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Due to the irregular nature of connections in most graph datasets, partitioning graph analysis algorithms across multiple computational
nodes that do not share a common memory inevitably leads to large amounts of interconnect traffic. Previous research has shown
that FPGAs can outcompete software-based graph processing in shared memory contexts, but it remains an open question if this
advantage can be maintained in distributed systems.

In this work, we present GraVF-M, a framework designed to ease the implementation of FPGA-based graph processing accelerators
for multi-FPGA platforms with distributed memory. Based on a lightweight description of the algorithm kernel, the framework
automatically generates optimized RTL code for the whole multi-FPGA design. We exploit an aspect of the programming model to
present a familiar message-passing paradigm to the user, while under the hood implementing a more efficient architecture that can
reduce the necessary inter-FPGA network traffic by a factor equal to the average degree of the input graph. A performance model
based on a theoretical analysis of the factors influencing performance serves to evaluate the efficiency of our implementation. With
a throughput of up to 5.8 GTEPS (billions of traversed edges per second) on a 4-FPGA system, the designs generated by GraVF-M
compare favorably to state-of-the-art frameworks from the literature and reach 94% of the projected performance limit of the system.
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1 INTRODUCTION

Graph data structures, which represent connections or relations between entities, are a natural fit for many data analysis
applications. Popular uses range from determining social network influence drivers to finding the shortest route across
a map of roads. However, graph structures, and the algorithms that work on them, have unique characteristics that
present challenges:

Low computational density. Most graph algorithms only execute a few operations per vertex or edge. Generally,
the performance of a single processing node strongly depends on the speed at which graph data can be accessed.

Irregular structure. Exacerbating the previous point, traversing a graph leads to random data access patterns
with very low locality, which significantly degrades DRAM performance.

High degree of interconnection. When partitioning a graph among multiple nodes, many edges will cross
partitions, leading to high communication between nodes. While a good partitioning algorithm can mitigate this
aspect somewhat, the communication bandwidth required can quickly rival the memory bandwidth and limit
scaling of distributed graph algorithms.
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FPGA-based accelerators can address these factors. Their on-chip BRAMs offer high-bandwidth low-latency random
access performance, and their programmable fabric can implement custom architectures that efficiently use the available
resources. Past research includes several specialized FPGA implementations of individual algorithms demonstrating
the efficiencies that can be gained by approaches such as using BRAM to cache most frequently accessed vertex data
[Zhang and Li 2018] or exploiting high-bandwidth off-chip memory interfaces [Attia et al. 2015].

However, FPGAs are notoriously challenging to program. In addition to the domain knowledge required to be able to
formulate the problem as an effective graph application, an FPGA implementation demands architecture and systems
proficiency. Implementing a dedicated FPGA solution for a single, static application is therefore not practical in many
contexts. Graph processing frameworks can encapsulate all the architecture and systems optimizations, putting FPGA
systems within the reach of a domain expert with only basic hardware programming knowledge.

Research has explored approaches for more generic frameworks to accelerate a wider selection of graph algorithms.
These leverage techniques from transactional memory [Ma et al. 2017], over custom soft processors [Kapre 2015], to
CGRA overlays [Zhou et al. 2017]. However, they mostly focus on single-FPGA accelerators, or on their integration
with the software running on the host CPUs. Only a few works consider distributing a single computation across
multiple FPGA boards. The popularity of the Convey HC-1/HC-2 (comprising four FPGAs) at the beginning of the
decade prompted a number of works implementing some specific algorithm on this platform [Betkaoui et al. 2011;
Computer 2011]; but these primarily used the high-bandwidth shared memory for communication. There has been
some investigation into the issues for true distributed multi-FPGA frameworks [Dai et al. 2017; deLorimier et al. 2006],
but these have not yet been put to the test in an actual networked implementation.

It is an open question whether there is any performance advantage to be gained by scaling graph algorithms
across multiple FPGAs. Due to the highly interconnected nature of graphs, distributed graph processing requires large
communication volume between partitions. In our previous work, we have been investigating automatic generation of
graph processing FPGA designs, and how we can maximize performance while minimizing the required user input
[Engelhardt et al. 2018; Engelhardt and So 2016, 2017]. A performance analysis revealed that this work is efficient on
single-FPGA systems but suffers from communication inefficency when using lower-bandwidth off-chip networks.

This work introduces GraVF-M, a variant of GraVF optimized for multi-FPGA platforms. It improves on all aspects
of the previous work by offering the following new contributions:

• A reorganized architecture that significantly reduces communication over the inter-FPGA network. As network
bandwith is the critical factor limiting multi-FPGA performance on most platforms, this directly corresponds to
an equivalent speedup in total system performance.

• A three-stage programming model, which enables this optimization, as well as offering flexibility to the user and
enabling simplified synchronization between supersteps.

• Better load balancing among PEs and FPGAs through low-overhead partitioning heuristics.
• An updated performance model and analysis whose predictions closely match the observed results.

Organization of this paper: Section 2 situates our work in the context of previous efforts on FPGA-based graph
accelerators. Section 3 explains the programming model for the user kernels and section 4 details our framework’s
implementation. Section 5 describes how we model system performance. Section 6 evaluates a concrete implementation
of our system on a 4-FPGA platform and compares it to the predictions of our model and to other works. Finally, the
conclusion is in section 7.
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2 RELATEDWORK

Previous research on graph processing on FPGAs can be broadly categorized into two groups: efforts exploring an
individual algorithm or platform, and efforts to build frameworks to more generally facilitate the implemenatation of
graph algorithms.

Implementations of specific algorithms abound [Attia et al. 2014; Betkaoui et al. 2012; Computer 2012; Dai et al. 2016;
Khoram et al. 2018; Lei et al. 2015; Umuroglu et al. 2015; Wang et al. 2010; Zhang et al. 2017; Zhang and Li 2018], but it
is rare that an application is at the same time so business-essential and yet its requirements so slowly changing as to
merit the several months of effort to build a dedicated hardware implementation.

Ours is not the first framework proposed to ease the implementation of graph processing on FPGAs. We have
identified the following previous work introducing tools for FPGA-based graph processing not limited to a single
application:

2.1 Pure FPGA processing

TuNao [Zhou et al. 2017] is an ECGRA-based accelerator whose main optimization consists in storing the highest-degree
vertices on-chip while leaving less highly connected vertices in off-chip memory. The accelerator targets a 3-phase
Gather-Apply-Scatter execution model with a single data stream, parallelism is exploited by pipelining. The user kernel
for each phase is implemented by a separate ECGRA module.

[Ma et al. 2017] propose a transactional memory-based approach. Their model is GPU-like in that each processing
element hosts a large number of threads that are frequently stalled due to high-latency shared memory accesses,
however as the SIMD model is not effective for graph applications these processing elements will only process a single
work item (e.g. a vertex kernel) at a time. Communication between different vertices happens via shared transactional
memory, on the basis that most accesses will not conflict.

[Zhou et al. 2016, 2018] argue that edge-centric graph processing is superior to the vertex-centric paradigm; they
build an edge-centric accelerator. The first streams directly from off-chip memory, the second partitions the graph into
multiple sections which can be processed in parallel by multiple PEs. Both designs rely on on strict sorting of the edge
list for optimizations of the bandwidth needed to deliver messages.

2.2 FPGA processing with access to host memory

GraphGen [Nurvitadhi et al. 2014] is a graph accelerator built on the CoRAM memory interface, which gives the
FPGA access to the host’s main memory. The accelerator is a single processing element, that uses pipelining and SIMD
processing to extract parallelism from the application. This is sufficient because of the low bandwidth connection to the
main memory, but for systems where the graph data can be accessed more efficiently, the irregularity of the graph
interferes with SIMD approaches.

GraphSoC [Kapre 2015] is a custom soft processor-based approach where a vertex-centric algorithm kernel is
expressed in 4 phases, and each kernel phase is implemented as a custom instruction. Thus the processors always
execute the same program, but the effect of the instructions is changed. The processors exchange messages through an
on-chip network, which also serves to access graph data from the host’s main memory.
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2.3 CPU-FPGA hybrid processing

GraphOps [Oguntebi and Olukotun 2016] proposes a library of dataflow actors for graph processing. They also propose a
novel data structure that directly stores the vertex data of neighbors rather than an edgelist (which is a list of references
to the neighbors). However, this requires the host to re-create this data structure for each iteration, and also increases
the size of the graph storage.

