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Abstract: Discretising a structure into elements is a key step in finite element (FE) 
analysis. The discretised geometry used to formulate an FE model can greatly affect 
accuracy and validity. This paper presents a unified dimensionless parameter to generate 
a mesh of cubic FEs for the analysis of very long beams resting on an elastic foundation. 
A uniform beam resting on elastic foundation with various values of flexural stiffness and 
elastic supporting coefficients subject to static load and moving load is used to illustrate 
the application of the proposed parameter. The numerical results show that (a) Even if the 
values of the flexural stiffness of the beam and elastic supporting coefficient of the elastic 
foundation are different, the same proposed parameter “s” can ensure the same accuracy of 
the FE solution, but the accuracy may differ for use of the same element length; (b) The 
proposed dimensionless parameter “s” can indeed be used as a unified index to generate the 
mesh for a beam resting on elastic foundation, whereas the use of the same element length 
as a criterion may be misleading; (c) The errors between the FE and analytical solutions for 
the maximum vertical displacement, shear force and bending moment of the beam increase 
with the dimensionless parameter “s”; and (d) For the given allowable errors for the 
vertical displacement, shear force and bending moment of the beam under static load and 
moving load, the corresponding values of the proposed parameter are provided to guide 
the mesh generation. 
 
Keywords: Beam, cubic finite element, elastic foundation, finite element mesh, unified 
dimensionless parameter.  

1 Introduction 
The problem of a beam resting on an elastic foundation is very often encountered in the 
analysis of building, underground, highway and railroad structures. Various types of 
foundation models, including the single-parameter Winkler foundation, double-parameter 
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elastic foundation, triple-parameter elastic foundation, and semi-infinite elastic continuum 
foundation, have been provided.  
Despite the relative simplicity of the Winkler foundation model, it still has a solid place in 
today's engineering calculations and remains widely used [Borák and Marcián (2014)]. In 
various books [Timoshenko (1956); Hetenyi (1961); Frýba (1999); Esveld (2001)], the 
analytical solutions of beams on an elastic foundation were presented. Froio et al. [Froio 
and Rizzi (2016, 2017)] presented analytical solution for the elastic bending of beams lying 
on a linearly variable Winkler support. Froio et al. [Froio, Rizzi, Simoes et al.  (2018)] 
investigated the universal analytical solution of the steady-state response of an infinite 
beam on a Pasternak elastic foundation under moving load. Dimitrovova [Dimitrovova 
(2019)] derived and validated the semi-analytical solution for the problem of a uniformly 
moving oscillator on an infinite beam on a two-parameter visco-elastic foundation. 
The finite element (FE) method is used extensively in the analysis of beams on an elastic 
foundation. It is generally known that discretising a structure into elements is a key step in 
FE analysis. The discretised geometry used to formulate an FE model can greatly affect the 
accuracy and validity. Some researchers investigated the effect of the mesh generation and 
element size on the simulation result. Bowles [Bowles (1977)] formulated a stiffness matrix 
by combining a conventional beam element based on a cubic function with discrete soil 
springs at the ends of the beam. The accuracy of this formulation is highly dependent on the 
number of elements used. Feng et al. [Feng and Cook (1983)] proposed two FE 
formulations to analyze beams on one- or two-parameter foundation. Numerical studies 
show that the element based on the exact displacement function can give exact numerical 
results even if the number of elements is very small, while the element based on a cubic 
function may require a fine mesh to give acceptable results. Rieker et al. [Rieker, Lin and 
Trethewey (1996)] investigated the relationship between the model accuracy and the 
number of elements used to discretize a structure for a moving load analysis, and provided 
guidance for the development of suitable meshes. Sunitha et al. [Sunitha, Dodagoudar and 
Rao (2007); Dodagoudar, Rao and Sunitha (2015)] proposed a simple but sufficiently 
accurate model for beams on elastic foundation using a mesh-free technique, called the 
element-free Galerkin method, that did not rely on any mesh. Correa et al. [Correa, Costa 
and Simoes (2018)] presented the FE modeling of a rail resting on a Winkler-Coulomb 
foundation and subjected to a moving concentrated load.  
In view of the lack of guidance for discretization to provide numerical solutions of specific 
accuracy, the present study therefore attempts to develop a unified dimensionless parameter 
“s” for mesh generation with cubic FE formulation for beams resting on elastic foundation 
for various scenarios of flexural stiffness and elastic supporting coefficients. Furthermore, 
for the given allowable errors for calculating the vertical displacement, shear force and 
bending moment of the beam under static load and moving load, the corresponding values 
of the proposed parameter are provided to guide mesh generation. 

