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ABSTRACT In this paper, the problem of image speckle removal is addressed. To alleviate the pepper—salt
remainder in the speckled image, we propose to utilize the nonlocal means filtering, where the weighting
coefficients are derived based on the maximum a posteriori estimation with the total variation image prior.
As aresult, the objective function of the pixel fitting term plus the total variation regularizer is formulated, and
it is solved with the majorization—minimization approach. To avoid the computationally intractable step size
selection in the huge-scale gradient-based optimization, we split and solve the variables in the pixel fitting
term and regularizer by means of the alternating direction method of multipliers. Performance analysis is
performed for the Rayleigh and Gamma distributed signal models. The simulation and experimental results
show the superior performance compared with other image despeckling methods in terms of various metrics
and visual perception.

INDEX TERMS Nonlocal means filtering, speckle, maximum a posteriori estimation, total variation image

prior, majorization-minimization approach, alternating direction method of multipliers.

I. INTRODUCTION
Speckle noise affects the coherent imaging systems [1],

such as ultrasound imaging (UI) [2], laser speckle imaging
(LSI) [3], synthetic aperture radar (SAR) [4], etc. In these
systems, the intensity scattered by the areas corresponding to
the limited sensor resolution and averaged when sampled by
the sensor results in a random granular pattern. Commonly,
the speckle noise is modeled as multiplicative. In order to
extract information from the acquired image in a statistically
efficient way, it is essential to remove such noise as much
as possible while recovering the signal features of interest,
which is our motivation of the despeckling research.
Satisfactory speckle suppression is expected to possess the
following properties:
« speckle reduction in the intensity/amplitude homoge-
neous areas;
o feature preservation (such as edges and delicate
textures);
« spatial resolution preservation.
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Recently, there have been proposed several kinds of
methods [5]-[14] to track the problem of despeckling, which
can be categorized into three aspects: 1) subspace-based
thresholding; 2) transform domain coefficient estimation and
shrinkage; 3) spatial domain filtering. Reference [5] is a
typical article regarding the despeckling with the subspace-
based thresholding, which consists of conducting singular
value decomposition (SVD) for the speckled image, elim-
inating the components from the image space correspond-
ing to the minor singular values, and recovering the image
from a “‘cleaner space”. However, for the speckle noise
such as Rayleigh and Gamma distributed, the assumption
of low noise level is not convincingly true, which makes
the methods with the subspace-based thresholding not sta-
tistically efficient for despeckling. In the last decade, there
have been proposed many algorithms for image denoising
and despeckling in the transform domain, especially in the
wavelet domain [6]-[10]. Basically, this class of methods
consist of applying some transform to the image observation,
estimating the transform-domain coefficients and design-
ing the strategy to modify or threshold these coefficients,
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and restoring the image with the inverse transform. Since
most of these methods are only applicable to the additive
noise models, the logarithmic transform is usually applied
to the speckled images prior to the despeckling. On one
hand, vast simulation and experimental results have shown
the superiority in the image feature preservation at different
scales. On the other hand, the statistical property of the
speckle noise is changed due to the nonlinear logarithmic
operation. Moreover, the full analysis of the intrascale and
interscale correlations of the transform-domain coefficients
is sophisticated. The consequent inexact modeling of the
image and noise then inevitably affects the performance of
the transform-domain despeckling algorithms.

To avoid the disadvantages of the above despeckling
methods, it is aimed in this paper to focus on the image
despeckling with spatial filtering, which has been widely
applied to the image denoising and despeckling, see [11]—[13]
for the early work. Recently, a cluster-based filtering frame-
work is proposed in [15], [16] for the speckle reduction
in the optical coherence tomography (OCT) images. In this
framework, the image pixels are firstly clustered into sev-
eral regions with similar optical properties. Then, excluding
the effect of the pixels from the other clusters, the locally
adaptive despeckling is applied to each pixel. These methods
[11]-[13], [15], [16] used to conduct adaptive spatial filtering
through the examination of the local statistics surrounding
each pixel, and to take the pixel comparison for weighting.
Nowadays, it is publicly agreed that, these local and pixel-
based methods commonly bear two nasty disadvantages, that
is 1) heavy dependency on the local window size and orien-
tation; and 2) ambiguity and distortion after filtering due to
the limited samples for the local filtering and the instability
of weighting from the pixel comparison. To conquer these
problems, the idea of nonlocal means filtering based on the
patch similarity has been proposed since [14], where the
image “patch” refers to the pixel block centered at some
pixel. The core of nonlocal means filtering is to fit each
pixel with the linear or nonlinear average of the nonlocally
selected pixels and with the weighting based on their patch
comparison. Following [14], precious effort (see [19]-[21],
for example) has been paid to extend such nonlocal means
filtering to despeckling. Regrettably, these nonlocal means
filtering methods are usually dedicated for some specific
speckle models, which narrows down their application range.
Consequently, when encountering a different speckle model,
we will have to pay effort to develop a new scheme for the
sake of despeckling. To lower down the cost of such devel-
opment, it is required to develop a general nonlocal means
filtering-based framework of image despeckling, which is
applicable to different statistical models.

Furthermore, for the speckled image, due to the multi-
plicative noise, its variation is much larger than that of the
additively corrupted image. As a result, the conventional spa-
tial filtering methods, which are designed to tackle additive
noise, act as the weighted average of the selected pixels and
have difficulty in the speckle removal. There still remains
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obvious pepper and salt disturbance in the processed image.
To address this issue, it is necessary to include some regular-
ization into the speckle removal, which is expected to bound
the variation of the despeckled images while preserving the
sharp edges.

To explore the potential capability of the nonlocal
means filtering, we try to construct the general image-
despeckling framework from the viewpoint of the maximum
a posteriori (MAP) estimation. Here, the “‘general” means
that our methodology of speckle removal is not limited to a
specific statistical model of the image speckle. It is known
that the MAP rule, that is to maximize the posterior proba-
bility density function (PDF), is statistically efficient in the
estimation theory [22].

Basically, the posterior PDF of one image is proportional
to the product of its likelihood and prior. Due to the statistical
independence, to maximize the image likelihood means fit-
ting each pixel to its corresponding observation. This is a kind
of single-pixel-sample fitting, and is not statistically efficient.
Motivated by this point, we take advantage of the nonlocal
means filtering, and select the similar patches in a nonlocal
way, to approximate the expectation of the likelihood. Since
one image pixel is fitted to more pixel samples, it is expected
to improve the statistical efficiency of the pixel fitting.

As for the image prior, we apply the total variation (TV)
prior to the original image, which reflects the structure of the
piecewise smooth images [23], such as UI, LSI, SAR, well.
In fact, the TV image prior is utilized in a wide range of image
deblurring and denoising algorithms [23]-[26].

Accordingly, we formulate the image despeckling as an
optimization problem consisting of two parts: the pixel
fitting term and the TV regularization term. Here, it is
proposed to utilize the majorization-minimization (MM)
approach [27], [28] and the alternating direction method of
multipliers (ADMM) [29], [30] to solve the produced huge-
scale nonlinear optimization problem.