[Zhou and Prasanna 2017] proposes a hybrid accelerator that is able to switch between vertex-centric and edge-centric
execution depending on the current workload. The graph is partitioned in intervals and the CPU and FPGA both process
different intervals in parallel (the FPGA with greater throughput than the CPU).

ExtraV [Lee et al. 2017] considers the case where the edge data is too large to fit into the host’s main memory and has
to be accessed from disk, but the vertex data is able to reside in DRAM. It uses the FPGA as an enhanced disk controller
with near-data processing capabilities. The FPGA can read the edge data from disk in a compressed format, decompress
and filter it on the fly and send the resulting list of neighbors to the host. The host then performs all algorithm-specific
computation.

2.4 Multi-FPGA capable frameworks.

GraphStep [Delorimier et al. 2011; deLorimier et al. 2006] was an early proponent of using the high internal memory
bandwidth delivered by Block RAM to accelerate graph processing on FPGAs. They also proposed connecting multiple
FPGAs together to increase the size of graph that can be processed. However, FPGA devices at the time offered even
lower amounts of embedded memory than today, so their approach of storing the entire graph structure in BRAM
resulted in (simulated) systems with hundreds of FPGAs for even modestly large graph datasets.

ForeGraph [Dai et al. 2017] is a multi-FPGA system targeting the Microsoft Catapult platform. It also consists of a
number of PEs that communicate via a network.

Both of these frameworks’ multi-FPGA performance is only evaluated in simulation. In contrast, our framework is
fully implemented and performance numbers are actually observed.

3 PROGRAMMING MODEL

Based on a short user description, the GraVF-M framework generates a hardware description of a graph application for
synthesis on platforms comprising one or more FPGAs as well as (optionally) off-chip memory.

The user input to the framework is a graph algorithm. The programming model used for this input has to fulfill
double aims: to enhance productivity through ease of use, and to expose the algorithm features in a manner suited
to hardware implementation. We chose a synchronous vertex-centric programming model, and add some constraints
related to data accesses to ensure a uniform interface for the resulting hardware kernel. Compared to our previous
work [Engelhardt and So 2016], the main difference is the addition of a gather stage, which aligns our programming
model with the familiar gather-apply-scatter paradigm, and makes it easier for the programmer to ascertain that the
mentioned constraints are respected.

In a synchronous vertex-centric programming model, the algorithm is formulated as a small function called a
vertex kernel. This user-provided kernel is run concurrently for each active vertex in the graph in what is called a
superstep. During a superstep, a vertex kernel only has access to limited data local to the vertex. Data is exchanged with
neighboring vertices through messages. Supersteps are separated by global barrier synchronization, and any messages
sent in superstep 𝑛 will only be received in superstep 𝑛 + 1.
Manuscript submitted to ACM
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This type of programming model is widely used as it is straightforward to understand, and any algorithm formulated
in this manner is inherently embarrassingly parallel. However, it presents two main challenges due to the global barrier:
The first is that imbalance in workload leads to time wasted waiting for stragglers to reach the barrier. This is mainly
addressed through implementation choices that reduce imbalance and further mitigated by the use of a floating barrier.
As these do not require modifications to the programming model, they will be discussed in the architecture section.
The second challenge is that all messages generated in a superstep need to be stored until the next superstep. Memory
resources are very limited on FPGA environments: typically, there will be less than 40MB on-chip BRAM and some
4-16GB off-chip DDR available.

To ensure correct and deadlock-free completion of algorithms, given the fixed-size buffers available, the quantity of
message data generated in a superstep needs to be strictly bounded. We design the GraVF-M programming model so as
to intrinsically enforce these limits, by asking the user to split their kernel into three functions (hardware modules)
with fixed I/O interfaces.

Gather. This function is called once for each message received by a vertex. It updates the vertex state based on the
contents of the message.

Apply. This function is called once for each vertex at the end of a superstep, after all messages have been received.
Based on the final vertex state, it can issue an update to be communicated to the vertex’s neighbors.

Scatter. This function is called once for every outgoing neighbor. Based on the update issued by apply and, if defined,
the edge data (weight), it finalizes the message to be sent to the neighbor.

Because the apply step is only called once for each vertex per superstep, the number of updates per superstep cannot
exceed the number of vertices. Rather than attempt to store the much greater number of messages, we store these
updates and only call the scatter function to produce the actual messages on demand when resources are available during
execution of the next superstep. The messages are then generated, transported to their destination, and immediately
consumed by the gather stage of the receiving vertex without risk of deadlock.

As an example, we show how the weakly connected components (WCC) algorithm is implemented in GraVF-M.
This algorithm detects disjunct areas of a graph (sets of vertices such that all edges originating from a vertex in the set
connect to a vertex also in the same set). These sets are also known as weakly connected components (to differentiate
from strongly connected components, another name for cliques, where every vertex in the set is connected to every
other vertex in the set). Each set agrees on a common label by propagating the lowest seen vertex ID to all neighbors.

The GraVF-M framework itself is written in Migen [M-Labs 2012], a Python-based hardware description language
that exports to Verilog for synthesis with conventional FPGA vendor tools such as Vivado from Xilinx. The native
way to implement the algorithm kernels is also in Migen, but glue code is provided to insert any netlist that the FPGA
vendor’s tool accepts, thus the user is free to chose their favorite hardware description language.

In a first step, the user needs to define the algorithm-dependent data structures. These are defined in Migen/Python,
as a list of field names and their bit widths. Predefined values related to system configuration, such as the size of a vertex
identifier vertexidsize, can be used. The user can also define their own identifiers, whose values have to be provided in
the configuration file at build. The following data structures need to be defined:

(1) Vertex state data. For WCC, each vertex saves the smallest vertex ID found so far. The field active indicates if a
shorter path was found in this superstep that should be broadcast to neighbors.

node_storage_layout = [

(" label", "vertexidsize "),

(" active", 1)
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]

(2) Edge data (optional). WCC does not consider edge weights, so this definition is omitted.
(3) Update payload. When a smaller vertex ID is found, the information that the apply kernel needs to pass to the

scatter kernel is the new label.

update_layout = [

("label", "vertexidsize ")

]

(4) Message payload. The information sent by the scatter kernel to each neighbor is the new, smaller vertex ID
encountered.

message_layout = [

("label", "vertexidsize ")

]

It frequently happens, as here, that the update payload and the message payload share the same format. In this
case it is not necessary to write out the full definition again. These are simple Python variable definitions, so
previously defined variables can be used:

message_layout = update_layout

In a second step, the three kernel modules Gather, Apply, and Scatter have to be defined, this time in the hardware
description language of the user’s choice. This example will use Verilog kernels, as more readers are likely to be familiar
with this language than with Migen.

The data formats defined in the previous step are used to set the input and output signals of each module. All modules
may be pipelined as deeply as the programmer wishes or have variable latency; they use handshake signals for flexible
flow control.

Gather. The gather kernel module receives as inputs a message from a neighbor that discovered a new label in the
last superstep, and the destination vertex’s state. The following inputs are defined:

level_in current superstep
nodeid_in active vertex’s ID
sender_in neighbor that sent the received message
message_in received message (using message_layout)
state_in active vertex’s current state data (using node_storage_layout)

Flow control is handled by the associated handshake signals valid_in and ready.

The module should generate the following outputs:

nodeid_out active vertex’s ID
state_out active vertex’s new state data

with the associated handshake signals state_valid and state_ack.

wire new_label;

assign new_label = state_in_label > message_in_label;

assign nodeid_out = nodeid_in;

assign state_out_label = new_label ? message_in_label : state_in_label;

assign state_out_active = new_label ? 1'b1 : state_in_active;
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assign state_valid = valid_in;

assign ready = state_ack;

Listing 1. WCC gather implementation

Listing 1 shows the implementation of the WCC gather kernel module. The amount of logic needed is very small, so
it can be implemented using combinatorial logic only. A single comparison is needed: if the label from the message is
smaller than the currently found smallest label, the label is updated in the vertex state and the vertex is marked active.
Otherwise, the state is not modified.

