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abstract: Activity times structure the thermal environments expe-
rienced by organisms. In mammals, species shift from being noctur-
nal to diurnal and vice versa, but the thermal consequences of variable
activity patterns remain largely unexplored. Here we used theoretical
thermoregulatory polygons bounded by estimates of basal metabolic
rates (BMR), maximum metabolic rates (MMR), and thermal con-
ductance (C) in small mammals to explore themetabolic consequences
of exposure to global-scale daytime and nighttime temperatures.Model
predictions indicated higher metabolic scope for activity for noctur-
nal species at low latitudes and that reduced minimum C and larger
body size increased the geographic range in which nocturnality was
advantageous. Consistent with predictions, within rodents nocturnal
species have low C. However, nocturnal mammals tend to be smaller
than diurnal species, likely reflecting the importance of additional
factors driving body size. Projections of warming impacts on small
mammals suggest that diurnal species could lose habitable space glob-
ally. Conversely, warming could lift cool temperature constraints on
nocturnal species and increase habitable space, suggesting that a shift
toward nocturnal niches might be favored in a warming world. Taken
together, these findings demonstrate the importance of energetic con-
siderations for endotherms in managing global change impacts on
nocturnal and diurnal species.

Keywords: biogeography, climate, endotherm, global change, metab-
olism, thermal biology.

Introduction

Mammals exhibit a great deal of variation with respect to
activity patterns over diel timeperiods;∼70%of extantmam-
mal species are nocturnal and 20% diurnal (Bennie et al.
2014). In fact, the origin of mammals in the Mesozoic
was rooted in nocturnality (Gerkema et al. 2013). Andwhile
diurnality appears to have been present in the Paleocene-
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Eocene thermal maximum, there was also a likely an ex-
tirpation of diurnal mammals in the global cooling of the
Eocene-Oligocene transition that followed (Wu et al. 2017).
In vertebrates generally, there are important evolutionary
consequences of diurnality and nocturnality as speciation
is generally higher for diurnal species (Anderson andWiens
2017). Ambient temperature (Ta; and associated variation
in solar radiation) then appears to be an important factor
in speciation and diversification patterns within mammals
and vertebrates.
In small mammals in particular, activity patterns are es-

pecially plastic and sensitive to environmental conditions.
Cold (and hunger) can induce diurnality in nocturnal mice
with the accompanied increased energy demands andmet-
abolic challenges (van der Vinne et al. 2014). In mice from
temperate environments with relatively low Ta and food
availability, diurnality is especially beneficial, as it reduces
energy expenditure significantly (van der Vinne et al. 2015).
Heat, on the other hand, can also have costly consequences
andmay have pushed bats, for example, to evolve nocturnal
flight to reduce metabolic costs of flight and heat dissipa-
tion during the day (Voigt and Lewanzik 2011). Rodents
are also known reduce activity significantly in response to
heat or solar exposure (Bacigalupe et al. 2003). Nonetheless,
the potential impact of elevated temperatures due to global
warming on daily activity patterns, foraging efficiency, and,
ultimately, population viability, has not been studied in de-
tail inmammals as in lizards (Bozinovic and Vasquez 1999;
Huey et al. 2010; Sinervo et al. 2010; Levy et al. 2019).
Within mammalian energetics, the issue of nocturnality

versus diurnality remains largely untested across species,
despite the clear importance for climate change vulnerabil-
ity (Levesque et al. 2016). Furthermore, there is a tendency
for mammals (large mammals in particular) to increase in
nocturnality to avoid human disturbance effects (Gaynor
et al. 2018). Changes in diel activity within mammals to
avoid globally dominant human activities will have ener-
getic consequences that could be exacerbated by climate
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change (Gaynor et al. 2018). Similarly, mammals may re-
spond to warming impacts by shifting diel patterns—
McCain and King (2014), for example, found that species
that are obligate nocturnal or diurnal are twice as likely
to have responded to climate change in some way (e.g., ex-
tirpation or range shift) than species that can shift activity
times. Therefore, addressing themetabolic consequences of
diel variation in activity for mammals could provide key
insights into both the evolution ofmammals broadly as well
as their vulnerability to climate change.
Here we examine the metabolic consequences and ther-