2 A proposed dimensionless parameter 
In the cubic FE analysis of very long beams resting on Winkler foundation, the accuracy of 
the solution mainly depends on the element size. For beams with the same flexural stiffness 
and the elastic supporting coefficients, the accuracy of the solution is higher for finer 
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meshes or smaller elements. However, for beams with different flexural stiffness and elastic 
supporting coefficients, this rule may not hold, i.e., the accuracy for a finer mesh may not 
necessarily be higher than that for a coarser mesh.  
To generate the FE mesh for beam on Winkler foundation with different flexural stiffness 
EI  and elastic supporting coefficient wk  with specific accuracy, in which E  and I  are, 
respectively, the elastic modulus and sectional moment of inertia of the beam, a 
dimensionless parameter “s” is proposed as  

c/ Lls =                                                                                                                                 (1) 

where l  denotes the element length and cL  is the characteristic length, which is a general 
parameter related to the properties of the beam and foundation and is calculated as 
[Esveld (2001)] 

4
wc /4 kEIL =                                                                                                                    (2) 

3 Formulae for calculating vertical displacement, shear force and bending moment 
To compare with the calculation results for very long beams on elastic foundation, the 
corresponding analytical and FE solutions are given below. 

3.1 Analytical solutions for the cases of static and moving concentrated forces 
3.1.1 Case of static concentrated forces 
The analytical solutions for the vertical displacement )(xy , bending moment )(xM  and 
shear force )(xQ  of an infinite-length beam at abscissa x  on Winkler foundation subject 
to a static concentrated force P  at 0=x  can be found in various references [Timoshenko 
(1956); Hetenyi (1961); Frýba (1999); Esveld (2001)] and are given as follows 
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It should be noted that Eqs. (3)-(5) only apply to the case of a single concentrated force. 
If there are multiple concentrated forces, )(xy , )(xM  and )(xQ  can be obtained by 
superposition.  

3.1.2 Case of moving concentrated forces    
The deflection, bending moment and shear force underneath the concentrated force P  
moving on an infinite-length beam on elastic foundation for the dimensionless speed 
parameter 1<α  and the light damping of elastic foundation can be written as [Frýba (1999)] 
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where the dimensionless speed parameter α  is the ratio of the actual speed to the critical 
speed (resonance), the dimensionless damping parameter β  is the ratio of the actual 
damping to the critical damping, and α  and β  can be expressed as 

cr/ vv=α                                                                                                                              (10) 

crw / cc=β                                                                                                                            (11) 

ccr //2 LmEIv ⋅=                                                                                                            (12) 

wcr //2 kmmc ⋅=                                                                                                            (13) 

in which v  denotes the actual speed of the moving concentrated force; crv  denotes the  
critical speed (resonance) of the moving concentrated force on elastic foundation; m  
denotes the mass of per length of beam; and wc  and crc  denote, respectively, the actual 
and critical damping of elastic foundation.  