Apply. The apply kernel module processes each vertex’s state at the end of the superstep, and initiates a broadcast of
the new label if a smaller one was found this superstep. The following inputs are defined:

nodeid_in active vertex
state_in active vertex’s current state data (using node_storage_layout)
round_in channel to use for messages sent in this superstep
barrier_in barrier marker (asserted after the last active vertex in the superstep)

Flow control is handled by the associated handshake signals valid_in and ready.

This module should generate two sets of outputs:

nodeid_out active vertex
state_out active vertex’s new state data (using node_storage_layout)
state_barrier barrier marker (indicates all state writebacks of a superstep are completed)
state_valid signals current output should be written back (no handshake)

There is no handshake for this output. To avoid the added complexity of handling two sources of backpressure, it is
guaranteed that the state can be written back at any time.

update_out update to be broadcast (using update_layout)
update_sender vertex that generated the update
update_round channel to use for sending messages generated from the update
barrier_out barrier marker (separates updates of different supersteps)

Flow control is handled by the associated handshake signals update_valid and update_ack.

Listing 2 shows the implementation of the WCC apply kernel module. Again, the logic is minimal: If the vertex has
been marked active in the gather step, meaning that a smaller label has been found in this superstep, then an update is
issued by asserting update_valid. All vertices also have their active bit reset to zero in preparation for the next superstep.

assign nodeid_out = nodeid_in;

assign state_out_label = state_in_label;

assign state_out_active = 1'b0;

assign state_barrier = barrier_in;

assign state_valid = valid_in;

assign update_out_label = state_in_label;

assign update_sender = nodeid_in;

assign update_round = round_in;

assign update_valid = valid_in & state_in_active;

assign barrier_out = barrier_in;

assign ready = update_ack;

Listing 2. WCC apply implementation
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Scatter. The scatter kernel module processes the outgoing edges of a vertex that issued an update in the apply phase.
For each edge, it adds the edge’s weight to the distance from the update.

The following inputs correspond directly to the update outputs from the apply kernel module (the same update is
repeated multiple times for the different outgoing edges):

update_in update to be broadcast (using update_layout)
sender_in vertex that generated the update
round_in channel to use for sending messages generated from the update
barrier_in barrier marker (separates updates of different supersteps)

Furthermore, the following inputs relate to each edge:

neighbor_in destination of the current edge
num_neighbors_in out-degree of the sending node

Input handshake is accomplished by the signals valid_in and ready.

The module outputs messages, using the following signals:

message_out message (using message_layout)
neighbor_out destination vertex
sender_out sending vertex
round_out channel to use for sending the message
barrier_out barrier marker (separates messages of different supersteps)

Output handshake signals are valid_out and message_ack.
Listing 3 shows the scatter kernel module for WCC. All values are forwarded as-is. While it is not necessary for

these small amounts of logic, we insert a pipeline stage to demonstrate how a pipelined module would be implemented.

assign ready = message_ack;

always @(posedge sys_clk) begin

if (message_ack) begin

message_out_label <= update_in_label;

neighbor_out <= neighbor_in;

sender_out <= sender_in;

round_out <= round_in;

valid_out <= valid_in;

barrier_out <= barrier_in;

end

end

Listing 3. WCC scatter implementation

Cumulatively, the whole hardware description of the WCC algorithm is implemented using approximately 30 lines
of code. This is typical of most kernels, as long as they only use integer arithmetic. An algorithm with multiple
floating-point operations, such as e.g. PageRank, requires about 200 lines of code to implement the pipelining necessary
for efficient processing.

Type of algorithms supported. Not all graph algorithms can be implemented in the Gather-Apply-Scatter programming
model chosen. An interesting way to view the restrictions is by considering the matrix representation of graphs: Instead
of representing a graph as a collection of vertices and edges, it is also possible to represent a graph as an adjacency
Manuscript submitted to ACM
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matrix of size |𝑉 | × |𝑉 |, where the element𝐴𝑖 𝑗 = 1 if the vertices 𝑖 and 𝑗 are connected by an edge, and𝐴𝑖 𝑗 = 0 otherwise.
The data accesses performed in this Gather-Apply-Scatter model are the same as for multiplying the vector of vertex
states with the adjacency matrix, and saving the result as the new vertex state.

In terms of the equivalent matrix representation of graphs, the algorithms that can be implemented are of matrix-
vector type: throughout all supersteps, the resulting vector of vertex data remains of constant size. Operations of type
matrix-matrix, or in graph terms operations that build lists of multi-hop paths, are deliberately excluded since they have
dynamically increasing storage requirements (the result of multiplying a sparse matrix with itself has more non-zero
values than the original). Although there is a theoretical transformation that allows any vertex-centric algorithm to be
turned into a 3-phase Gather-Apply-Scatter kernel, these transformations rely on non-bounded data structures (e.g.,
keeping all messages received in the Gather stage saved in the vertex data, and only using them in the Apply stage).
These cannot be realistically applied on FPGA, which has much more limited and less flexible memory resources.

4 ARCHITECTURE

One of the advantages of using a vertex-centric model is that large amounts of parallelism are readily available. To
make use of it, the GraVF-M framework generates as many processing elements (PEs) as can fit the available resources.
The vertices of the graph are then partitioned among the PEs. The assigned PE of a vertex hosts the vertex’s data and
runs the vertex kernel for this vertex. Communication between vertices involves transfer of data between different PEs.
An on-chip network, in our case realized as a crossbar, transports data between PEs on the same FPGA. On multi-FPGA
systems, data destined for remote PEs is handed to a network endpoint that delivers it via off-chip network to the
endpoint on the destination FPGA. Fig. 1 shows a high-level overview of the complete system.
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Fig. 1. System overview
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4.1 Optimized message delivery for multi-FPGA systems

When implementing a message-passing graph processing system, the amount of messages to be delivered is a concern
in two ways:

• Storage space. Because computation is structured into supersteps, all messages sent during a superstep have to
be stored before they can be delivered to the next superstep. The available memory space puts an upper limit on
the amount of messages that can be sent during a superstep, which generally correlates with the dataset size.

• Communication bandwidth. Graphs are highly interconnected, usually in an unstructured manner, which means
that partitioning the graph between multiple processing elements or across multiple FPGAs will lead to large
amounts of messages being sent between partitions.

To address both issues, we introduce an optimization in GraVF-M which makes use of the observation that during the
scatter phase, one update produces many messages. We can save both memory space and bandwidth by waiting until
the last possible moment to call the scatter function, which means producing messages on demand to be immediately
consumed by the gather module.

From the user’s perspective, the programming model is unchanged: they write the program as if messages were being
exchanged by distinct supersteps. In the underlying hardware generated by the framework, however, the execution of
the scatter stage is delayed until the following superstep, and it is located in the receiving PE.

The sending PE stores all updates produced by the apply stage during a superstep in a large output queue. Because
the programming model is defined such that at most one update is allowed to be issued by each vertex in a superstep,
the size of this queue is equal to the number of vertices which is generally at least an order of magnitude smaller than
the number of messages, of which there can be as many as there are outgoing edges. Rather than creating individual
messages and transporting them to their destination, the update is broadcast to all PEs, which then execute the scatter
stage for the subset of edges that have local destinations.

4.2 Processing Elements

Vertex StorageEdge Storage

Apply

Apply
Kernel

Gather
Kernel

Gather
Network Network

update
queue

Scatter
Kernel

Scatter

Fig. 2. Multi-FPGA optimized processing element overview

The processing element is responsible for organizing the execution of the vertex kernels according to the described
programming model. This means arranging the flow of messages, retrieving the associated vertex and edge data, and
managing the update queue, which is the principal storage in the system.
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Like the algorithm, the PEs are split into three modules for the three phases gather, apply and scatter. Fig. 2 gives an
overview of the PE’s internal pipeline, with the user-provided kernel modules shaded.