mal adaptation implications of nocturnality and diurnality
in small mammals using multiple lines of theoretical and
empirical evidence. First, using the framework of Rezende
and Bacigalupe (2015), we constructed general endother-
mic thermoregulatory polygons based on published mea-
surements of basal metabolic rate (BMR), maximum met-
abolic rate (MMR), and thermal conductance (C). These
polygons allow for predictions ofmetabolic scope for activ-
ity as a function of Ta and, therefore, based on nocturnal
and diurnal thermal variation. Furthermore, we varied C
and body mass (mb) in the model to predict whether noc-
turnal or diurnal small mammals would be more likely to
exhibit these traits to maximize metabolic scope for activ-
ity. Next, we used data sets on small mammal/rodent phys-
iological traits by Naya et al. (2013), mammal body size by
Jones et al. (2009), and diel activity patterns by Bennie et al.
(2014) to test predictions made by the polygon approach.
Finally, we applied a series of warming scenarios for vari-
able activity times and traits to examine broad patterns of
climate change implications. The results altogether high-
light the divergent and variable environments experienced
by diurnal and nocturnal mammals. Furthermore, through
this approachwepresent a general thermoregulatory frame-
work for determining the vulnerability associatedwith traits
of endothermic species to increasing temperatures under
climate change.
1. Code that appears in The American Naturalist is provided as a con-
venience to readers. It has not necessarily been tested as part of peer review.
Methods

Model and Approach

We focused on small mammals (between 10 and 150 g) be-
cause they are speciose and data on thermal traits (BMR,
MMR, and C) are readily available (Naya et al. 2013, 2018).
To make predictions as to how nocturnal species might
vary traits to maximize metabolic scope, we implemented
the thermoregulatory polygon approach of Rezende and
Bacigalupe (2015). Briefly, polygons are based on the basic
principles of heat regulation and Newton’s law of cooling
as outlined by Scholander et al. (1950):

MR p C(Tb 2 Ta):
In this case, metabolic rate (MR) is a function of thermal
conductance, body temperature (Tb) and air temperature
(Ta). The thermoregulatory polygon is therefore bounded
by BMR (bottom), MMR (top; see Rosenmann and Mor-
rison 1974), as well as minimum and maximum C (respec-
tively,Cmin on left side andCmax or right side of the polygon).
For a constantTb, maximumandminimummetabolic rates
can then be estimated for any given Ta using the polygon
(fig. 1). Metabolic scope can then be calculated as the differ-
ence between the maximum metabolic rate and the mini-
mum, that is, the ceiling and the floor of the thermore-
gulatory polygon observed at different Ta, which does not
always correspond to the difference between MMR and
BMR (Rezende and Bacigalupe 2015).
The model and all analyses detailed below were con-

structed and analyzed in R (R Core Team 2017). The full
script for analyses is provided in a zip file (available online).1
Thermal Trait Parameters and
Model/Polygon Construction

Thermal trait data were available from data sets in Rezende
and Bacigalupe (2015) andNaya et al. (2013).We searched
for congeners shared between the two data sets, and for
those species (n p 15) we took the average body mass
and Cmin values from Rezende and Bacigalupe (2015). To
calculate MMR and BMR, we used the allometric (based
on body mass) scaling equations in Rezende and Baciga-
lupe (2015). Using these four metrics, we constructed a
thermoregulatory polygon for mean trait values for small
mammals that is partially independent of the empirical
data of Naya et al. (2013) but also relevant to the results
given the congener inclusion criteria (see below for more).
We also constructed additional polygons to test the ef-

fects of Cmin and body mass (mb) variation on metabolic
scope. Using the congener data set, in addition to average
body mass and Cmin, we also took the maximum and min-
imum Cmin and mb values and constructed polygons while
the other variables were held constant. For minimum and
maximum Cmin, we constrained the polygons and used the
simplistic assumption that Cmax would remain constant
(relative to the average rodent) as would BMR and MMR,
both of which are determined by body mass (see above).
Forminimumandmaximummb, BMRandMMRwere free
to vary based on the allometric scaling and the model for-
mulation. However, Cmin and Cmax were held constant and
scaled on the basis of the mb of an average rodent. In real-
ity, Cmax and Cmin correlate with one another (Rezende and
Bacigalupe 2015) as do Cmin and BMR (Naya et al. 2013).
Using this formulation of themodel, we can better determine
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how individual factors themselves affect thermoregulation
(more on model assumptions below).
Climate Data and Calculation of Metabolic Scope