To sum up, in this work, we make the novel contributions
as follows:

« Proposing a generalized nonlocal means filtering frame-

work to address the problem of image despeckling.
In this work, we utilize the MAP estimation with the TV
image prior. Consequently, the corresponding problem
formulation consists of two parts: the pixel fitting plus
the TV regularization. Indeed, the TV regularization
has been applied in [31]-[33], etc. to contribute to the
despeckling. Nonetheless, in such works, pixel fitting
is conducted pixel pairwise and thus, in a local way.
Instead, we select the similar patches in a nonlocal
way for the pixel fitting. Simulation and experimental
results demonstrate the image quality improvement of
our despeckling framework.

o Designing the scheme based on the MM approach and
the ADMM to solve the resultant huge-scale nonlin-
ear optimization problem of despeckling. To avoid the
computationally heavy step size selection in the con-
ventional gradient-based optimization, we firstly relax

VOLUME 7, 2019



Z.Zhou et al.: Nonlocal Means Filtering Based Speckle Removal

IEEE Access

this problem as an iterative convex one through the
MM approach, and then utilize the ADMM to split the
variables in the pixel fitting and regularization terms.
The former variables are optimized separately, each with
the golden search method; while the latter ones are
solved as a least squares (LS) solution to the quadratic
optimization problem. Both of these two solutions need
no search for the step size.

It is worth addressing that our nonlocal means filtering
framework is devised in the image’s linear-scale & spatial
domain in this paper. Of course, once the image’s probabilis-
tic distribution in the logarithmic scale or some transform
domain is derived, following the methodology, this frame-
work is still applicable to the different scale or transform
domain.

The rest of this paper is organized as follows. By means
of the MAP estimation and the nonlocal means filtering,
the problem of speckle removal is formulated in Section II.
Meanwhile, its solution is provided by utilizing the MM
approach and the ADMM. Given the specific examples of the
Rayleigh and Gamma distributed signal models, the details
of the problem formulation and its solution are illustrated
in Section III.A and B. Then, simulation and experimental
results are shown in Section III.C and Section IV, respectively,
to evaluate the performance of the proposed method by com-
paring with the state-of-the-art despeckling methods. Finally,
the conclusion is drawn in Section V.

Il. ALGORITHM DEVELOPMENT

A. PROBLEM FORMULATION

Now consider the observed image, whose intensity at the
lexicographically i-th pixel is modeled as

7 = q; - U, (D

fori =1,2,---, N, where u; and g; represent the noiseless
part and corrupting speckle noise of the i-th pixel, respec-
tively, and they are assumed statistically independent of each
other; N denotes the number of the pixels of the image.
Stack z;, g; and u; as the vectors z, q and u, respectively, and
rewrite (1) in the vectorial form as follows:

Zz=qou, 2

where o stands for the operator of Hadamard product.
For the image prior p(u), we adopt the TV function, that is

p(u) ocexp (=ATV (w)), 3

where the TV function is defined as
N
V@) 2 ) /(A2 + (A2, )

with the operators Af’u and AYu denoting the horizontal and
vertical first-order differences at the pixel u;, respectively.
In detail, Alhll = Uj — Up() and Alyll = Ui — Uy(j), with
up(iy and u,(;) denoting the horizontally and vertically nearest
pixels to u;, respectively.
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The objective is to suppress speckle for the image, and
to provide a better peak signal-to-noise ratio (PSNR) and
visual perception. From the viewpoint of statistical signal
processing, the basic idea of spatial-domain image denoising
is to find a statistically efficient estimate of each image pixel
with the use of its relevant counterparts in this image. To serve
this purpose, it is proposed to apply the MAP estimation to
the image despeckling, which aims to maximize the posterior
PDF of the original image u given the observation z:

0 = argmax p(u | z)
u
= argmax L(u | z)p(u), Q)]
u

where L(u | z) = p(z | u) represents the likelihood of u given
the image observation z. This is equivalent to minimizing the
negative logarithm of p(u | z) as follows:

A

u = argmin — logp(z | u) + ATV (u)
u
£ arg min f (u, z). (6)
u

Here, it is assumed that the speckle noise ¢; is independent
and identically distributed (i.i.d.). As a result, (6) is rewritten
as follows:

N
f@,z) = = " logp(zi | u) + ATV (u)

i=1
£ fi(w, z) + Afr(u). (7

It is seen from (7) that the objective function f (u, z) is com-
posed of two parts, that is, the pixel fitting term fi(u, z) and
the TV regularization term f>(u). They are balanced through
the penalty parameter A. For a larger A, the image is regu-
larized to a larger degree and looks more smooth, and vice
versa.

Note that fi(u,z) is in fact the negative logarithmic
likelihood function (NLLF) of u; given the sample z; (i =
1,2,---,N). Consequently, to minimize fi(u, z) is equiva-
lent to the maximum likelihood (ML) estimation of u. Thus,
f1(u, z) is regarded as the pixel fitting term which aims to
restore the image of interest to the ML solution. However,
fi(u, z) is decoupled with respect to the different pairs of
(ui, zi), which means that fi (u, z) fits each u; only to a single
pixel sample z;. From the viewpoint of estimation theory,
such pixel fitting is not statistically efficient due to the small
number of (in fact only one) samples involved. To overcome
such drawback, it is proposed to take advantage of the idea
of the nonlocal means filtering to derive a kind of modified
NLLF as the pixel fitting term.

Take the expectation of — log p(z; | u;) in f1(u, z) over z; in
the following standard form:

E{—logp(z; | up)} = —/ logp(zi | wi) - p(zi | up)dzi,  (8)

i
which is complicated to compute due to the generic form of
Pzilu).
To handle E {—logp(z; | u;)} of (8), we need to relax
the continuous integration in (8) to a discrete summation.
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For each image pixel z;, we collect the pixel samples z; j from
the whole image z so that z;; and z; are similar enough to
be regarded as originating from the same distribution. As a
result, (8) is relaxed as follows:
Ni
E {—logp(i | u)} ~ =Y logp(zij | u) - p(zij | w),  (9)
j=1
where N; is the number of the collected pixel samples z; j for
each image pixel z;.

It is natural to regard the pixel sample z;; similar to
z; given a large value of p(z;; | ;). In the nonlocal
means filtering, instead of utilizing p(z;; | u;) to eval-
uate the similarity between the pixel samples z; and z;j,
we compare z; and z;; with the image patches centered at
z; and z;; [14], [34]. Since the pixels within one patch are
highly correlated and the image patch bears the ability to
reflect the structural characteristic of one pixel, the compari-
son of two patches is expected to be more robust than that of
two pixels to measure the similarity between pixels.

Denote z; and z;; as the image patches, which are vec-
torized as columns and centered at z; and z; j, respectively.
To utilize the patch similarity, we firstly select the patches
zij G =1,2,---,N;) similar to z; from the whole image.
Correspondingly, we replace the similarity measure p(z;; |
u;) in (9) with p(z; ; | w;). As aresult, (9) is modified as

N;

E{—logp(z | up} ~ =Y logp(zij | w) - pzij | w;) (10)
j=1

with u; denoting the noiseless part of z;.