4.2.1 Scatter. Incoming updates from the previous superstep enter the scatter module (Fig. 3). For each update, the
scatter module first looks up the starting address and length of the sender’s local portion of the edge list, then iterates
through the local neighbors and presents the edges one by one to the scatter kernel along with the update. Edgelist
storage can be local (in BRAM) or in off-chip memory, such as HMC. The last update of a superstep is followed by a
special barrier update, which is passed through the scatter kernel to mark the end of the messages.
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Fig. 3. Scatter module

Edge storage modifications. Delaying execution of the scatter stage necessitates changing how the edge data is stored.
Rather than storing the list of all neighbors for the subset of vertices assigned to this PE, it now stores for all vertices
the subset of neighbors assigned to this PE. The overall volume of edges stored is the same, but they are moved to a
different location. Fig. 4 illustrates where edges are stored in the original (GraVF) and the new (GraVF-M) scheme for
the case of 4 PEs, with each color representing the partition of edges stored in the same scatter module.
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Fig. 4. Edge list partitioning in GraVF (left) and GraVF-M (right)

4.2.2 Gather. Messages produced by the scatter module enter the gather module, whose internals are shown in Fig.
5. The module reads the destination vertex’s data, and passes it together with the message to the user-defined gather
kernel. A read-after-write hazard may occur if another message for the same vertex arrives in quick succession, and
the destination vertex’s data has not yet been written back. We use a hazard detection module to keep track of in-use
vertex data and stall the read stage until the correct data has been written back by the gather kernel.
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Fig. 5. Gather module

4.2.3 Apply. When a barrier message enters the gather stage, this signals that all messages for the current superstep
have been received. The ready signal from the gather module is deasserted to temporarily halt further transmission of
messages from the next superstep that might potentially already be waiting. The gather module is first flushed to ensure
that all vertex data is written back, then access to the vertex storage is switched to the apply module (Fig. 6). The apply
module iterates through all vertices assigned to the PE, passing them sequentially to the user-defined apply kernel. The
updates generated by the apply kernel are entered into a large update queue. Once all modifications to vertex data are
written back, a barrier update is written to the queue to separate updates of this superstep from those of the next, and
control of the vertex data is switched back to the gather module, which once again begins accepting messages.

Apply
Kernelre

ad

Vertex storage

w
rit

evertex data vertex data

update

Fig. 6. Apply module

4.3 Network and Synchronization

The role of the network is not only to transport data between the PEs, but also to enforce separation between the
supersteps. The programming model specifies a barrier between supersteps: all messages from one superstep should
finish processing before the first message from the next superstep is processed. Given the deep pipelines necessary
to make FPGA-based processing efficient and the distributed nature of the system with many processing elements
advancing at different rates, enforcing such a strict temporal separation between supersteps would waste many cycles
flushing the complete system at each superstep. Instead, we propose the use of a floating barrier to preserve the invariant,
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from the user’s perspective, that they will always receive all messages from one superstep before the first message from
the next – but different pipeline steps and different PEs may proceed to the next superstep at different times.

Floating Barrier. To achieve flexible distributed barrier synchronization, barrier messages are exchanged between
PEs. Initially, the barrier is injected into the apply modules to begin execution. This causes each apply module to call
the apply kernel on the initial state of its assigned vertices, and then follow with the barrier. The barrier progresses
through the pipeline behind the initial updates, terminating the data for this superstep. As soon as the apply module
finishes writing back the modified vertex data of the last vertex, it switches operations back to the gather module,
which is now ready to accept any messages for the next superstep. These are likely to be already waiting, as the earlier
updates have had time to progress through the scatter module and cause messages to be generated. While the barrier
remains in the update queue, the gather module is in effect processing a superstep ahead of the scatter module.

Throughout the PE pipeline, strict ordering is enforced, with the barrier following behind the data for the current
superstep. When the barrier reaches the end of the apply module and exits the PE, the network sends a copy of the
barrier to each PE individually, and includes the count of updates that was sent during this superstep to the destination
PE in the barrier. This count allows the destination to confirm it has received all updates for this superstep, which
is necessary to support networks which do not guarantee in-order delivery (e.g. packet-switched off-chip networks
like Ethernet). If the barrier message were to be reordered and arrive before other messages, the destination network
endpoints would wait for the remaining messages.

On the receiving side, each PE’s network endpoint passes on updates to the gather module, and waits to receive a
barrier from each PE in the system (including itself). Upon reception of all barriers and comparison of received and
expected update counts, the network endpoint of the PE is able to independently determine that it has received all
updates for this superstep. At this point the barrier is passed on to the PE, which can progress to the next superstep.

Detecting algorithm termination is also achieved through the barrier messages. The message includes a bit indicating
whether the sending PE has sent any updates during the last superstep. If none of the PEs have generated any updates,
the algorithm is deemed inactive and the receiving network endpoint does not pass the barrier on but raises a termination
signal instead. This way all PEs are able to detect termination independently, in true distributed fashion.

Network properties. For the floating barrier algorithm to work properly and not cause deadlock, the network needs
to fulfill two conditions: it needs to guarantee delivery (i.e. not lose any updates), and it needs to guarantee that
backpressure on updates of one superstep will not impede delivery of updates from any previous superstep.

The first condition is straightforward: if updates are lost in transit, the algorithm execution is no longer correct.
Deadlock would also occur because the receiving PE would wait indefinitely for the updates to arrive.

The second condition also serves to avoid deadlock. Because the floating barrier allows PEs to progress to the next
superstep at different times, updates from different supersteps may coexist. Buffering capacity in the network is very
limited. Therefore, if some PE advances to the next superstep and starts sending many messages before any of the other
PEs are ready to accept them, these messages would fill all available buffers in the network. If this impedes delivery of
any messages from the previous superstep that the other PEs are still waiting for, they will never be able to progress to
the next superstep. However, the messages from the new superstep clogging the buffers cannot be consumed until after
the other PEs switch to the next superstep. To ensure this deadlock situation cannot occur, the network must not allow
messages from a later superstep to interfere with delivery of earlier messages.

The easiest way to implement this would be to only admit messages of one superstep into the network at a time, and
prohibit sending messages of the next superstep until all messages of the previous superstep are delivered. However this
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reduces the benefit of the floating barrier, as it means that a true temporal barrier is introduced and variable workload
imbalances between PEs can no longer be averaged out across supersteps. For better performance, the network should
offer separate (physical or virtual) channels for messages of different supersteps.

We implement internal communication within the FPGA through a crossbar network. The receiving side indicates
which channel it is currently accepting messages from, and the arbiter selects a sender among PEs wishing to send on
this channel.

For inter-FPGA communication, we sequentialize the virtual channels. The endpoint for outgoing messages in the
crossbar only accepts messages from one superstep at a time, and switches to the next channel when all PEs within the
FPGA have completed the superstep.

Filtering delivery of updates to FPGAs with neighbors. In comparison to GraVF, the main change to the network is
that instead of unicast messages, it now transports broadcast updates that have to be delivered to all PEs in the system.
The local network is modified in such a manner that updates sent from a local PE are broadcast to all local PEs and to
each remote FPGA, whereas updates coming from remote FPGAs are broadcast only to local PEs. Updates, just like
messsages, use channels to separate supersteps and are counted to ensure correct synchronization. Barriers work the
same as previously to detect superstep switchover and algorithm termination.

Broadcasting an update to all PEs is only advantageous if an update, on average, produces more messages than there
are copies made of the update. If most vertices have only one neighbor, sending a copy of the update to each other
FPGA in the system will use more inter-FPGA bandwidth than a single message would. To ensure that this optimization
will always result in a net benefit, we add a filtering unit that looks up whether the sender of an update has neighbors
on a remote FPGA, and does not send it to FPGAs where there are no potential recipients. This is currently realized
through a bitmap of size |𝑉 | ×𝑛FPGA (listing for each vertex which FPGAs host neighbors) that is generated at the same
time as the graph is partitioned across FPGAs. For larger systems, the storage required for the filter could be reduced
through use of compression or heuristic methods such as bloom filters.

4.4 Partitioning

How the vertices are distributed among the PEs affects the workload balance. Better partitioning improves processing
speed, however the pre-processing overhead can quickly overwhelm these gains. The least-effort way to distribute
vertices between the PEs is by round-robin, which results in a balanced number of vertices per PE. However, as the
workload consists primarily of traversing edges, the cumulative number of outgoing edges from the vertices assigned
to a PE would be a better proxy for workload balance.