We obtained a spatial mapping of daytime and nighttime
temperature data at a 2.5-degree resolution from World-
clim 1.4 (Hijmans et al. 2004) and analyzed how these data
would affect metabolic scope for activity as a function of Ta

employing the polygons described above. Daytime temper-
atures were taken as annual mean temperature plus the
diurnal temperature range (DTR/2, following Harris et al.
2014). Night temperatures were the annual mean temper-
ature minus DTR/2. Delta metabolic scope was then cal-
culated as night scope minus day scope. We also identified
areas where average night or day temperatures exceeded
polygons, that is, areas where nocturnality or diurnality,
respectively, were not possible. We calculated metabolic
scope globally for all scenarios by running polygons through
the spatially gridded Worldclim data.
Worldclim data are based onmonthly averages across de-
cadal time periods. The averaging across long time periods
could mask important small-scale thermal variation. Im-
portantly, at this resolution it is not possible to evaluate
daily exposure to temperatures outside of thermoregula-
tory limits (daily extremes are averaged out).We therefore
used the averaged daily minimum (night) and maximum
(day) temperature data set from theClimate PredictionCen-
ter at National Atmospheric andOceanic Sciences (https://
www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp
.html). This is a 0.57 by 0.57 gridded data set averaged from
1981 to 2010. We then passed polygons through the time
series (daily averages) of selected grid points—we chose
a resolution of 3.597 latitude by 7.197 longitude to optimize
computational capacity and spatial resolution. As in the
case of the spatial analysis described above, for each time
series (365 days per grid) we first evaluated whether any
nonzero values were estimated from the polygon function.
If so, as above, we calculated the mean metabolic scope
for every annual time series for every selected point in the
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Figure 1: Thermoregulatory polygons calculated based onmean trait values for small mammals (orange), as calculated by parameters in Rezende
and Bacigalupe (2015). Four additional polygons were formed by taking theminimum Cmin (green,A), maximumCmin (yellow,A), minimumbody
mass (green, B), andmaximum bodymass (yellow, B) values. For scale, the average polygon (orange) for bothmodels is identical. Metabolic scope
for all polygons is shown in C and D.
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grid. We also calculated the number of days that tempera-
tures exceeded (above or below) the metabolic capacity of
the theoretical organism for day (maximum temperatures)
and night (minimum temperatures).
Model Assumptions

Results based on the polygon approach must be under-
stood in the correct context. With respect to the question
of nocturnality versus diurnality, a diurnal animal will of
course experience, in some way, nocturnal thermal condi-
tions and vice versa. So for this application of the model,
we assume that nocturnal species find refuge (e.g., under-
ground) during the day and diurnal species find refuge dur-
ing the night, such that they are less exposed to the thermal
variation during their inactive periods—a reasonable as-
sumption in thatmany rodent and small mammal burrows
are buffered from high thermal variation of surface tem-
peratures (Jackson et al. 2002; Williams et al. 2015). Simi-
larly, the model does not take into account any seasonal
variation in activity, a critical component of mammalian
energetics (Kenagy et al. 2002;Humphries et al. 2004; Bron-
son 2009; Levy et al. 2019). The reality of thermal variation
in the environment experienced by mammals is therefore
clearly more complex than the model used here, where di-
urnal species only experience daytime temperatures and
nocturnal species only experience nighttime temperatures.
However, the model provides a heuristic perspective to ex-
ploring challenges to and patterns within diurnal and noc-
turnal thermal environments for species (and not a meta-
bolic prediction per se).
The structure of the polygons and the parameters in-