Due to the fact that the noiseless patch u; is unavailable
in practice, it is impossible to acquire the true value of
p(z;j | w;). Hence, we adopt the patch similarity mea-
sure proposed in [20], denoted by w;;, as a substitute
fOI‘p(Zi,j | ll,')l

8o0.k

L ).z 0\ "+
wij = 1_[ <w) , (11)

k=1
with L denoting the number of the pixels of one image patch,
andz;(k)(k = 1,2, -, L)being the k-th element of z;. Here,
s(zi(k), z; j(k)) = p(logzi(k) — logz; (k) | w;(k) = w;;(k))
is the conditional PDF of log z;(k) — log z; j(k) given that the
corresponding true values u;(k) and u; j(k) are equal, and it
is scaled by ¢ = ma% s(x,y). It is proven in [20] that ¢ =

X, y>

8(z¢, z¢) with z¢ beiflg a constant larger than zero. In addition,
8ok Tepresents a sampled two-dimensional Gaussian kernel
with the mean of zero and the standard deviation of o, which
is defined as

1 k? + k2

N 1 2
gU,k - K exp <_ 20_2 bl (12)
h A — K2+k2 d (et o) d ) 0
wit = 2k ky €XP | —5,7- |, and (k1, k2) denoting the

two-dimensional position of z;(k) relative to the center of the
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image patch z;; h > 0 controls the amount of filtering. The
reasonability of the above similarity measure is analyzed and
demonstrated in [20]. Accordingly, (10) is rewritten as:

Ni
E{—logp(z | up} ~ =Y wijlogpiy | w).  (13)
j=1
Substitute (13) for each — log p(z; | u;) of f (u, z), (6) becomes

A

u = argmin f(u, z)
u
N N;
= argmin — D0 wijlogp(zij | w) + ATV (w). (14)
i=1 j=1
To facilitate the following illustration, fij(u,z) in (7) is
redefined accordingly as

N N;
fiwzy ==Y "wi;logp(; | up). (15)
i=1 j=1
Since the expected NLLF of ; is relaxed by the summation
approximation of (13), @ of (14) is indeed derived from a kind
of quasi MAP (Q-MAP) estimation.

B. SOLUTION TO THE PROBLEM

It is quite challenging to solve (14) due to its nonlinearity
and huge-scale optimization variables. In particular, the opti-
mal step size selection is too computationally exhaustive
to make its solution practical. To address such difficulty,
we firstly relax (14) as an iterative convex problem through
the MM approach; and then solve it within the frame-
work of the ADMM, which consists of the solution to a
set of single-variable optimization problems and that to a
quadratic optimization problem. As a result, the computa-
tionally exhaustive step size selection is avoided. This is our
motivation to devise such a solving scheme. The details are
described as follows.

1) RELAXING (14) AS AN ITERATIVE CONVEX PROBLEM
WITH THE MM APPROACH
In the MM approach, the denoised image 1 is solved in an
iterative way. To begin with, we assume that f (u, z) of (14) is
second-order differentiable for the moment (indeed, this con-
dition is satisfied for the calculation examples in Section III),
and define u®) as the current image iterate and Q(u | u®) as
the function majoring f (u, z) = f1(u, z) + Af2(u) of (14):
f@®,z) = 0 |u), (16)

fuz) < Qulu?), foruzu®. 17
At each iteration, u®*1 is obtained according to:
u* = arg min Q(u | u®) (18)
so that

f@ 2y < Y [ u®)
< 0® [u®)
= f(u®, ). (19)
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Once f(u®, z) converges to f* = f(u*, z) for some stationary
point u*, we take u* as  of (14).

It can be seen from (19) that the sequence f u®, z),
t = 0,1,---, or the solution u®”, is more and more ‘sat-
isfactory” in terms of f(u, z). It can be proved that [35],
f(®, z) converges monotonically to f* = f(u*, z) for some
stationary point u*, as long as Qu | u”) is continuous
with respect to both u and u'”). This means that even if we
cannot find the globally optimal solution of (14) from (18),
the solution improves gradually through iteration. As a result,
a = u* gives the expected solution of (14). Conventionally,
the loop of the MM approach is stopped after a fixed number
of iterations.

It is suggested in [36] that the TV norm in (14) be majored
by the quadratic function

. 1
H) = EuTDTR<’>Du +C, (20)

with C some constant, R = diag ([r(’)T r(’)T]T>,

I‘(t) = [1/ \/(Af’lu(l‘))z_i_(A;)u(t))z’i: 172’ et ’N},D =

[(DMT (D")T]T, D" and D" being the horizontal and vertical
differential operators, respectively. Reference [36] demon-
strates that fz(u) defined in (20) satisfies both the convexity
and the conditions of (16) and (17). Accordingly, Q(u | u®),
which majors f(u, z) of (14), takes the following form:

1
O | u?) = fi(u, z) + E/\uTDTR“)Du +C. (@1

Unfortunately, although we have relaxed the TV norm as
the quadratic (but coupled) function, %uTDTR(”Du + C,
different from the case in [36] that the pixel fitting term is
also quadratic and u® is updated in each iteration as an LS
solution, the pixel fitting term (15) in our problem formula-
tion is generally nonlinear, making the overall optimization
of (18) coupled and nonlinear. As a result, it is tough to
solve (14) although it has been relaxed as an iterative convex
problem, due to the fact that for the gradient-based solver,
the selection of the optimal step size is always in need [37].
It is desired to find such an “optimal” step size that can
bring about the decrease of the objective function as much as
possible. However, this work is vastly complex, especially for
the huge-scale optimization. To address the above difficulty,
the ADMM is adopted.

2) DIVIDING THE PROBLEM OF (18) INTO TWO TRACTABLE
SUBPROBLEMS WITH THE ADMM

To solve the problem of (18), we convert Q(u | u®) of (21)
into the following equivalent form by splitting the variables
in f1(+) and in the remaining part of Q(-) into two separate set,
denoted by u and v, respectively, and imposing the equiva-
lence constraint between them:

Qu, v |u”) = fi(u,z) + 1/2 - v DTRODy,
subject to: u=v. (22)
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Then, the ADMM is utilized to search for the optimal solution
of (22) iteratively [30], [38]:

U 41) = arg muin Qu, vy [ u®)

+ /2 flu = vy — 8wli3, (23)
V(k+1) = arg mvin QU(k+1), Vv | ll(t))

+ /2 - gty — v — 8w l3, (24)
Sk+1) = 8y — (k1) — Vk+1))5 (25)

with p being a user parameter trading off the convergence and
converging speed. Normally, a large value of x enhances the
possibility of the ADMM'’s convergence, while a smaller one
speeds up the algorithm. After each iteration of the ADMM,
the solution is expected to approach that to (18) more closely.
The convergent solution of the ADMM is taken as u¢+!
of (18).

Up to now, the optimization problem of (18) is converted to
two separate subproblems of (23) and (24), which are related
through (25). As a result, we need to solve 1) and v(x41)
instead.

Here, ug+1) and vy are solved in a separate way,
and they are related through the intermediate variables
S¢k+1) and () as in (25). Referring to the analytical form of
Sf1(u, z) (15), it is seen that solving w41y is decoupled with
respect to u; (i = 1,2,---,N). Therefore, the elements of
u+1) are able to be solved with a one-dimensional search
method separately. As for vy, it is obtained as an LS
solution to a quadratic optimization problem. As a result,
in the whole procedure of the ADMM, there is no need of
the search for the optimal step size. This point explains the
motivation of the work of this subsection.