Balancing the number of edges per PE is an instance of the multi-way number partitioning problem and thus
theoretically NP-complete, however this problem is known to be solved well by even the simplest of heuristics if the
number of partitions is much smaller than the number of items to be partitioned [Korf 2009]. In fact, we find that we
achieve near-perfect partitioning by assigning vertices to the partition with the currently lowest edge count even if we
omit the preliminary step of sorting the vertices by degree. This is presumably helped by the fact that the vertices are
already somewhat sorted due to the way the graph is constructed when reading in the edge list: vertices are added as
they are encountered, and vertices with many edges appear many times and thus have a higher likelihood of being
encountered early.

When distributing vertices within a single FPGA, there are no locality benefits: the communication costs are identical
between any two PEs, as even a message sent to another vertex on the same PE has to pass through the network so as
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to respect the superstep synchronization. However, once we introduce multiple FPGAs, there is a significant difference
in available bandwidth for communicating with vertices located on remote FPGAs compared to local vertices.

We add the option to partition the graph between the FPGAs using METIS [Karypis and Kumar 1998]. While the
runtime of this high-quality partitioning method is several orders of magnitude larger than that of our benchmarks, it
might still be worthwhile in specific circumstances (e.g. when the same dataset is reused many times), and it allows us
to explore some of the tradeoffs in partitioning.

As before, we use the outdegree of vertices as weight for balancing. METIS allows us to tune a balance factor ufactor,
which constrains the allowed imbalance of the resulting partition to be no greater than ufactor/1000. The default value
of ufactor is 1 (0.1% of imbalance allowed), and we observe that for RMAT graphs, the quality of the partition only
improves for values greater than 500. As the performance degradation from imbalance is much greater than the gain
from reducing inter-FPGA communication, we leave the value of ufactor at 1.

Dataset size limitations. So far, data is only partitioned in space, among the different PEs. We have not implemented
partitioning in time, where different parts of the graph are loaded for processing one after the other by the same PE.
The size of the datasets that GraVF-M can handle is consequently limited by the need to fit the entire graph in the
resources provided by the FPGAs available.

However, GraVF would be a good fit for grid-based partitioning, as is used e.g. in the software framework Grid-
Graph [Zhu et al. 2015] or in the other framework using multiple FPGAs, ForeGraph [Dai et al. 2017]. In this approach,
the edge lists are partitioned both by origin and by destination vertex, so that the scatter stage can generate messages
separately for each block of vertices. This allows the gather stage to load the relevant vertices and process all messages
destined for this block, and then proceed to load the next block.

5 THEORETICAL PERFORMANCE ANALYSIS

We build a throughput-oriented performance model of the system based on an analysis of the various limiting factors.
This model serves a dual purpose, both to project expected performance of a system before proceeding to acquire it and
implement the algorithm, and for use by the framework during generation to adjust the system parameters to their
optimal values.

5.1 Objective

The goal of this performance model is to maximise the overall system throughput (𝑇sys) by determining the values
of the following two variables: the number of FPGAs (𝑛FPGA) and the number of PEs per FPGA (𝑛PE/FPGA). System
throughput is measured in traversed edges per second (TEPS), a common measure of performance for graph processing.

5.2 Parameters

The domains for the two variables 𝑛FPGA and 𝑛PE/FPGA are determined by the platform configuration. When including
support for a given FPGA board in the framework, we specify the available resources as part of the board support
package. The domain for the number of PEs per FPGA (𝑛PE/FPGA) is fixed based on the size of the reconfigurable fabric.
The computational demands of graph algorithms are generally low, so that the area demands for the user-provided
application kernels can be estimated generously. The upper limit is straightforwardly determined by reconfigurable
logic element usage per PE. For larger FPGAs, a lower limit greater than one PE may also be imposed to avoid routing
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Variables
𝑛FPGA number of FPGAs to use
𝑛PE/FPGA number of PEs per FPGA

Dependent Variables
𝑇FPGA throughput per FPGA (edges/s)
𝑇sys total system throughput (edges/s)

System Parameters
𝐶𝑃𝐸PE cycles per edge (edges−1)
𝑓clk operating frequency (Hz)
𝐵𝑊if network interface bandwidth (bits/s)
𝐵𝑊network total network bandwidth (bits/s)
𝐵𝑊mem memory interface bandwidth (bits/s)
𝑀board memory capacity per FPGA (bits)

Algorithm-dependent Parameters
𝑚vertex data storage per vertex (bits)
𝑚message message size (bits/edge)
𝑚update update size (bits)
𝑚edge edge size (bits)
𝑝msg/TE messages per traversed edge (edges−1)

Dataset-dependent Parameters
|𝑉 | number of vertices in the input graph
|𝐸 | number of edges in the input graph

Table 1. Definitions

problems: as we strive to use all available BRAM to store vertex data, it becomes very hard for the synthesis tools to
route connections from all corners of the FPGA chip to a single PE.

The minimum number of FPGA boards is determined by the problem size: each board can host a number of vertices
limited by the available memory and the size of the vertex data specified by the algorithm. The number of FPGAs in the
system has to be big enough to host the whole dataset:

𝑛FPGA ≥ |𝑉 | ×𝑚vertex
𝑀board

Given these parameters, the system evaluates which of the following factors limits the overall performance:

5.3 Processing element throughput constraint.

Each processing element can traverse a limited number of edges per second. Analogous to a processor’s CPI (cycles
per instruction), we define the processing element’s CPE (cycles per edge) as the average number of cycles it takes to
traverse an edge. It is determined by a combination of architectural features, input graph features and message patterns:
The PE pipeline is for the most part designed to handle a new edge each cycle, but the gather module can stall due to
read-after-write hazards if two messages for the same vertex are received in quick succession, and the scatter module
needs a cycle to reset at the end of each edge list. The user kernel may also inadvertently lower CPE if an inefficient
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implementation is chosen, although this is not the case for our kernel implementations, which all support a CPE of 1.
Experimentally, we determine the CPE of our PEs to vary between 1.05 and 1.4.

The cumulative throughput limit 𝐿𝑃𝐸 of all PEs in the system is expressed in the following formula:

𝑇sys ≤ 𝐿𝑃𝐸 = 𝑛FPGA × 𝑛PE/FPGA × 𝑓clk
CPEPE

(1)

For the maximum number of PEs that fits in an FPGA, we obtain the computational limit of the FPGA, 𝐿𝑃𝐸𝑚𝑎𝑥
.

5.4 Memory bandwidth constraint.

When using off-chip memory to store the adjacency lists, the FPGA throughput 𝑇FPGA may also be limited by the
memory bandwidth. Traversing one edge requires loading one edge of size𝑚edge from memory:

𝑇FPGA ×𝑚edge ≤ 𝐵𝑊mem

From which, by multiplying with the number of FPGAs in the system, we derive the memory interface limit 𝐿𝑚𝑒𝑚 :

𝑇sys ≤ 𝐿𝑚𝑒𝑚 = 𝑛FPGA × 𝐵𝑊mem
𝑚edge

(2)

The above equation does not account for memory access granularity.While the HMC platform used in our experiments
allows accessing memory in comparatively small words of 128 bit, leading to very little wasted bandwidth, this can
become important e.g. when using AXI-based memory interfaces, which read data in words of 512 bit at a time. The
effect is also more pronounced for GraVF-M than for GraVF, as the edgelists are split into 𝑛PE arrays, as discussed in
section 4.2.1 and shown in Fig. 4.

We can estimate the worst case wasted bandwidth if we assume that there is no correlation between the length of the
edgelist and the probability of it being accessed (i.e. vertices are equally likely to be active irrespective of their degree)
as follows.