3.2 Formulae of FE solutions   
3.2.1 Formulae for vertical displacement  
In the cubic FE analysis for very long beams on viscoelastic foundation subjected to 
moving concentrated forces, in order to obtain the vertical displacement of any section of 
the beam, the nodal displacement vector of the beam needs to be calculated firstly by 
solving the equation 

FKqqCqM =++                                                                                                         (14) 

where M , C  and K  denote the global mass, damping and stiffness matrices, 
respectively; q , q  and q  denote the global acceleration, velocity and displacement 
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vectors, respectively; and F  denotes the global nodal force vector. The vertical 
displacement Ay  at a certain point A in an element can then be calculated by 

e
A A

qN ξξ ==y                                                                                                                      (15) 

where ξ  denotes the local coordinate measured from the left node of the element; Aξ  
denotes the distance between the left node of the element and point A; and N  and eq  
denote the shape function matrix and the nodal displacement vector of the element, 
respectively. N  can be written as 

[ ]4321 NNNN=N                                                                                                 (16) 

with     32
1 )/(2)/(31 llN ξξ +−= ,     ])/()/(21[ 2

2 llN ξξξ +−=  

           32
3 )/(2)/(3 llN ξξ −= ,        )]/()/[( 2

4 llN ξξξ −=  

3.2.2 Formulae for shear force and bending moment  
For a very long beam resting on a viscoelastic foundation subjected to several 
concentrated forces, the detailed formulae based on cubic FE for calculating the shear 
force and bending moment can be found in Lou [Lou (2008)]. For convenience, the key 
formulae are listed as follows. 

Formulae for shear force and bending moment at nodes 
From the dynamic equilibrium of each beam element [Paz (1997)], the nodal element 
force vector ef  of the two nodes of a typical beam element at time t  can be expressed as  
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e ][ MQMQ=f  is the nodal element force vector at the two nodes 
of the beam element, e

lQ  and e
lM  are the shear force and bending moment at the left 

node of the beam element, respectively; e
rQ  and e

rM  are the shear force and bending 
moment at the right node of the beam element, respectively; the positive directions of e

lQ , 
e
lM , e

rQ  and e
rM  are shown in Fig. 1; eq , eq  and eq  are the nodal acceleration, 

velocity and displacement vectors of the beam element, respectively; wc  is the element 
damping matrix due to the viscous damping foundation supporting the beam element; bk  
is the element stiffness matrix of the beam element itself; wk  is the element stiffness 

matrix due to the elastic foundation supporting the beam element; and Ef  is the 
equivalent nodal force vector of the beam element due to all concentrated forces acting on 
the beam element.  
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Figure 1: Shear forces e
lQ  and e

rQ , and bending moments e
lM  and e

rM  at the two 
nodes of a typical beam element 

Formulae for shear force and bending moment at any section of beam 
If one is interested in the shear force and bending moment at any section of a very long 
beam on viscoelastic Winkler foundation, it is unrealistic to directly use Eq. (17) because a 
very fine mesh must be adopted, which results in a dramatic increase in the number of 
elements. It is desirable to develop an efficient method for it. It is assumed that point A is 
any arbitrary section in the element between two adjacent nodes. Let us consider the 
segment between the left node of the element and point A as a free body, as shown in Fig. 2. 
There are several concentrated moving forces iP  (i=1, 2, …, h ) between the left node of 
the beam element and point A at time t . The shear force AQ  and bending moment AM  
at point A are given by 
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where Aξ  denotes the distance between the left node of the beam element and point A. 
The positive directions of the shear force AQ  and bending moment AM  at point A are 
shown in Fig. 2. It should be noted that e

lQ  and e
lM  in Eqs. (18) and (19) have been 

obtained by solving Eq. (17). 
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Figure 2: Free-body diagram of portion of a beam element on viscoelastic foundation, in 
which e

I )( qN mf =ξ , e
wS )( Nqkf =ξ , and e

wD )( qN cf =ξ  

Eqs. (18) and (19) can be used to calculate the shear force and bending moment at any 
section within an element, including both nodes, whereas Eq. (17) can only be used to 
calculate the shear force and bending moment at the nodes.  
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Furthermore, Eqs. (14), (17)-(19) can be used to solve the “static” problem by setting 
0qq ==   and 0qq == ee

 .   