To sum up, the steps of the whole solution procedure for
of (14) is listed in Algorithm 1. The ADMM approach illus-
trated above, which aims to solve u*+ of (18), is injected

Algorithm 1 Estimating @ of (14) With the MM Approach
and ADMM
Initialization: u > 0, u® =z
forr=0,1,---,99do
(Outer iteration of the MM approach)
Set k = 0 and u(y) = v(p) = u®”
Solve (23) - (25):
repeat
(Inner iteration of the ADMM)
U1y = arg H}linfl(ll, z)+ /2 lu— v — 8w ll3;
V(+1) = argmin A/2-VIDTRODV + 10/2 - luges1) —

v —8kll3;
S(k+1) = 8y — (k1) — Vik+1))3
k=k+1;
until max { llug+n—ull2 HV(k+1)—V(k)H2} <1073
lugyll2 V) ll2 -
u*D = g,
end for

return 4 = u190,
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into the outer loop of the MM. Here, the iteration number of
the MM approach is set as 100; the loop of the ADMM is
stopped when the relative difference between iterations, § =
max { lug+1y — ugllz/ lag 2, Va1 — Yo ll2/ IV ll2}s
is not larger than 1073

The convergence of the ADMM optimization (23) - (25)
to the optimal solution of (18) is provided by the following
theorem.

Theorem 1: Suppose that the objective function of (18) is
closed and properly convex. Consider the ADMM optimiza-
tion with arbitrary u > 0, vy € RY and §) € RV. Let

{nek >0, k=0,1,---} and {vy >0, k=0,1,---} be two
sequences such that:
o0 o0
an < 00, ka < 00. (26)
k=0 k=0

Suppose that the three sequences {u(k) eR¥, k=01, }

{V(k) ERN, k=0,1,~~} and {S(k) ERN, k=0,1,'~'}
from (23) - (25) of the ADMM satisfy that,
Nk > H“(k+1) —arg muin {fl(u, z)
! 2
+5 v —vaw 3wl })- @7

A
e > Hv(k+1) — arg min [EVTDTR(’)DV
v

+ 5 lugsn —v=swl3}]. @8

S+ = 8ty — (Wks1) — VtD)) - (29)
Then, if (18) has a solution denoted by u*, the sequence {u(k)}
converges as Uy — u*. If (18) does not have a solution, then
at least one of the sequences {v)} and {8} diverge.

Proof: See [30].

It is seen from Theorem 1 that, as long as the errors of the
sequences U4 1) and V(x4 1) are absolutely summable, and the
optimization problem is convex, the ADMM will converge
to the global solution. Note that it is not necessary to find
exactly the optimal solution to u 1) and v(41) in each inner
iteration of the ADMM.

IIl. CALCULATION EXAMPLES AND

SIMULATION RESULTS

To clarify the developed image despeckling methodology,
here we give the implementation for two specific cases
of speckle corrupted image, that is, the Rayleigh [39] and
Gamma [4] distributed signal models, which have found
much application in ultrasonic [40]-[42], OCT [43], [44] and
SAR [45], [46] imaging. Afterwards, we evaluate the perfor-
mance of the image despeckling with extensive simulation
results.

A. RAYLEIGH DISTRIBUTED SIGNAL MODEL
Given the assumption of the Rayleigh distributed speckle
noise, the intensity of the observed image, z;, is modeled with
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the PDF conditional on u; as follows:

2
i
- exp ( 202%2) , forzi>=0. (30)

Here, 6 > 0 is the shape parameter of the Rayleigh distribu-
tion.

Taking the negative logarithm of (30), neglecting the con-
stant terms, it is derived that for the Rayleigh distributed
signal model,

pilui) =

N N;

ZZW”< +2logu,). (31)

i=1 j=1

fi(u,z) =

As for w; j, according to its definition (11), we can derive its
detail as [20]:

2301\
Y RO
wij = L[]( 20 +z,,j<k>) : (32)

B. GAMMA DISTRIBUTED SIGNAL MODEL
Under the assumption of the Gamma distributed speckle
noise, the intensity of the observed image, z;, is modeled as

follows:
Pszfl Pz
= cexpl —— ), for zz=0, (33
Pl p< ui) Jor z (33)

p(zilui)

with I'(-) denoting the Gamma function. Here, the shape and
rate parameters of the Gamma distribution, o and , are both
equal to P > 1.

Taking the negative logarithm of (33), neglecting the con-
stant terms, it is derived that for the Gamma distributed signal
model,

fiw,z) = ZZW,]< +Plogu,>. (34)

i=1 j=1
Accordingly, w; ; is derived as [20]:

Pga,k

Lo azik) -z )\
WiJ:H((Z()—Z’j()Z) ] (35)

et \ (2i(k) + 2 (k)

To obtain the global solution of w41y in Algorithm 1,
we find all the knee points of the cost function f;(u, z)+un/2-
la— v — 8k ||%, divide its definition region into single-peak
parts, find the corresponding minimum points respectively
with the golden search method [37], and finally determine
U(+1) from these minimum points.

C. SIMULATION RESULTS

In this part, we evaluate the performance of the proposed
image despeckling methodology through simulation with
the “Lena”, “House”, “Peppers”, and ‘“Shepp-Logan”
phantom adopted as the testing images and shown
in Fig. 1. Here, the ““‘Shepp-Logan” phantom was created by
Shepp and Logan [47], and serves as the model of a human
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(a) (b)

(c) (CY)

FIGURE 1. Original images for testing: (a) Lena, (b) House, (c) Peppers, (d) “Shepp-Logan” phantom.

TABLE 1. PSNR performance comparison for Rayleigh distributed speckle.

Input Image 0 Input PSNR (dB) Output PSNR (dB)

NLF[19] NLF[20] S-PF&R  Proposed

0.5 11.70 21.98 21.97 12.73 23.16

Lena 1.0 8.67 2191 2191 16.57 23.15

1.5 3.20 22.00 22.03 6.96 23.33

0.5 10.73 22.10 21.87 12.23 23.46

House 1.0 7.75 22.00 21.87 16.27 23.57

1.5 223 22.03 21.85 5.96 23.62

0.5 11.98 22.07 22.25 12.54 23.17

Peppers 1.0 8.96 22.11 22.26 16.69 23.26

1.5 347 22.10 2225 7.34 23.25

0.5 18.26 22.59 27.26 16.21 28.33

Shepp-Logan Phantom 1.0 15.29 22.67 27.21 21.74 28.46

1.5 9.72 22.55 26.97 15.90 28.29

head in the development and testing of image reconstruction
algorithms. The size of these images are set as 256 x 256.

Here, the quality improvement of the image despeck-
ling is evaluated in terms of the PSNR: PSNR =
1010g10(2552/ la — u||§)1. By comparison, the nonlocal
filtering (NLF) methods [19] and [20] are extended to the
simulation scenarios here, and their corresponding results
are provided. To address the necessity of nonlocal means
filtering in the image despeckling, the results of the single-
pixel-sample fitting are also included for comparison, where
the following optimization function is used:

f@u,z) = |u—2z||3+1TV(u). (36)

This scheme is termed as the single-point fitting and regular-
ization (S-P F&R) method here. Similar problem formulation
can also be found in [36], [48], etc., when the system response
matrix is taken as identity. For the sake of fairness, the image
observation, that is z of (2), is adopted as the initial value for
both of the proposed and S-P F&R methods.