There are |𝑉 | × 𝑛PE edgelists, containing |𝐸 | edges in total. Each edgelist is stored as a sequential array of edges and
accessed as a whole. The start of the edgelist is aligned to the memory access word boundaries. In the worst case, the
last memory access for every edgelist contains only a single edge. Thus, to read all |𝐸 | edges in the graph, on top of the
useful |𝐸 | ×𝑚edge bits of edgelist, an additional |𝑉 | × 𝑛PE × (𝑚memword −𝑚edge) bits are read from memory (where
𝑚memword denotes the number of bits read in one memory access). In per-traversed-edge terms, this corresponds to:

𝑇FPGA ×
(
𝑚edge +

|𝑉 |
|𝐸 | × 𝑛PE × (𝑚memword −𝑚edge)

)
≤ 𝐵𝑊mem

From which we can derive the refined limit accounting for access granularity:

𝑇sys ≤
𝑛FPGA × 𝐵𝑊mem(

𝑚edge + |𝑉 |
|𝐸 | × 𝑛PE × (𝑚memword −𝑚edge)

)
The additional term can grow to be a problem if the access granularity is very large, if the average degree of the

graph is low, or if the number of PEs in the system is very high. In the latter case there is however a limit: The edge list
cannot be spread thinner than one edge per PE (if a vertex has zero neighbors on a PE, no memory request is issued). If
the term |𝑉 |

|𝐸 | × 𝑛PE reaches 1, the formula reduces to𝑇sys ≤ 𝑛FPGA × 𝐵𝑊mem
𝑚memword

: a whole memory word has to be read for
each edge.
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5.5 Network interface bandwidth constraint.

The PEs have to exchange messages among each other.
With the GraVF-M optimization, the amount of data transferred is reduced. Instead of one message per neighbor,

one update is sent to each FPGA for all neighbors combined. On average, a vertex has |𝐸 |
|𝑉 | neighbors. We assume that

the network does not support a true broadcast operation, so each update has to be sent individually to all 𝑛FPGA − 1
remote FPGAs. We also assume that the sending and receiving bandwidths are symmetrical, i.e. both equal to half the
reported total interface bandwidth 𝐵𝑊if

2 .
The average amount of data sent over the network per edge is𝑚update × (𝑛FPGA − 1) × |𝑉 |

|𝐸 | . 𝑇FPGA is the amount of
edges processed per second on the sending FPGA. The limitation that the network interface of a given FPGA imposes
on the performance is thus expressed by the inequality

𝑇FPGA ×𝑚update × (𝑛FPGA − 1) × |𝑉 |
|𝐸 | ≤

𝐵𝑊if
2

Combining this with 𝑇sys = 𝑇FPGA × 𝑛FPGA and solving for 𝑇sys results in:

𝑇sys ≤ 𝐿𝑖 𝑓 =
𝐵𝑊if

2 ×𝑚update
× 𝑛FPGA
𝑛FPGA − 1

× |𝐸 |
|𝑉 | (3)

For GraVF, which sends unicast messages rather than broadcasting updates, the network interface limit has been
calculated in [Engelhardt et al. 2018] to be

𝐿𝑖 𝑓 (GraVF) =
𝐵𝑊if

2 ×𝑚message
×

𝑛2FPGA
𝑛FPGA − 1

(4)

Thus, the theoretical speedup of GraVF-M over GraVF is:

Speedup =
𝐿𝑖 𝑓 (GraVF-M)
𝐿𝑖 𝑓 (GraVF)

=
|𝐸 |
|𝑉 | ×

1
𝑛FPGA

×
𝑚update

𝑚message
(5)

Typically, |𝐸 | is larger than |𝑉 | by one to two orders of magnitude. However, in for very large systems or extremely
sparse graphs where the term |𝐸 |/( |𝑉 | × 𝑛FPGA) is smaller than 1, the optional filtering step described in section 4.3
that sends updates only to FPGAs where neighbors reside ensures that the performance will not be reduced below that
of GraVF. With our current implementation, 𝑚update

𝑚message
= 1 so this term does not affect performance.

5.6 Total network bandwidth constraint.

The overall bandwidth of the network connecting the FPGAs is also limited. The cumulative data sent by all the FPGA
boards cannot exceed it. As before, the average amount of data sent over the network per edge is𝑚update × (𝑛FPGA −
1) × |𝑉 |

|𝐸 | . The total amount of edges processed per second in the whole system is 𝑇sys.
The limitation introduced by the total network bandwidth can thus be expressed in the inequality

𝑇sys ×𝑚update × (𝑛FPGA − 1) × |𝑉 |
|𝐸 | ≤ 𝐵𝑊network

Rearranging this equation give the network limit 𝐿𝑛𝑒𝑡 :

𝑇sys ≤ 𝐿𝑛𝑒𝑡 =
𝐵𝑊network

(𝑛FPGA − 1) ×𝑚update
× |𝐸 |

|𝑉 | (6)
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Comparing this to the limits of GraVF found in [Engelhardt et al. 2018]:

𝑇sys ≤ 𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =
𝐵𝑊network × 𝑛FPGA

(𝑛FPGA − 1) ×𝑚message
(7)

As the same reduction in amount of data crossing the network applies, we once again obtain the same speedup as for
the network interface limit.

Speedup =
𝐿𝑖 𝑓 (GraVF-M)
𝐿𝑖 𝑓 (GraVF)

=
|𝐸 |
|𝑉 | ×

1
𝑛FPGA

×
𝑚update

𝑚message
(8)

Other network topologies. In these two network limits, only a simple network consisting of direct one-to-one
communication between FPGAs is considered, as this corresponds to the platforms on which GraVF(-M) has been
implemented so far. However, other topologies exist.

The reasoning on network and network interface constraints can be extended to hierarchical networks with more
layers. This is commonly the case where e.g. multiple FPGAs are hosted on the same node and can communicate quickly
with each other, but there is less bandwidth available to communicate with FPGAs on remote nodes. In this situation,
the same equations apply, with the number of nodes in place of the number of FPGAs.

More generally, the techniques of network analysis can be applied by considering each FPGA as a source of
𝑇FPGA ×𝑚update × |𝑉 |

|𝐸 | bits/s of data, which have to be broadcast to all 𝑛FPGA − 1 other FPGAs, and modelling whatever
interconnect topology the system in question is equipped with.

5.7 Determining the limiting factor

Overall, taking into account all four factors, we can derive the predicted throughput of an FPGA:

𝑇sys = min(𝐿𝑃𝐸 , 𝐿𝑚𝑒𝑚, 𝐿𝑖 𝑓 , 𝐿𝑛𝑒𝑡 ) (9)

Since we would not want to computationally limit the system while there are resources available, in a first step we
assume we use the maximum number of PEs available, fixing the value of 𝑛PE/FPGA in 𝐿𝑃𝐸 and calling the resulting
value 𝐿𝑃𝐸𝑚𝑎𝑥

.
𝐿𝑃𝐸𝑚𝑎𝑥

and 𝐿𝑚𝑒𝑚 increase with 𝑛FPGA, whereas 𝐿𝑖 𝑓 and 𝐿𝑛𝑒𝑡 decrease with 𝑛FPGA. Therefore, there are multiple
candidates for the optimum value of 𝑇sys. As the network limits are not defined for 𝑛FPGA = 1, it might be the best
solution. Otherwise, it will be obtained at the point where the network limits and one of the other limits intersect:

min(𝐿𝑃𝐸𝑚𝑎𝑥
, 𝐿𝑚𝑒𝑚) = max(𝐿𝑖 𝑓 , 𝐿𝑛𝑒𝑡 )

This equality is solved for 𝑛FPGA, and the resulting value of 𝑇sys compared to the single-FPGA performance to find
out which is the real solution. Rounding to the nearest integer if necessary, we obtain the value of 𝑛FPGA.

If memory or network is found to be the limiting factor, once the number of FPGAs is chosen, the number of PEs
per FPGA can be lowered to save power. Substituting the values of 𝑇sys and 𝑛FPGA calculated in the previous step into
equation 1 gives a lower bound on the necessary number of PEs per FPGA to maintain the same performance:

𝑛PE/FPGA ≥
𝑇sys ×𝐶𝑃𝐸𝑃𝐸

𝑛FPGA × 𝑓clk
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In this manner, the framework chooses the optimal values for the number of FPGAs (𝑛FPGA) and the number of PEs
per FPGA (𝑛PE/FPGA), optimizing first for throughput and then for power.

6 PERFORMANCE EVALUATION

6.1 Evaluation platform

To evaluate the performance of the framework-generated designs, we use a system comprised of four Micron AC-510
modules on an EX-750 backplane. Each AC-510 module contains a Xilinx KU060 FPGA and a 4GB Hybrid Memory Cube
connected with two half-width (x8) links with 15Gb/s signaling rate. The EX-750 backplane allows direct communication
via PCIe x8 gen 3 link between the FPGAs without passing through the host.