put into them provide additional sources of uncertainty.
Body size is a primary factor determiningmetabolic patterns
and thermoregulatory polygons (Rezende and Bacigalupe
2015)—we have restricted this analysis to small mammals
(less than 150 g). Results from this application of themodel
are not likely generalizable to larger mammals. Metabolic
scope is itself dependent upon temporal resolution and
tends to be wider at finer scales (e.g., minutes) than coarser
scales (e.g., weeks) as species can perform bursts of activity
or reproduction at high or low temperatures for short pe-
riods of time (Rezende and Bacigalupe, 2015). Some small
mammals can severely reduce energy expenditure butmain-
tain high metabolic scope in extreme cold temperatures
(Humphries et al. 2005). Species can also change activity
times (within active periods) or otherwise behaviorally re-
spond (use of microhabitats, change in posture, and more)
to minute or hourly thermal variation (Beever et al. 2017);
mammal distributions are sensitive to such local tempera-
tures (Beaudrot et al. 2019). The extent to whichmammals
are capable of these responses then will ultimately deter-
mine their ability to persist in a given thermal regime.
This model also does not capture key components of
the environment that will influence endotherm energetics
and thermoregulation. For example, small mammals in hot
arid environments can significantly reduce body tempera-
tures and thermal stress through evaporative cooling (Zhu
et al. 2008; Mitchell et al. 2018). Wind can alter thermal
conductance and complicate the applicability of Newton’s
law of cooling in endotherm energetics (Tracy 1972). Fi-
nally, solar radiation and traits that alter reflectance (e.g.,
color) have primary roles in endotherm thermal biology
(Medina et al. 2018). The generality and taxa-independent
quality of the approach taken here means that many of
these important thermoregulatorymechanisms are not ad-
equately accommodated. However, as the aim of this anal-
ysis is to characterize patterns of metabolic challenges for
diurnal and nocturnal species broadly, incorporation of
additional thermoregulatory adaptations or responses are
unlikely to significantly affect the results qualitatively. Fur-
thermore, when observed patterns deviate from model
expectations, the results are still informative in that such
biophysical processes (not included in themodel) may then
be investigated for their part in determining broadscale dis-
tribution patterns of nocturnal and diurnal mammals.
Empirical Analysis of Thermal Traits and Model Testing

Using the full data set fromNaya et al. (2013), we classified
each species as “diurnal,” “nocturnal,” “cathemeral” (active
during day and night), “crepuscular,” or “unknown” based
on Bennie et al. (2014). Following the approach of Naya
et al. (2013), we took the residuals ofmb andCmin and tested
whether therewas an effect of activity time on thermal con-
ductance. We used a Bonferroni correction for pairwise
comparison between nocturnal and diurnal species.
We also did a phylogenetic generalized least squares

(PGLS) analysis on mb and Cmin. For mb data, we used the
PanTHERIA data set (Jones et al. 2009) and extracted val-
ues for 2,460 mammals. We used the strict-consensus tree
for 1,000 mammal phylogenies from Faurby and Svenning
(2015) and assigned branch lengths arbitrarily according to
Grafen (1989). We estimated l using restricted maximum
likelihood with the phytools package (Revell 2012). We
did the regression of Cmin (log10 transformed) against activ-
ity time and mb (log10 transformed). For the mb analysis,
with the larger sample size, we also included latitude (also
from PanTHERIA) and did a PGLS with activity, latitude,
and their interaction.
Nocturnality across Latitude

We used the PanTHERIA data set (Jones et al. 2009) to
identify minimum and maximum latitudinal ranges of 2,015
rodent species. For each of those species, we classified them
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as nocturnal, diurnal, cathemeral, or unknown following
Bennie et al. (2014) and recorded its presence within lati-
tudinal bands of the same resolution as the day of analysis
described above (of 3.597 latitude by 7.197 longitude). We
then calculated nocturnality as the number of nocturnal
species as a proportion of all species within that latitudinal
band.

Modeled Climate Change Impacts Based
on Thermoregulatory Polygons

To explore possible climate change impacts based on the
thermoregulatory polygon model, we applied climate pro-
jection data to see how activity time and traits affected hab-
itable space (where nocturnality or diurnality are possible)
as defined by positivemetabolic scope. The amount of space
that is lost or gained relative to the baseline (as described in
“Climate Data and Calculation of Metabolic Scope”) repre-
sents the extremes for how warming might affect activity
times or climatic suitability. As a first approximation, how-
ever, the test can distinguish how traits and climate change
are differentially affected by variablemammal activity times.
We used the mean trait value estimates for small mam-

mals from theWorldclim current climate data as the base-
line. We then ran models for 2050 at the 4.5 representative
concentration pathway, an emissions stabilization scenario,
using five general circulation models (GCMs): CCSM4,
IPSL-CM5A-LR, HadGEM2-ES, MIROC-ESM, and MPI-
ESM-LR. We chose these scenarios following Zurell et al.
(2018), as they represent a variable range of global climate
change scenarios. Data were downloaded at the 2.57 reso-
lution fromWorldclim 1.4 (Hijmans et al. 2004). For each
GCM scenario and each scenario with variable traits (50%
increase and decrease of both Cmin and mb), we calculated
the amount of habitable space for mammals active during
the day (diurnal) or night (nocturnal). For all scenarios, we
then examined the change in habitable space from baseline
(current climate and mean trait values).