Here, the pixel values are double-precision floating point number ranged
in [0, 1].
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In addition, for the nonlocal means filtering part of all the
above methods, the patch size is set as 3 x 3. The parameters
of the Gaussian kernel in the weighting of (11) are set as
o = 2.5, h = 1 for [20] and the proposed method, which
are found empirically to result in good performance.

1) RAYLEIGH DISTRIBUTED SPECKLE

Firstly, we conduct the denoising for the images corrupted
by the Rayleigh distributed speckle. The speckle’s shape
parameter is set as 6 = 0.5, 1 and 1.5, respectively.

For the proposed method, the regularization parameter A
is adjusted increasingly, while keeping w large and guar-
anteeing the ADMM’s convergence. A A of 107 is found
to provide the proper tradeoff between the pixel fitting and
regularization. Then, u is tuned decreasingly, and the value
of i = 10% is fixed to speed up the ADMM’s convergence to
within 100 iterations. For the S-P F&R method, A and p are
tuned as 10 and 103, respectively, which are found to provide
relatively good overall performance.

Table 1 lists the output PSNRs of the denoised images
by the proposed method, the NLF methods [19], [20], the
S-P F&R method together with the input PSNR
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(a) speckled (b) denoised by [19]

(f) speckled

(g) denoised by [19]

(k) speckled

(1) denoised by [19]

(p) speckled (q) denoised by [19]

(c) denoised by [20]

(h) denoised by [20]

(m) denoised by [20]

(r) denoised by [20]

(d) denoised by the S-P F&R (e) denoised by the proposed

(i) denoised by the S-P F&R (j) denoised by the proposed

(n) denoised by the S-P F&R (o) denoised by the proposed

(s) denoised by the S-P F&R (t) denoised by the proposed

FIGURE 2. Speckled and denoised images for the Rayleigh distributed signal model (¢ = 1): (a)-(e): Lena, (f)-(j): House, (k)-(0): Peppers, and

(p)-(t): “Shepp-Logan” phantom.

for & = 0.5, 1, 1.5, and the different testing images. It is seen
that the proposed method provides more than 0.92 dB PSNR
gain compared with the other methods in all the cases; and
in most cases, the PSNR gain is above 1.2 dB. Note that the
proposed method together with the NLF methods [19], [20]
always provide similar output PSNRs for the different shape
parameters. By comparison, the output PSNR of the S-P F&R
method varies much more for the different shape parameters.
Especially, although the input PSNR when 8 = 0.5 is higher
than that when 6 = 1, the output PSNR of the S-P F&R
method when 6 = 0.5 is even lower than that when 6 = 1 for
all the testing images. This is because the S-P F&R method
is unable to utilize the information of the shape parameter
during the image despeckling according to (36).
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Fig. 2 shows the speckled images and those denoised by
the different methods when & = 1. It is seen that the low
PSNR of the S-P F&R method shown in Table 1 is due to its
oversmoothing the speckled images. Visually, the proposed
method provides more faithful results with less and weaker
pepper-salt remainder, which accords with our expectation.
For the Shepp-Logan phantom, the main boundaries and the
small circle in the center are well preserved.

2) GAMMA DISTRIBUTED SPECKLE

Secondly, we conduct the denoising for the images cor-
rupted by the Gamma distributed speckle. Here, the value
of P of the Gamma distribution is set as P = 4 and 25,
respectively.
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TABLE 2. PSNR performance comparison for Gamma distributed speckle.

Input Image P Input PSNR (dB) Output PSNR (dB)

NLF[19] NLF[20] S-PF&R  Proposed

Lena 4 11.66 22.17 22.77 16.84 2391

25 19.62 26.81 28.11 26.79 28.33

House 4 10.68 22.41 22.76 15.27 2443

25 18.66 29.70 29.56 27.47 29.88

Peppers 4 11.94 22.41 23.02 17.09 23.97

25 19.91 26.82 28.04 27.26 28.36

Shepp-Logan Phantom 4 18.08 23.11 27.44 22.14 29.54

25 26.02 24.35 35.32 31.43 37.63

For the proposed method, the regularization parameter A
is adjusted to 10 to provide the proper tradeoff between the
pixel fitting and regularization. Then, u is tuned as 10°. For
the S-P F&R method, A is tuned as 10. Accordingly, u is set
as 10%.

Table 2 lists the output PSNRs of the denoised images
together with the input PSNR for P = 4, 25, and the different
testing images. It is seen that for P = 4, the proposed method
provides more than 0.95 dB PSNR gain compared with the
other methods in all the cases; and in most cases, the PSNR
gain is above 1.6 dB. For P = 25 and for the testing images
“Lena”, “House” and “Peppers”, the PSNR advantage of
the proposed method over the NLF method [20] is below
0.32 dB, which is due to the weak speckle effect.

Fig. 3 shows the speckled images and those denoised
by the different methods when P = 4. It is seen that
there remains obviously more pepper-salt fluctuation in the
denoised images by the NLF method [19] and the S-P F&R
method. Compared with the NLF method [20], the pro-
posed method still provides more faithful results with less
and weaker pepper-salt remainder. It is seen that for the
Shepp-Logan phantom, the main boundaries and the small
circles in the center and bottom are well preserved.

The above simulation results for the different speckle mod-
els and testing images demonstrate that the proposed method
with a moderate regularization is advantageous to the image
enhancement.

For our solution to the image despeckling, it takes about
3.63 seconds for each inner iteration of the ADMM on a
PC with an Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz,
with 16.0 GB of installed memory. The code is, however, not
optimized.

Considering the 100 times of outer iterations and the
multiple inner iterations in one outer iteration, it appears that
the proposed method is quite time-consuming. By compar-
ison, for the Rayleigh distributed speckle, the whole CPU
time of the NLF methods [19] and [20] is around 287.10 s
and 95.11 s, respectively. Although the proposed method
is not advantageous in running time, it is worth addressing
that in order to avoid the computationally heavy step size
selection in the gradient-based optimization, the solving
scheme of our problem formulation of (14) needs to be
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designed carefully. In each outer iteration of our solution,
the problem (18) is divided into two subproblems (see (23) -
(25) and Algorithm 1) by the ADMM, which are both solved
with no need to select the step size. As a result, our method is
computationally affordable. Otherwise, it is computationally
intractable to deal with huge-scale nonlinear optimization.

IV. EXPERIMENTAL RESULTS ON REAL DATA

Now the performance evaluation is conducted for the real
OCT image of the porcine carotid arterial wall, obtained using
a commercial Lightlab C7-XR Fourier Domain OCT system
(Lightlab Imaging). The details of animal imaging proto-
col have been previously described elsewhere [49]. All the
animal procedures were approved by St. Michael’s Hospital
(Toronto, Ontatio) Animal Care Committee.

Prior to the application of our method to the real data,
the intensity of the speckles in the OCT image is modeled
as Rayleigh distributed according to [43] and [44]. Thus, it is
necessary to estimate the shape parameter 6 at first. In [49],
the so-called speckle region is taken for the speckle modeling.
Since the pixel value of its clean part is varying with respect
to the location, such modeling is not accurate. Different
from [49], here we make use of the square error (SE) between
the observed image, z, and the denoised one from the NLF
method [20] with the shape parameter 6, denoted by UyzF (6’~ ),
as the criterion for the 8 selection. In detail, we divide the pre-
setrange of 6, [0.5 1.5], into several discrete points, select the
point where the SE takes the minimum as the estimate of 9,
and denote it by 6:

6 = arg min SE(9~)
6

(37)

. 2
arg min 101og, HﬁNLF(O) - z”z.
0

The reasonability of such model parameter selection is orig-
inated from the Gaussianity of the estimation error, and its
variance estimation (see [22]). The SE calculation results are
listed in Table 3. From this table, 0 is taken as 0.7.