To apply our analytical model described in section 5, we need to determine the relevant parameters of the platform:
the operating frequency 𝑓clk, the PE throughput measure𝐶𝑃𝐸PE, the memory interface bandwidth 𝐵𝑊mem, the network
interface bandwidth 𝐵𝑊if, and the total network bandwidth 𝐵𝑊network. Most of these factors are influenced by the
implementation of the memory controller and PCIe endpoint provided by Micron, so we experimentally determine
these values.

The operating frequency 𝑓clk is determined by using the maximum supported by the memory controller interface,
187.5 MHz.

We derive the PE throughput measure 𝐶𝑃𝐸PE from the performance of a system with only one single PE using
on-chip memory. As the network reduces to a single FIFO feeding the PE’s output back into its input, no outside
factors should impede performance in this situation. We measure 𝐶𝑃𝐸PE = 1.05 for WCC, 𝐶𝑃𝐸PE = 1.10 for BFS, and
𝐶𝑃𝐸PE = 1.42 for PR.

For the memory interface bandwith, we use the GUPS benchmark included with the PicoFramework development
environment. The peak experimentally determined available memory bandwidth is 21.7GiB/s, although for the configu-
ration most closely matching our use case the observed bandwidth is only 8.1GiB/s (as memory bandwidth was never
the limiting factor in our experiments, we did not invest further effort in optimizing this).

Determining the network parameters is more complicated. Communication over PCIe is wrapped by the PicoFrame-
work into streams, which are presented to the user like ordinary 128-bit wide first-word fall-through FIFOs with one
end on either FPGA. A separate stream has to be opened for communication between every pair of FPGAs in the system.
The PCIe interface bandwidth 𝐵𝑊if is divided among the streams, but the streams themselves also have an inherent
maximum throughput of 128 bit every clock cycle. Either of these can be the limiting factor.

We implement a benchmark that continuously sends data to all other FPGAs in the system, and measure the
cumulative sending and receiving bandwidth from all channels on one FPGA when sending data to 1, 2 or 3 other
FPGAs. (The other FPGAs are also sending data to each other, in the same configuration as is used in GraVF/GraVF-M.)
To mirror our use case, the always-on sender and receiver are located in the 187.5MHz clock domain, and connected to
the stream clock domain (200MHz) through an asynchronous FIFO. While one would think that this would result in less
data transmitted than if the sender is directly in the stream clock domain, it does in fact lead to 20% higher bandwidth
transmissions in the 4-FPGA case, presumably due to congestion effects. The results are shown in table 2. We find that
the network interface bandwidth is 𝐵𝑊if = 11.7GiB/s, but that performance is further restricted in the 2-FPGA and
3-FPGA case by the FIFO’s interface bandwidth.
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𝑛FPGA send (GiB/s) receive (GiB/s)

2 2.79 2.79
3 5.59 5.59
4 5.85 5.85
Table 2. Observed network bandwidth

As there is no slowdown at the maximum configuration, we are unable to determine 𝐵𝑊network precisely, but we can
determine that it is larger than the amount of data sent by all 4 FPGAs simultaneously, 23.4 GiB/s, and that it is never
the limiting factor on this platform.

6.2 Algorithms and datasets

We implement kernels for three algorithms for use with our framework: Breadth-First Search, Weakly Connected
Components, and PageRank. These algorithms are widely used by previous work and thus allow easy performance
comparison. They also cover distant points on the spectrum of workloads, from the highly variable (BFS) to the regular
(PR).

Breadth-First Search (BFS). BFS is a kernel that forms the base for a wide variety of applications, including the
graph500 supercomputing ranking [Murphy et al. 2010]. The most common variant, which we adopt, is one that visits
all vertices in the graph in order to compute a minimum spanning tree, rather than a true search (which might be
abandoned early upon finding a specific vertex) as the name suggests. Each vertex stores the ID of its parent vertex in
the spanning tree.

In BFS, each vertex is active only once, during the superstep where it is first visited. Exactly one message is sent for
each edge in the graph. The number of active vertices is highly variable over the course of execution, starting from a
single active vertex in the first superstep, growing to encompass a large portion of the graph within a few hops, and
finally reducing again to only a few remote vertices as it nears completion.

Weakly Connected Components (WCC). The WCC algorithm detects unconnected portions of a graph. Each connected
set of vertices agrees on a common label by propagating the lowest seen vertex ID to all neighbors. (This algorithm is
described in detail in section 3, where it is used as an example illustrating the kernels syntax accepted by GraVF-M.)

Many vertices will be active more than one superstep, especially those with high vertex IDs, as progressively lower
vertex IDs are propagated. However, similarly to BFS the total amount of activity is limited by the diameter of the graph
and wanes towards the end of the computation.

PageRank (PR). PageRank is a ranking algorithm that assigns a floating-point score to each vertex in the graph
based on the score of its neighbors, computed over multiple iterations towards a fixed point. We have adapted the
vertex-centric implementation from Pregel [Malewicz et al. 2010].

During each superstep, each vertex contributes 1
𝑛 th of its score from the previous iteration to each of its neighbors’

scores, where 𝑛 is the number of (outgoing) neighbors that the vertex is connected to. Computation is run for 30
supersteps. All vertices are always active, and a message is sent over each edge of the graph in each superstep. PR is
thus a heavier but more regular computation than the other two algorithms. The amount of computation per vertex per
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iteration is also larger, consisting of multiple floating point operations which combine to give the pipelined kernel a
latency of several hundred cycles.

Datasets. We use two types of synthetic graphs to evaluate our framework. Uniform graphs have edges distributed
evenly, with most vertices close to the average degree. Edges are generated with equal probability for any pair of
vertices. Scale-free graphs have extremely skewed degree distributions following a power law. Most vertices have low
degrees, but a few are highly connected. These datasets are obtained from the RMAT generator [Chakrabarti et al. 2004].

Measurement. We evaluate performance using a common throughput measure for graph algorithms, traversed edges
per second (TEPS). It is not well-defined in the literature what counts as traversing an edge, especially for algorithms
like WCC where vertices can receive new data from the same neighbor multiple times during the course of execution.
Here, we consider that an edge is traversed every time information is transferred along it, i.e. when the scatter kernel
sends a message. The overall system throughput 𝑇sys is calculated as the total number of messages sent over the course
of the execution divided by the runtime.

6.3 Experiments

In these experiments, we aim to evaluate both the general performance of the framework-generated designs, and to
compare the predictions of the performance model to the actual results.

6.3.1 Multi-FPGA Scaling. To measure the effect of the improved architecture introduced in this paper, we compare
the performance of GraVF-M to GraVF when scaling from one to four FPGA boards. Each FPGA is configured to use 9
PEs, with the use of off-chip HMC memory for edge data enabled. We use a uniform graph dataset, and partition it
among the FPGAs using the greedy edge-based heuristic. Results are shown in Fig. 7.

Overall, GraVF-M exhibits much better scaling performance. Although GraVF is still preferable when run on a single
FPGA, GraVF-M achieves a 2.2 − 2.8× speedup when spreading computation across 4 FPGAs.

In the following sections we will examine some aspects of GraVF-M performance in more detail.

6.3.2 Single-FPGA Performance. We evaluate the PE performance when unconstrained by factors such as memory
or inter-FPGA network. In this experiment, we only use a single FPGA, and we compare the GraVF and GraVF-M

designs. Fig. 8 shows the performance of both designs for a uniform graph dataset.
In exchange for better multi-FPGA performance, the single-chip performance of GraVF-M is reduced compared to

GraVF when using BRAM. The GraVF-M on-chip network is more prone to communication conflicts, as the broadcast
mechanism results in the PEs sending nearly in lockstep. A single PE unable to accept more data also blocks all PEs
from sending, whereas in GraVF PEs would still be able to send messages to other destinations, and only stop when
chancing upon a message destined for the blocking PE. A large part of this performance can be regained when using
the off-chip HMC memory, as the 64 in-flight requests per PE in effect provide extra buffer space.

6.3.3 Effects of average degree. The core GraVF-M architecture improvement introduces a dataset-dependent term
|𝐸 |/|𝑉 | when the performance is limited by the inter-FPGA network. Consequently, GraVF-M performance should be
better for graphs with higher average degree.