Results

Modeled metabolic scope for nocturnal mammals tend to
be much higher than scope for diurnal mammals in the
tropics, while, conversely, metabolic scope tends to be
higher for diurnal activity in the extratropics (fig. 2, which
displays small mammal mean trait values). A few places
globally exhibit regions where the average daytime temper-
ature exceeds thermoregulatory limits of the theoretical av-
erage rodent (35.07C based on the polygon derived from
mean trait values) for diurnal species but not nocturnal
species (~3% of global area, e.g., in the Sahara) and where
mean nighttime temperatures exceed limits for nocturnal
species (less than 26.57C) but not diurnal species (~17%
of global area, e.g., high-altitude sites such as the Tibetan
Plateau, the Rockies, and the Andes; fig. 2). We also ran
this model using mean temperature from the warmest and
coldest quarters and not only found similar results qualita-
tively but also that nocturnality was globally suitable dur-
ing the warmest quarter (fig. S1; figs. S1–S4 are available
online) and that diurnality was globally suitable during the
coldest quarter (fig. S2). Within the parameter space of the
small mammals examined, large mb and low Cmin led to
an increase in area globally where metabolic scope was
higher for nocturnal species (fig. 3).
Using the higher temporal resolution daily data set, con-

sistent with the average temperature results, we found that
modeled mean metabolic scope tends to be higher for noc-
turnal species in the tropics but lower for nocturnal species
at higher latitudes (fig. 4A). The number of days where the
daily temperature exceeded thermoregulatory limits peaked
at midlatitude areas in both southern and northern hemi-
spheres for diurnal species, while nocturnal species rarely ex-
perienced days where temperatures exceeded limits (fig. 4B).
Empirically, the proportion of nocturnal rodent species

across latitude is highest (between 60% and 80%) at low
latitudes, between roughly 307S and 307N (fig. 4C). Body
mass is lower for nocturnal species than diurnal species
and also varies across latitude (fig. 5; PGLS: l p 0:92; lat-
itude: P p :004; activity: P ! :001; latitude # activity:
P p :01). Nocturnal small mammal species also tend to
have a lower Cmin than diurnal species (fig. 5C; P p :03),
which holds with the phylogenetic regression (PGLS: l p
0:71, P p :04).
Projected warming impacts showed consistent loss of

habitable space for diurnal mammals (fig. S3) and trait-
dependent gains and losses for nocturnal mammals (fig. 6).
Larger diurnal mammals are projected to lose more habit-
able space relative to smaller mammals (although diurnal
metabolic scope increases markedly in high-latitude re-
gions; fig. S4), while nocturnal mammals are projected to
gain nearly all previously uninhabitable space underwarm-
ing for larger body sizes and lower Cmin (fig. 6).
Discussion