For medical images, the ability to discern useful details
is critical but hard to evaluate. To quantitatively evaluate
the performance of the proposed method in comparison with
that of the other methods, several metrics are calculated for
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(a) speckled (b) denoised by [19]

(f) speckled

(g) denoised by [19]

(k) speckled

(1) denoised by [19]

(p) speckled (q) denoised by [19]

(c) denoised by [20]

(h) denoised by [20]

(m) denoised by [20]

(r) denoised by [20]

(d) denoised by the S-P F&R (e) denoised by the proposed

(i) denoised by the S-P F&R  (j) denoised by the proposed

(n) denoised by the S-P F&R (o) denoised by the proposed

(s) denoised by the S-P F&R (t) denoised by the proposed

FIGURE 3. Speckled and denoised images for the Gamma distributed signal model (P = 4): (a)-(e): Lena, (f)-(j): House, (k)-(0): Peppers, and (p)-(t):

“Shepp-Logan” phantom.

TABLE 3. SE between iiy, () and z versus ¢ for OCT image.

0 0.5 0.6 0.7 0.8 0.9

1.0 1.1 1.2 1.3 1.4 1.5

SE (dB) 4501 40.05 36.70 37.81 40.14

41.98 4334 4437 4517 4581 4634

the OCT image as done in [49] and [50]. These metrics
are defined based on the regions of interest (ROI) encom-
passing the high signal (media) part and the low signal
(adventitia) part versus the noise background, which are
depicted in Fig. 4. The signal-to-noise ratio (SNR) is defined
as SNR = 20log;o(xiin/&1in), Where xj;, is the maximum
intensity in the signal region, and &j;;, is the standard deviation
of the noise region, both in the linear scale. The contrast-
to-noise ratio (CNR) is defined as CNR = 20log, ((,ux —
up)/ (‘;‘x2 — 53)0'5), where u and & are the mean and standard
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deviation with the subscripts x and b denoting the signal
and noise regions, respectively. The equivalent number of
looks (ENL) is defined as ENL = M)% /éxz, and is averaged
among the three blue ROIs depicted in Fig. 4. The definition
of edge preservation factor (EPF) is shown at the bottom of
the next page: where x(i,j) and (i, j) stand for the (i, j)-th
pixel values of the original and denoised images, respectively,
with A being the Laplace operator; Ax, and Ax, stand for
the mean values of Ax(i,j) and AX(i,j) in the r-th blue
ROI, respectively. Here, R = 3. References [49] and [50]
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FIGURE 4. Original porcine carotid artery OCT image (Input SNR =
23.22 dB). The red ROI indicates the signal region and the yellow ROI
indicates the noise region used in the metric calculation. The green ROI
indicates the zoomed region in Fig. 6. The three blue ROIs are used for
the ENL calculation.

provide
metrics.

The corresponding denoised image by the proposed
method together with those by [16], [20], [49] are shown
in Fig. 5. For [16], we firstly apply the k-means clustering to
the original OCT image. Then, disabling the effect from the
other clusters, we utilize the Lee filter to enhance the central
pixel of each sliding window.

For [49], the denoised image is obtained from

the explanation of all these image quality

a = arg min f;(u)
u

1
. 2

= — )‘E -

arg min lz —ull; + : ( D

. [ufﬁ + (B — s — pu? .sf‘ﬁ‘”] . (39)

where 8 and A are the user parameters tuning the performance
of [49]; s; is a reference image. Since the problem of (39) is
decoupled, 1 of (39) is solved iteratively as:

W) = 0 = f @lacug, /S @lacug,s (40)

for k = 1,2,---, with f’(-) and f”(-) denoting the first
and second order derivative operators, respectively, and the
initial value taken as s;. For fairness, to implement the
method [49], the denoised image produced by [20], is adopted
as both the reference image and the initial value.

From Fig. 5, it is seen that [49] with a large 8 has nearly
no impact on the observed image; while the proposed method
provides higher SNR than [49] with a small 8 and [16], [20]
within the similar EPF. Fig. 6 shows the enlarged views of
the green region of the original and denoised OCT images,
which is far from the catheter. By comparing the red ROI

of Fig. 6 (b) with the corresponding parts of Figs. 6 (c)-(e),
it is seen that the proposed method performs better in the
speckle suppression. The above results demonstrate that our
algorithm can better delineate features.

Table 4 lists more metric results of the above methods.
From Table 4, it also demonstrates that [49] with a large 8
has tiny impact on the observed image. Besides, the proposed
method provides the best results of SNR and ENL within the
similar CNR and edge preservation. Based on the observation
from Figs. 5, 6 and Table 4, it is reasonable to claim that
the proposed method bear superior performance to the other
compared methods. Note that a higher EPF will lower down
the SNR performance of every denoising method.

TABLE 4. Metric comparison among original and denoised OCT images.

SNR (dB) CNR (dB) ENL  EPF
Orignal 23.22 10.79 8638  N/A

Proposed 28.06 11.47 661.70  0.0968

[16] 26.80 11.49 49436 0.0946

[20] 27.15 11.51 44963 0.0865

[49] (8 = 1.5, A = 120) 27.10 11.51 44875  0.1399

[49] (B = 4.0, A=1) 2271 10.99 102.95  0.9976

V. DISCUSSION
In this paper, we have proposed a general framework of the
nonolocal means filtering to perform speckle removal, which
is derived from the MAP estimation. The objective function
of the corresponding optimization problem consists of two
parts: the pixel fitting and total variation regularization terms.
To avoid the step size selection in solving this optimization
problem and make the computation tractable, the alternating
direction method of multipliers is imposed, where the vari-
ables in the pixel fitting and regularization terms are split
and optimized alternatively. The performance superiority of
the proposed method in terms of various metrics is validated
through the simulation on different speckle-corrupted syn-
thetic images and the experiment on the real OCT image.

In addition, it should be pointed out that, in this paper,
a generalized framework is proposed for despeckling. This
means that the proposed method is not applicable only to one
specific speckle model, but also to other kinds. Of course,
since the noiseless image patch is not available in reality,
the patch similarity measure in [20] is adopted as a substitute
for the probability density function of the patch observation
during the speckle removal. To design a similarity measure
approximating the probability density function better is still
one of the potential works.

In the future, we will go on with this topic, and address
the issues of the reduction of the algorithm complexity,

4 Y per (Ax(, ) — AXI(ARG, ) — A%y

: (38)

EPF=1/R| >
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(a) (b)

(d) (e)

FIGURE 5. Denoised porcine carotid artery OCT images: (a) by the proposed algorithm (SNR = 28.06 dB), (b) by [16]
(SNR = 26.80 dB), (c) by [20] (SNR = 27.15 dB), (d) by [49] (with 8 = 1.5, A = 120. SNR = 27.10 dB), (e) by [49] (with

B =4.0, . =1.SNR = 22.71 dB).

