IAE, and the HKIE.