We have shown here that low thermal conductance (or
high insulation) is associated with andmetabolically favors
nocturnality in small mammals; this trait (and others) as
well as activity time will have important implications for
howmammals respond to warming. Bennie et al. (2014) il-
lustrated the high diversity of nocturnal mammal species
in the tropics and their lower relative diversity in high-
altitude regions such as the Tibetan Plateau and the Andes
(in fig. 5 of Bennie et al. 2014; see also fig. 4 of this article)—
the model results here demonstrate a clear physiological
basis for these and other patterns inmammal distributions.
In addition to this, we also show that functional traits such
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as body mass and thermal conductance can to some extent
compensate for thermal limitations in diurnal and noctur-
nal niches. Finally, these ecophysiological traits also may
drive differential climate change impacts for nocturnal and
diurnal species as demonstrated by model projections; di-
urnal habitable space for mammals is lost under all warm-
ing scenarios, while nocturnal mammals tend to gain hab-
itable space under warming unless they have low bodymass
or high thermal conductance. Long-term changes in cli-
mate over geologic and evolutionary timescales differen-
tially affected diurnal and nocturnal mammals (Lovegrove
2017; Wu et al. 2017), and we provide a mechanistic basis
for understanding how future climate change may have
differing consequences for species as a function of diel ac-
tivity. Conceptually, this was possible because recently pro-
posed thermoregulatory polygons also take into consider-
ation the upper metabolic ceiling where thermoregulation
is possible, a subject that has been generally neglected in
the more classic ecophysiological literature (Rezende and
Bacigalupe 2015).
That nocturnal rodents tend to have lower thermal con-
ductance and aremore prevalent at low latitudes (fig. 4) are
all consistent with studies from the field and from other
taxa. For example, Ding et al. (2018) researched two sym-
patric gerbil species in the Gobi Desert, one nocturnal and
one diurnal, and found that thermal conductance and
critical temperatures were lower for the nocturnal species.
And while the average rodent (mean trait values) as de-
scribed by the model experiences temperatures beyond
the thermoregulatory polygon in some parts of the globe
(fig. 2), traits (e.g., size or thermal conductance) can make
persistence in these environments possible; Cortés et al.
(2003), for example, hypothesized that Chinchilla chin-
chilla likely survives as a nocturnal small mammal in the
Andes (between 3,500 and 5,000 m) as a consequence of
its high insulation.
Body temperature variation represents an important

consideration for endothermic thermoregulation, environ-
mental variation, and even extinction (Geiser and Turbill
2009). For example, diurnal small mammals in the tropics
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can maintain high body temperatures during the day (the
active phase), which favors passive heat dissipation (Le-
vesque et al. 2018), and body temperature itself appears
to be under selection in mammals (Clarke and Rothery
2008). Body temperature and BMR have exhibited de-
coupled evolutionary trajectories inmammals that have fa-
cilitated persistence in a diversity of thermal environments
(Avaria-Llautureo et al. 2019). Although we kept body tem-
perature constant in this application, the model can be eas-
ily generalized to a variable Tb range (fig. 2C in Rezende and
Bacigalupe 2015), giving rise to broader polygons by the
same range, since heat loss is directly proportional to the
temperature differential according toNewton’s law of cool-
ing (see “Model andApproach”). Heat substitution (activity-
generated heat) also buffers suboptimal environmental con-
ditions in mammals (Humphries and Careau 2011) and
could mitigate to some degree cold-weather constraints for
nocturnal mammals as estimated here (heat substitution
is unlikely to alter results for diurnal constraints, however).
Daily torpor and seasonal hibernation also play key roles in
mammalian thermal biology (Geiser 2004). Results from
the model application using hot- and cold-quarter tem-
peratures (figs. S1, S2) clearly show that nocturnal and di-
urnal habitable space during these months, respectively,
are maximized.While our approach here simplifies a com-
plex seasonal and activity variation scenario, the results
give boundaries for thermal constraints onmammals while
also signposting the mechanisms that allow for population
persistence.
Consistently across latitude, nocturnal mammals are
smaller than diurnal mammals (fig. 5), counter to our pre-
diction (e.g., fig. 3). A number of factors could account for
this strong body size difference. Bodymass and scaling have
significant consequences for a wide range of life-history
and ecological traits (Fristoe et al. 2015), the potential im-
pact of nocturnality on home range size may impose con-
straints on larger species (Clutton-Brock andHarvey 1977),
and increased predation risk or competition might also
force smaller lineages toward nocturnality (Kronfeld-Schor
and Dayan 2003). Water balance and food requirements
are particularly important for small mammals (Porter and
Kearney 2009; Levy et al. 2016) and can have determining
effects on body size (McNab 2010). Small endotherms are
also especially vulnerable to extreme climatic events and
acute dehydration (Gardner et al. 2011). Nocturnal activity
or other temporal activity shifts (e.g., avoidance of hot mid-
day hours) could then be one way for rodents and small
mammals to avoid such extremes. Body size and thermal
conductance can also interact with one another in complex
ways not examined in this study. For example, Briscoe et al.
(2015) found that fur depth changes across environmental
gradients may compensate thermally for sexual dimorphic
differences in body mass for koalas.
Whatever the mechanism, the fact that nocturnal mam-

mals are smaller than diurnal species will have important
climate change and thermoregulatory consequences (im-
portantly, differences in size between nocturnal and di-
urnal species hold for the whole PanTHERIA data set,
maximum Cmin maximum body mass

minimum Cmin minimum body mass

−200 −100 0 100 200 300 400
Delta metabolic scope (nocturnal−diurnal scope) (mlO2 h)

Figure 3: Delta metabolic scope (metabolic scope for nocturnal species minusmetabolic scope for diurnal species) with variable bodymass (min-
imum and maximum body sizes) and minimum thermal conductance (Cmin; minimum and maximum Cmin values). Some areas exceed metabolic
capacity (the thermoregulatory polygon)where activity during the day or night is simply not possible (white terrestrial area in themaps, as infig. 2).