4 Application of the proposed parameter and discussions 
To demonstrate the use of the proposed dimensionless parameter “s” as a unified index to 
generate element mesh for a beam resting on elastic foundation with various values of 
flexural stiffness and elastic supporting coefficients, two types of loads, i.e., single static 
and moving concentrated forces P  with 10,000 N, and three cases with the parameters E , 
I  and wk  as shown in Tab. 1 are considered. The type of single static concentrated force 
acting on a very long beam of length L is shown in Fig. 3. Cases 1 and 2 in Tab. 1 have the 
same beam, but the foundation of Case 2 has substantially smaller stiffness. Cases 3 and 4 
have the same beam with the least stiffness and foundation that is the least stiff. Case 5 is a 
beam with different parameters I  and wk . The parameter m  in Tab. 1 is only used to 
study the problem of moving concentrated force. To describe the moving concentrated 
force, the dimensionless speed parameter 2.0=α  and the dimensionless damping 
parameter 2.0=β  are adopted. The dimensionless parameter “s” is varied from 0.2 to 2.0 
with increments of 0.2, and the corresponding element length is cLsl ⋅= , in which cL  can 
be obtained by Eq. (2). It should be noted that the element length varies with the parameter 
“s”. The static concentrated force is considered to act at different positions along the 
element length adjacent to the mid-point of the very long beam, while the moving 
concentrated force is considered to act at a position ranging from the left end to the right 
end of the beam.     

Winkler foundation beam

 
Figure 3: A very long uniform Euler beam with free end on Winkler foundation under a 
static concentrated force 

Table 1: A beam on elastic foundation with different parameters 

Cases E  (N/m2) I  (m4) wk  (N/m2) m  (kg/m) 

1 2.1×1011 3.217×10-5 5.0×107 60.64 
2 2.1×1011 3.217×10-5 5.0×106 60.64 
3 9.1×109 7.326×10-5 1.0×106 12.0 
4 9.1×109 7.326×10-5 4.0×106 12.0 
5 2.1×1011 4.489×10-5 1.0×107 74.414 

 



 
 
 
962                                                                                        CMES, vol.122, no.3, pp.955-969, 2020 

An important feature of the very long beam on elastic foundation is that the vertical 
displacement and internal force decrease to zero over a distance of around c5L  from the 
concentrated force. To ensure that the finite-length beam can be used to model an infinite-
length beam on an elastic foundation, for each case in Tab. 1, the minimum distance 
between the loaded point and the beam end should be longer than c5L . The length of the 
beam adopted in this study is not shorter than c42L  so that the finite-length beam behaves 
effectively as an infinite-length one. 

     
            (a) Static concentrated force                                    (b) Moving concentrated force  

Figure 4: Displacement errors against dimensionless parameter “s” for Cases 1, 2 and 3 

     
             (a) Static concentrated force                              (b) Moving concentrated force 

Figure 5: Shear force errors against dimensionless parameter “s” for Cases 1, 2 and 3 

Generally, the maximum values of the vertical displacement, shear force and bending 
moment of beam are of concern. For the concentrated force P , these maxima occur 
underneath the load. For each case in Tab. 1, the errors between the FE and analytical 
solutions for the maximum vertical displacement, shear force and bending moment of the 
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beam are investigated with respect to the dimensionless parameter “s” and the element 
length. The percentage error of a response is defined in terms of the absolute error as 

Percentage error of R %100
An

AnFE ×
−

=
R

RR  (19) 

where R denotes the response, i.e., vertical displacement, shear force and bending moment, 
and FER  and AnR denote the FE and analytical solutions of the response, respectively. The 
FE solutions are obtained by using Eqs. (15), (18) and (19), while the analytical solutions 
are calculated by using Eqs. (3)-(5) for the static concentrated force and Eqs. (7)-(9) for the 
moving concentrated force.  
The maximum errors of the vertical displacement, shear force and bending moment of 
beam underneath the static and moving concentrated forces P  against the dimensionless 
parameter “s” and element length are plotted in Figs. 4-9. Fig. 4 shows that, whether for the 
static or moving load, the curves for the maximum errors of the vertical displacement 
against the dimensionless parameter “s” for Cases 1-3 are virtually identical to one another. 
The same holds for the curves for the maximum errors of the shear force and bending 
moment against the dimensionless parameter “s” as shown in Figs. 5 and 6. However, both 
Figs. 7(a) and 7(b) show that the curves for the maximum errors of the vertical 
displacement against the element length for Cases 1-3 under the static or moving 
concentrated force differ from one another. Similar phenomena can also be observed for the 
shear force and bending moment, as shown in Figs. 8 and 9, respectively. In addition, Figs. 
4-6 show that the errors between the FE and analytical solutions for the maximum vertical 
displacement, shear force and bending moment of the beam increase with the dimensionless 
parameter “s”. 