(@) (b)

(d) (e)

FIGURE 6. Enlarged view of the green region of the OCT images: (a) original, (b) denoised by the proposed algorithm,
(c) denoised by [16], (d) denoised by [20], (e) denoised by [49] (with 8 = 1.5, A = 120).

the selection of the size and shape of the patch in spatial filter-
ing, and the nonlocal means filtering in the logarithmic scale
and transform domains, which helps improve the despeckling
performance promisingly.

ACKNOWLEDGMENT

The authors would like to gratefully appreciate the anony-
mous reviewers for their constructive remarks, which have
notably improved the quality of this paper.

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[7]

[8]

[91

S. Sheela, M. Sumathi, and G. N. Priya, “‘Comparative analysis of various
filtering techniques for speckle noise suppression in ultrasound images,”
Int. J. Comput. Technol. Appl., vol. 9, no. 2, pp. 51-65, 2016.

C. P. Loizou, C. S. Pattichis, C. I. Christodoulou, R. S. H. Istepanian,
M. Pantziaris, and A. Nicolaides, “Comparative evaluation of despeckle
filtering in ultrasound imaging of the carotid artery,” IEEE Trans.
Ultrason., Ferroelectr, Freq. Control, vol. 52, no. 10, pp. 1653-1669,
Oct. 2005.

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser
speckle imaging with an active noise reduction scheme,” Opt. Express,
vol. 13, no. 24, pp. 9782-9787, Nov. 2005.

C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar
Images. Boston, MA, USA: Artech House, 1998.

N. Yahya, N. S. Kamel, and A. S. Malik, “Subspace-based technique for
speckle noise reduction in SAR images,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 10, pp. 6257-6271, Oct. 2014.

F. Argenti, T. Bianchi, A. Lapini, and L. Alparone, ‘“Fast MAP despeckling
based on Laplacian—Gaussian modeling of wavelet coefficients,” IEEE
Geosci. Remote Sens. Lett., vol. 9, no. 1, pp. 13—17, Jan. 2012.

G. Andria, F. Attivissimo, A. M. L. Lanzolla, and M. Savino, “A suitable
threshold for speckle reduction in ultrasound images,” IEEE Trans.
Instrum. Meas., vol. 62, no. 8, pp. 2270-2279, Aug. 2013.

H.-C. Li, W. Hong, Y.-R. Wu, and P.-Z. Fan, “‘Bayesian wavelet shrinkage
with heterogeneity-adaptive threshold for SAR image despeckling based
on generalized gamma distribution,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 4, pp. 2388-2402, Apr. 2013.

F. Gao, X. Xue, J. Sun, J. Wang, and Y. Zhang, ‘A SAR image despeckling
method based on two-dimensional S transform shrinkage,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 5, pp. 3025-3034, May 2016.

99242

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

H. Choi and J. Jeong, “Despeckling images using a preprocessing filter
and discrete wavelet transform-based noise reduction techniques,” IEEE
Sensors J., vol. 18, no. 8, pp. 3131-3139, Apr. 2018.

V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman,
“A model for radar images and its application to adaptive digital
filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. PAMI-4, no. 2, pp. 157-166, Mar. 1982.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive
noise smoothing filter for images with signal-dependent noise,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-7, no. 2, pp. 165-177,
Feb. 1985.

J.-S. Lee, “Speckle suppression and analysis for synthetic aperture radar
images,” Opt. Eng., vol. 25, no. 5, May 1986, Art. no. 255636.

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 2. San Diego, CA, USA, Jun. 2005, pp. 60-65.

S. Adabi, E. Rashedi, S. Conforto, D. Mehregan, Q. Xu, and
M. Nasiriavanaki, “Speckle reduction of OCT images using an adaptive
cluster-based filtering,” in Proc. SPIE Opt. Coherence Tomogr. Coherence
Domain Opt. Methods Biomed. XXI, San Francisco, CA, USA, vol. 10053,
Feb. 2017, pp. 100532X-1-100532X-6.

M. H. Eybposh, Z. Turani, D. Mehregan, and M. Nasiriavanaki, ‘“‘Cluster-
based filtering framework for speckle reduction in OCT images,” Biomed.
Opt. Exp., vol. 9, no. 12, pp. 6359-6373, Dec. 2018.

G. Chierchia, D. Cozzolino, G. Poggi, and L. Verdoliva, “SAR image
despeckling through convolutional neural networks,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., Jul. 2017, pp. 5438-5441.

P. Wang, H. Zhang, and V. M. Patel, “SAR image despeckling using a
convolutional neural network,” IEEE Signal Process. Lett., vol. 24, no. 12,
pp. 1763-1767, Dec. 2017.

Y. Guo, Y. Wang, and T. Hou, “Speckle filtering of ultrasonic images
using a modified non local-based algorithm,” Biomed. Signal Process.
Control, vol. 6, no. 2, pp. 129-138, Apr. 2011.

T. Teuber and A. Lang, ““A new similarity measure for nonlocal filtering in
the presence of multiplicative noise,” Comput. Statist. Data Anal., vol. 56,
no. 12, pp. 3821-3842, 2012.

Y. Zhan, M. Ding, L. Wu, and X. Zhang, “Nonlocal means method using
weight refining for despeckling of ultrasound images,” Signal Process.,
vol. 103, pp. 201-213, Oct. 2014.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1-4, pp. 259-268, 1992.

VOLUME 7, 2019



Z.Zhou et al.: Nonlocal Means Filtering Based Speckle Removal

IEEE Access

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. D. Babacan, R. Molina, and A. K. Katsaggelos, ““Variational Bayesian
blind deconvolution using a total variation prior,” IEEE Trans. Image
Process., vol. 18, no. 1, pp. 12-26, Jan. 2009.

H. Madero-Orozco, P. Ruiz, J. Mateos, R. Molina, and A. K. Katsaggelos,
“Image deblurring combining poisson singular integral and total variation
prior models,” in Proc. 2Ist Eur. Signal Process. Conf., Marrakech,
Morocco, Sep. 2013, pp. 1-5.

C. Sutour, C.-A. Deledalle, and J.-F. Aujol, “Adaptive regularization of
the NL-means: Application to image and video denoising,” IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3506-3521, Aug. 2014.

S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

D. P. Palomar and Y. C. Eldar, Eds., Convex Optimization in Signal
Processing and Communications. Cambridge, U.K.: Cambridge Univ.
Press, 2010.

D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Comput. Optim.
Appl., vol. 2, no. 1, pp. 17-40, 1976.

J. Eckstein and D. Bertsekas, ““On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators,”
Math. Program., vol. 55, no. 3, pp. 293-318, Jun. 1992.

D.-Q. Chen and L.-Z. Cheng, “Spatially adapted total variation model to
remove multiplicative noise,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1650-1662, Apr. 2012.

Y. Zhao, J. G. Liu, B. Zhang, W. Hong, and Y. R. Wu, “Adaptive total
variation regularization based SAR image despeckling and despeckling
evaluation index,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5,
pp. 2765-2774, May 2015.

H. Woo and J. Ha, “Besta-divergence-based variational model for speckle
reduction,” IEEE Signal Process. Lett., vol. 23, no. 11, pp. 1557-1561,
Nov. 2016.