52 The American Naturalist
not only for small mammals). Our warming projections
showed key differences as a function of body size. Smaller
body size was associated with lower loss of habitable area
for diurnal species consistent with expectations of shrink-
ing mass under a warming climate for many species (Sher-
idan and Bickford 2011). Examining recent climate change
responses in mammals across elevation, McCain and King
(2014) also found that larger mammals exhibited larger
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responses to warming. On the other hand, nocturnal spe-
cies exhibited positive habitat gains with larger body size,
again emphasizing the importance of activity-time consid-
erations for understanding climate change impacts.
How mammal species will respond to climate change

will be determined by their physiology and energetics (Le-
vesque et al. 2016). Our approach provides a mechanistic
examination of how traits might contribute to distribution
limits and climate change responses. Range limits of endo-
therms broadly are influenced by thermal tolerance (Bozi-
novic et al. 2011), but the specific mechanisms through
which margins are determined appear to vary spatially and
taxonomically (Khaliq et al. 2017). Thermal conductance,
body size, and activity times will likely modulate relation-
shipsbetweenmammalpersistenceandenvironmental con-
ditions. Similarly, obligate nocturnal and diurnal species shift
their distributionsmore than cathemeralmammals (McCain
andKing 2014). Given the clear distinction between the ther-
mal regimes and unique challenges of daytime and night-
time temperatures, as well as the specific thermal adaptations
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of diurnal and nocturnal species, stronger signals of spatial
shifts would be expected for strictly nocturnal or diurnal
species as a response to changing temperatures.
We show here how metabolic scope for activity may

be affected by nocturnality in small mammals and endo-
therms broadly. The classic U-shaped metabolic curve of
a typical endotherm is inadequate for such study because
metabolic scope calculations require knowledge of the up-
per part of the thermoregulatory polygon. The putative im-
pact of thermoregulation on activity is also ignored in the
U-shaped metabolic curve. The thermoregulatory polygon
approach implemented in this study therefore represents a
novel type of process-based or mechanistic physiological
model that can provide insights into macroecology and
biogeography (Cabral et al. 2017). Projections of distribu-
tions of particular species using this approach would be
limited by the lack of specific mechanisms that determine
survival and reproduction.Mechanistic species distribution
models, for example, can properly account for active ther-
moregulation and behavioral responses at high temporal
resolution (Kearney and Porter 2009; Mathewson et al. 2017;
Levy et al. 2019). However, the power of this approach is
the simple analytical form of themodel (based onNewton’s
law of cooling; Scholander et al. 1950) and therefore the
ease of prediction and interpretation of how single factors
(climate, thermal conductance, BMR, MMR, and others)
can influence biogeography and climatic relationships.
There are clear thermoregulatory consequences of noc-
turnality, diurnality, and other activity periods in mam-
mals. Unique challenges to daytime and nighttime tem-
peratures drive species to adapt morphologically (body mass
and thermal conductance) and physiologically (Gaston 2019).
Under climate warming, one potential response to escape
high temperatures, in addition to upslope or latitudinal shifts,
would be to become more nocturnal (Levy et al. 2019). In
large mammals, such shifts to nocturnality are widely evi-
dent as a response to human disturbance (Gaynor et al.
2018). Of course, other environmental factors need to be
considered and may limit such shifts, in particular, light,
which varies across latitude and limits mammal activity
time (Bennie et al. 2014)—light is also changing at a histor-
ically unprecedented rate (Davies and Smyth 2018). Over-
all, however, mechanistic analyses of endothermic ther-
moregulatory strategies in variable thermal environments
will help to elucidate the evolutionary history of mammals
(and other vertebrates) and give clues as to their future in a
changing climate.
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