       

              (a) Static concentrated force                                 (b) Moving concentrated force  

Figure 6: Bending moment errors against dimensionless parameter “s” for Cases 1, 2 and 3 
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               (a) Static concentrated force                          (b) Moving concentrated force  

Figure 7: Displacement errors against element length for Cases 1, 2 and 3 

     

            (a) Static concentrated force                            (b) Moving concentrated force  

Figure 8: Shear force errors against element length for Cases 1, 2 and 3 

       
            (a) Static concentrated force                             (b) Moving concentrated force  

Figure 9: Bending moment errors against element length for Cases 1, 2 and 3 
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This example illustrates that, even if the values of the flexural stiffness of the beam and the 
elastic supporting coefficient of the elastic foundation are different, the same parameter “s” 
can ensure the same accuracy of the FE solution, but the accuracy may be different for the 
same element length. Therefore, the proposed dimensionless parameter “s” can indeed be 
used as a unified index to generate element mesh for a beam resting on elastic foundation, 
whereas the use of the same element length as a criterion may be misleading.  
This example also demonstrates how the proposed parameter “s” can guide the choice of 
element length. Tab. 2 provides the values of the dimensionless parameter “s” for 
calculating the vertical displacement, bending moment and shear force with various 
allowable errors under static concentrated force. The procedures for obtaining the element 
length to achieve specific accuracy are described as follows.  
(a) Assume an allowable error of the vertical displacement, shear force and bending moment. 
(b) Find the value of the dimensionless parameter “s” for the vertical displacement, shear 
force and bending moment in the same column of the allowable error in Tab. 2. 
(c) The element length l is obtained as the product of s  and cL  by using Eq. (1). 

Table 2: The values of dimensionless parameter “s” for calculating vertical displacement, 
shear force and bending moment with given error under static concentrated force 

Allowable error 2.5% 1.0% 0.5% 0.25% 0.1% 
s for vertical displacement 0.9887 0.6903 0.5338 0.4157 0.3010 
s for bending moment 1.5351 1.1569 0.9480 0.7823 0.6109 
s for shear force 2.7870 1.7590 1.3100 1.0344 0.7831 

(Note: The corresponding element length is cLsl ⋅=  and the dimensionless parameter “s” is the 
maximum value to satisfy the allowable error)  

Table 3: The values of dimensionless parameter “s” for calculating vertical displacement 
with various values of α  and β  for allowable error 5% under moving concentrated force   

α  
β  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.1 1.328 1.325 1.325 1.322 1.319 1.317 1.314 
0.2 1.289 1.291 1.291 1.286 1.278 1.270 1.259 
0.3 1.256 1.295 1.284 1.269 1.247 1.219 1.188 
0.4 1.247 1.288 1.259 1.225 1.177 1.119 1.047 

(Note: The corresponding element length is cLsl ⋅=  and the dimensionless parameter “s” in the 
Table is the maximum value to satisfy the allowable error)    

Tabs. 3-8 provide the values of the dimensionless parameter “s” for calculating the vertical 
displacement, bending moment and shear force with various values of α  and β  for 
allowable errors of 5% and 2.5% under a moving concentrated force. The procedures for 
obtaining the element length with allowable errors of 5% and 2.5% are described as follows.  
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(a) Determine the values of the dimensionless speed parameter α  and the dimensionless 
damping parameter β .  
(b) Find the value of the dimensionless parameter “s” for the vertical displacement, shear 
force and bending moment in Tabs. 3-5 with allowable error of 5% or in Tabs. 6-8 with 
allowable error of 2.5% according to the values of α  and β .   