We generate uniform graphs with a constant number of vertices and average degrees ranging from 2 to 64. Fig. 9
compares the performance of a 4-FPGA GraVF-M design using off-chip HMC memory with 9 PE per FPGA and with
greedy-edge partitioning. The influence of the average degree (|𝐸 |/|𝑉 |) on performance can be clearly seen. At very low
Manuscript submitted to ACM
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Fig. 7. Throughput for a multi-FPGA system
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Fig. 8. GraVF-M vs. GraVF performance on uniform graph.

degree, the performance (especially of the BFS algorithm) is more variable as other effects dominate (BFS is sensitive to
the shape of the graph). At the highest degree shown (64), the computational limit of the PEs is reached before the
network limit, especially for PR which has a higher CPE.

This reliance on the average degree does mean that GraVF-M does not benefit low-degree datasets such as road
networks as much. On a subgraph of the Pennsylvania road network obtained from the SNAP database [Leskovec and
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Krevl 2014], which has an average degree of 2.8, we achieve a performance of 182 MTEPS for BFS, 720 MTEPS for PR
and 663 MTEPS for WCC using 4 FPGAs.

6.3.4 Latency effects. To estimate the efficiency of the barrier synchronization, we create a set of synthetic graphs
with the structure depicted in Fig. 10, which allows us to precisely control the number of supersteps (𝑑 + 1) and the
number of vertices active in each superstep (𝑤 ) for the BFS algorithm (the most latency-sensitive of our algorithms).
The solid edges represent the BFS minimum spanning tree, and the additional edges (drawn dashed) between vertices
of same rank serve to achieve a higher average degree without affecting when a vertex will be active.

w

d

Fig. 10. Structure of the synthetic graphs used in this experiment. The single vertex on the left is selected as root for the BFS algorithm.

In a first step, we run BFS on a line graph with 16385 vertices (i.e. the graph obtained for𝑤 = 1, 𝑑 = 16384 and with no
additional edges). This graph will have only a single vertex active each superstep, for 16385 consecutive supersteps. As
the amount of work per superstep is negligible, the time used per superstep is entirely attributable to synchronization
latency. From this experiment we obtain a latency of 676 cycles/superstep, or 3.6µs, for a system of 4 FPGAs with 9 PEs
each, using HMC (i.e. the same system as in Fig. 7). This can be compared to the round-trip time between two FPGAs in
this system, which is 1.6µs.
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In a second step, we create a series of these synthetic graphs with a constant number of vertices, but distributed
across an increasing number of supersteps. The average degree for the graphs is set to 64, and the number of vertices
active in each superstep𝑤 is decreased from 16384 to 64, while 𝑑 is increased from 1 to 256 supersteps. Fig. 11 shows
the throughput on this series of graphs, for the same system of 4 FPGAs with 9 PEs each, using HMC. It can be seen
that latency becomes a significant factor starting at 2k active vertices per superstep, which corresponds to 128k edges
traversed per superstep. As the number of supersteps increases and the amount of work per superstep decreases, the
time per superstep converges towards the synchronization latency previously determined.

6.3.5 Partitioning. In this experiment we examine the effectiveness of the partitioning methods. Partitioning is
more challenging for scale-free graphs, so we use the RMAT-generated graphs. The system is configured to use HMC
memory.
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Fig. 12. Round-robin vs. greedy edge-based partitioning.

Fig. 12 shows the comparison of the round-robin and greedy partitioning strategies on single-FPGA systems of 1
to 8 PEs. The greedy strategy shows a slight advantage, but the round-robin partitioning is not significantly poorer-
performing. Greedy edge-based partitioning was adopted as the default strategy.

Manuscript submitted to ACM



26 Engelhardt, So

 0

 1000

 2000

 3000

 4000

 1  2  3  4

S
y
s
te

m
 T

h
ro

u
g
h
p
u
t 
(M

T
E

P
S

)

 

PageRank

Metis
Greedy Edge

 0

 1000

 2000

 3000

 4000

 1  2  3  4

Number of FPGAs

BFS

 0

 1000

 2000

 3000

 4000

 1  2  3  4

 

WCC

Fig. 13. Greedy edge-based partitioning vs. METIS.

Fig. 13 compares the performance when scaling across multiple FPGAs using location-agnostic partitioning from the
greedy edge-based heuristic, or a high-quality partition obtained from the METIS tool [Karypis and Kumar 1998] that
attempts to minimize the number of edges crossing FPGA boundaries. As METIS runtime is several thousand times
higher than the runtime of the algorithms under investigation, it should be viewed more as an upper bound on the
effects of partitioning quality rather than as a realistic option. The greedy edge-based heuristic is able to achieve results
within 5% of METIS.

6.4 Comparison to other frameworks

As is noted by [Oguntebi and Olukotun 2016], the commonly-used throughput measure MTEPS (Millions of Traversed
Edges Per Second) is not always comparable across different works, because the notion of what constitutes ‘traversing’
an edge is not well-defined. The related works examined in this section were not described in enough detail to ascertain
the authors’ definition of traversal; as such we can merely take the reported numbers at face value and assume that it
matches our definition.

6.4.1 Multi-FPGA frameworks. ForeGraph [Dai et al. 2017] is the only multi-FPGA framework to compare our work
with. Their work is evaluated by simulating a 4-FPGA platform similar to ours (memory bandwidth of 19.2 GB/s vs.
21.7GiB/s, network bandwidth 1.4 GiB/s vs. 1.5 GiB/s), and with the same benchmark algorithms, on a social graph of
comparable edgefactor (35, vs. 32 for the dataset that our results were obtained on). Table 3 shows the peak performance
reported for ForeGraph and that obtained for our work. GraVF-M achieves performance 2.5 − 3.8× that of the closest
comparable work.

Algorithm ForeGraph GraVF-M

PageRank 1856 4623
BFS 1458 5493
WCC 1727 5791

Table 3. Peak performance obtained for different algorithms (MTEPS)

6.4.2 Single-FPGA frameworks. We can also compare the performance of single-FPGA frameworks to the per-FPGA
performance of GraVF-M by dividing the throughput by the number of FPGAs. The following works report throughput
numbers on one of our benchmark algorithms in a compatible format:
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[Zhou et al. 2016] achieves 747-1068 MTEPS for the WCC algorithm, on a platform with a memory bandwidth of
19.2 GB/s and on datasets with edgefactor 2-14. Our work has a throughput of 1447 MTEPS per FPGA.

[Zhou and Prasanna 2017] reports executing BFS at 670 MTEPS, on a hybrid platform comprised of a CPU with
memory bandwidth 30 GB/s and an FPGA with memory bandwidth 12.8 GB/s, on synthetic graphs with edgefactors of
4 to 16, compared to 1373 MTEPS per FPGA for GraVF-M.

[Zhou et al. 2018] includes an evaluation using PR, on a platform with 60 GB/s memory bandwidth with 1116-
2487 MTEPS on social graphs with edgefactors 2-35. Our work has a per-FPGA throughput of 1155 MTEPS on this
algorithm.

[Oguntebi and Olukotun 2016] shows throughput of approximately 110 MTEPS for PR, but it is very likely that their
definition of edge traversal differs. Their SpMV algorithm achieves 750 MTEPS and PageRank can be implemented as
a succession of sparse matrix-vector multiplications, so the performance of the two should not differ this drastically
under our definition.

Other works’ performance is even more difficult to compare, as they use different algorithms for their evaluation or
report their numbers in speedup against some software baseline (or in the case of [Zhou et al. 2017], GPU).

7 CONCLUSION

In this work we have presented the GraVF-M framework, which generates graph processing designs optimized for multi-
FPGA platforms. This framework greatly simplifies the implementation of FPGA based accelerators for vertex-centric
graph processing algorithms, while offering attractive performance. Our proposed architecture allows the familiar
message-passing paradigm to be maintained, while exploiting structural features of the programming model to transfer
portions of the computation to the receiver in order to minimize inter-FPGA network traffic.

A 4-FPGA system generated by GraVF-M reaches 4.6-5.8 GTEPS, which compares favorably to other works in
the literature. It is also up to 94% of the theoretical peak performance projected by our performance analysis. The
performance model we developed can be used to evaluate the likely performance of platforms based on their memory
and network interface capabilities before proceeding to implementation.
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