G. Liu, H. Zhong, and L. Jiao, “Comparing noisy patches for image
denoising: A double noise similarity model,” IEEE Trans. Image Process.,
vol. 24, no. 3, pp. 862-872, Mar. 2015.

C. F. J. Wu, “On the convergence properties of the EM algorithm,” Ann.
Statist., vol. 11, no. 1, pp. 95-103, Mar. 1983.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total
variation-based image deconvolution: A majorization-minimization
approach,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Toulouse, France, vol. 2, Jul. 2006, pp. 861-864.

J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY,
USA: Springer, 2006.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo,
“An augmented Lagrangian approach to the constrained optimization
formulation of imaging inverse problems,” IEEE Trans. Image Process.,
vol. 20, no. 3, pp. 681-695, Mar. 2011.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications.
Englewood, CO, USA: Roberts, 2006.

T. Eltoft, “Modeling the amplitude statistics of ultrasonic images,” IEEE
Trans. Med. Imag., vol. 25, no. 2, pp. 229-240, Feb. 2006.

J. C. Seabra and J. M. Sanches, “On estimating de-speckled and speckle
components from B-mode ultrasound images,” in Proc. IEEE Int. Symp.
Biomed. Imag., Nano Macro, Rotterdam, The Netherlands, Apr. 2010,
pp. 284-287.

D. Koundal, S. Gupta, and S. Singh, “Speckle reduction method for
thyroid ultrasound images in neutrosophic domain,” IET Image Process.,
vol. 10, no. 2, pp. 167-175, Feb. 2016.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F.  Fercher, and
C. K. Hitzenberger, ““Speckle reduction in optical coherence tomography
by frequency compounding,” J. Biomed. Opt., vol. 8, no. 3, pp. 565-569,
Jul. 2003.

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, ‘“Speckle statistics
in optical coherence tomography,” J. Opt. Soc. Amer. A, Opt. Image Sci.,
vol. 22, no. 4, pp. 593-596, Apr. 2005.

Q. Zhang, Y. Wu, W. Zhao, F. Wang, J. Fan, and M. Li, “Multiple-scale
salient-region detection of SAR image based on gamma distribution and
local intensity variation,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 8,
pp. 1370-1374, Aug. 2014.

M. Liu, Y. Wu, Q. Zhang, F. Wang, and M. Li, “Synthetic aperture radar
target configuration recognition using locality-preserving property and
the Gamma distribution,” IET Radar, Sonar Navigat., vol. 10, no. 2,
pp. 256-263, 2016.

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head
section,” IEEE Trans. Nucl. Sci., vol. NS-21, no. 3, pp. 21-43, Jun. 1974.

VOLUME 7, 2019

[48] J.Li, S.Liu, and E. Y. Lam, “Efficient source and mask optimization with
augmented Lagrangian methods in optical lithography,” Opt. Express,
vol. 21, no. 7, pp. 8076-8090, Apr. 2013.

[49] K. H. Y. Cheng, E. Y. Lam, B. A. Standish, and V. X. D. Yang,
“Speckle reduction of endovascular optical coherence tomography
using a generalized divergence measure,” Opt. Lett., vol. 37, no. 14,
pp. 2871-2873, Jul. 2012.

[50] P. Puvanathasan and K. Bizheva, “Speckle noise reduction algorithm for
optical coherence tomography based on interval type II fuzzy set,” Opt.
Exp., vol. 15, no. 24, pp. 15747-15758, Nov. 2007.

ZHENHUA ZHOU was born in Shanghai, China,
in 1985. He received the bachelor’s degree from
the University of Shanghai for Science and Tech-
nology, in 2007, the master’s degree from Shang-
hai Jiao Tong University. in 2010, and the Ph.D.
degree from the City University of Hong Kong
in 2013, all in electronic engineering.
He was a Research Associate with The
Hong Kong University of Science and Technology,
from 2016 to 2017. He is currently a Research
Fellow with the College of Information Engineering, Shenzhen University.
His research interests include spectral analysis, optimization, statistical sig-
nal processing, machine learning and their application to image processing,
speech, and audio signal processing, and radar signal processing.

EDMUND Y. LAM (M’00-SM’05-F’15) received
the B.S., M.S., and Ph.D. degrees in electrical
engineering from Stanford University, Stanford,
CA, USA, where he conducted research for the
Programmable Digital Camera Project at the Infor-
mation Systems Laboratory.

He has consulted for industry in the areas of dig-
ital camera systems design and algorithm devel-
opment. From 2010 to 2011, he was invited to
teach at the Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, Cambridge,
CA, USA, as a Visiting Associate Professor. He is currently a Professor
of electrical and electronic engineering and an Associate Dean of Engi-
neering (Teaching and Learning), as well as the Director of the Computer
Engineering Program and the Founding Director of the Imaging Systems
Laboratory, The University of Hong Kong. His current research interest
includes computational imaging.

Dr. Lam is also a Fellow of the Optical Society (OSA), the Society of
Photo-optical Instrumentation Engineers (SPIE), the Institute of Electrical
and Electronics Engineers (IEEE), the Society for Imaging Science and
Technology (IS&T), as well as the Hong Kong Institution of Engineers
(HKIE). He was a recipient of the IBM Faculty Award.

CHUL LEE (S’06-M"13) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Korea University, Seoul, South Korea, in 2003,
2008, and 2013, respectively.

He was with Biospace Inc., Seoul, from 2002 to
2006, where he was involved in the development of
medical equipment. From 2013 to 2014, he was a
Postdoctoral Scholar with the Department of Elec-
trical Engineering, The Pennsylvania State Uni-
versity, University Park, PA, USA. From 2014 to
2015, he was a Research Scientist with the Department of Electrical and Elec-
tronic Engineering, The University of Hong Kong, Hong Kong. From 2015 to
2019, he was an Assistant Professor with the Department of Computer Engi-
neering, Pukyong National University, Busan, South Korea. In March 2019,
he joined the Department of Multimedia Engineering, Dongguk University,
Seoul, where he is currently an Assistant Professor. His current research
interests include image processing, and computational imaging with an

emphasis on restoration and high dynamic range imaging.
Dr. Lee received the Best Paper Award from the Journal of Visual Com-
munication and Image Representation, in 2014. He is also an Editorial Board
Member of the Journal of Visual Communication and Image Representation.

99243



	INTRODUCTION
	ALGORITHM DEVELOPMENT
	PROBLEM FORMULATION
	SOLUTION TO THE PROBLEM
	RELAXING (14) AS AN ITERATIVE CONVEX PROBLEM WITH THE MM APPROACH
	DIVIDING THE PROBLEM OF (18) INTO TWO TRACTABLE SUBPROBLEMS WITH THE ADMM


	CALCULATION EXAMPLES AND SIMULATION RESULTS
	RAYLEIGH DISTRIBUTED SIGNAL MODEL
	GAMMA DISTRIBUTED SIGNAL MODEL
	SIMULATION RESULTS
	RAYLEIGH DISTRIBUTED SPECKLE
	GAMMA DISTRIBUTED SPECKLE


	EXPERIMENTAL RESULTS ON REAL DATA
	DISCUSSION
	REFERENCES
	Biographies
	ZHENHUA ZHOU
	EDMUND Y. LAM
	CHUL LEE