(c) The element length l is obtained as the product of s  and cL  by using Eq. (1).   

Table 4: The values of dimensionless parameter “s” for calculating shear force with 
various values of α  and β  for allowable error 5% under moving concentrated force   

α  
β  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.1 3.469 3.441 3.413 3.381 3.350 3.319 3.288 
0.2 3.499 3.456 3.391 3.325 3.257 3.191 3.125 
0.3 3.425 3.438 3.353 3.150 2.944 2.744 2.557 
0.4 1.507 1.566 1.605 1.805 1.844 1.908 1.863 

 
Table 5: The values of dimensionless parameter “s” for calculating bending moment with 
various values of α  and β  for allowable error 5% under moving concentrated force   

α  
β  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.1 1.988 1.991 1.991 1.988 1.988 1.988 1.988 
0.2 2.075 2.091 2.097 2.097 2.097 2.094 2.091 
0.3 2.394 2.375 2.338 2.319 2.288 2.263 2.241 
0.4 1.908 2.000 2.200 2.225 2.244 2.253 2.259 

Table 6: The values of dimensionless parameter “s” for calculating vertical displacement 
with various values of α  and β  for allowable error 2.5% under moving concentrated force  

α  
β  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.1 0.981 0.980 0.978 0.976 0.9727 0.970 0.966 
0.2 0.965 0.966 0.960 0.950 0.937 0.921 0.902 
0.3 0.949 0.957 0.940 0.912 0.877 0.833 0.777 
0.4 0.913 0.939 0.902 0.841 0.754 0.635 0.434 
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Table 7: The values of dimensionless parameter “s” for calculating shear force with 
various values of α  and β  for allowable error 2.5% under moving concentrated force   

α  
β  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.1 2.796 2.775 2.740 2.667 2.595 2.526 2.459 
0.2 2.761 2.670 2.536 2.367 2.223 2.105 2.009 
0.3 1.199 1.304 1.370 1.491 1.505 1.532 1.499 
0.4 0.904 0.912 0.968 0.976 1.148 1.163 1.162 

Table 8: The values of dimensionless parameter “s” for calculating bending moment with 
various values of α  and β  for allowable error 2.5% under moving concentrated force  

α  
β  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.1 1.564 1.566 1.567 1.568 1.568 1.569 1.569 
0.2 1.680 1.684 1.682 1.677 1.673 1.669 1.666 
0.3 1.615 1.763 1.779 1.776 1.770 1.763 1.759 
0.4 1.274 1.400 1.450 1.557 1.602 1.596 1.513 

5 Conclusions  
In this paper, a unified dimensionless parameter is proposed to guide the mesh generation 
for cubic FEs for the analysis of very long beams resting on elastic foundation with various 
values of flexural stiffness and elastic supporting coefficients. The main conclusions that 
can be drawn from this investigation are as follows. 
(a) Whether for static or moving load, for the same value of the proposed parameter “s”, the 
accuracies of cubic FE solutions of beams with different values of flexural stiffness and 
elastic supporting coefficient are the same. However, for the same value of element length, 
the accuracies of the solutions may not be the same. Therefore, the proposed dimensionless 
parameter “s” can indeed be used as a unified index to generate FE mesh for the beam, 
whereas the use of the element length as a criterion may be misleading. 
(b) For various values of allowable errors of the vertical displacement, shear force and 
bending moment of beams on elastic foundation under static or moving concentrated force, 
the corresponding values of the dimensionless parameter “s” are provided to guide the FE 
mesh generation.  
(c) The errors between the FE and analytical solutions for the maximum vertical 
displacement, shear force and bending moment of the beam increase with the dimensionless 
parameter “s”. For the same allowable errors of the vertical displacement, shear force and 
bending moment of the beam, the values of their respective dimensionless parameter “s” 
can be different.  
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