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a b s t r a c t 

Previous studies have indicated that white matter hyperintensities (WMH), the main radiological feature 

of small vessel disease, may evolve (i.e., shrink, grow) or stay stable over a period of time. Predicting 

these changes are challenging because it involves some unknown clinical risk factors that leads to a non- 

deterministic prediction task. In this study, we propose a deep learning model to predict the evolution of 

WMH from baseline to follow-up (i.e., 1-year later), namely “Disease Evolution Predictor” (DEP) model, 

which can be adjusted to become a non-deterministic model. The DEP model receives a baseline image 

as input and produces a map called “Disease Evolution Map” (DEM), which represents the evolution of 

WMH from baseline to follow-up. Two DEP models are proposed, namely DEP-UResNet and DEP-GAN, 

which are representatives of the supervised (i.e., need expert-generated manual labels to generate the 

output) and unsupervised (i.e., do not require manual labels produced by experts) deep learning algo- 

rithms respectively. To simulate the non-deterministic and unknown parameters involved in WMH evo- 

lution, we modulate a Gaussian noise array to the DEP model as auxiliary input. This forces the DEP 

model to imitate a wider spectrum of alternatives in the prediction results. The alternatives of using 

other types of auxiliary input instead, such as baseline WMH and stroke lesion loads are also proposed 

and tested. Based on our experiments, the fully supervised machine learning scheme DEP-UResNet regu- 

larly performed better than the DEP-GAN which works in principle without using any expert-generated 

label (i.e., unsupervised). However, a semi-supervised DEP-GAN model, which uses probability maps pro- 

duced by a supervised segmentation method in the learning process, yielded similar performances to the 

DEP-UResNet and performed best in the clinical evaluation. Furthermore, an ablation study showed that 

an auxiliary input, especially the Gaussian noise, improved the performance of DEP models compared 

to DEP models that lacked the auxiliary input regardless of the model’s architecture. To the best of our 

knowledge, this is the first extensive study on modelling WMH evolution using deep learning algorithms, 

which deals with the non-deterministic nature of WMH evolution. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

White matter hyperintensities (WMH), together with lacunar

schaemic strokes, lacunes, cerebral microbleeds, and perivascular
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paces, are the main neuroradiological features of cerebral small

essel disease (SVD) ( Wardlaw et al., 2013 ). WMH can be ob-

erved in T2-weighted and T2-fluid attenuated inversion recovery

T2-FLAIR) brain magnetic resonance images (MRI), sharing similar

euroradiological characteristics as the lacunar ischaemic infarcts

nd enlarged perivascular spaces ( del C. Valdés Hernández et al.,

013 ). Clinically, WMH have been associated with stroke, age-

ng, and dementia progression ( Prins and Scheltens, 2015; Ward-

aw et al., 2017a ). Recent studies have shown that WMH may de-

rease (i.e., shrink/regress), stay unchanged (i.e., stable), or increase

i.e., grow/progress) over a period of time ( Ramirez et al., 2016 ).
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Variations in the WMH burden over time have been associated

with patients’ comorbidities and clinical outcome ( Chappell et al.,

2017; Wardlaw et al., 2017b ). In this study, we refer to theses

changes as “evolution of WMH”. 

Predicting the evolution of WMH is challenging because the

rate and direction of WMH evolution varies considerably across

studies ( Schmidt et al., 2016; van Leijsen et al., 2017a; 2017b ) and

several risk factors, either commonly or not fully known, could be

involved in their progression ( Wardlaw et al., 2017b ). For example,

some risk factors and predictors that have been commonly associ-

ated with WMH progression are baseline WMH volume ( Schmidt

et al., 2003; Sachdev et al., 2007; van Dijk et al., 2008; Wardlaw

et al., 2017b; Chappell et al., 2017 ), blood pressure or hyperten-

sion ( Veldink et al., 1998; Schmidt et al., 2002b; van Dijk et al.,

2008; Godin et al., 2011; Verhaaren et al., 2013 ), age ( van Dijk

et al., 2008 ), current smoking status ( Power C et al., 2015 ), previous

stroke and diabetes ( Gouw et al., 2008; Wardlaw et al., 2017b ), and

genetic properties ( Schmidt et al., 20 02a; 2011; Godin et al., 20 09;

Luo et al., 2017 ). Surrounding regions of WMH that may appear

like normal appearing white matter (NAWM) with less structural

integrity, usually called the “penumbra of WMH” ( Maillard et al.,

2011 ), have also been reported as having a high risk of becom-

ing WMH over time ( Maillard et al., 2014; Pasi et al., 2016 ). On

the other hand, regression of WMH volume has been reported

in several radiological observations on MRI, such as after cerebral

infraction ( Moriya et al., 2009 ), strokes ( Durand-Birchenall et al.,

2012; Cho et al., 2015; Wardlaw et al., 2017b ), improved hep-

atic encephalopathy ( Mínguez et al., 2007 ), lower blood pressure

( Wardlaw et al., 2017b ), liver transplantation ( Rovira Cañellas et al.,

2007 ), and carotid artery stenting ( Yamada et al., 2010 ). While a

recent study suggested that areas of shrinking WMH were actually

still damaged ( Jiaerken et al., 2018 ), a more recent study showed

that WMH regression did not accompany brain atrophy and sug-

gested that WMH regression follows a relatively benign clinical

course ( van Leijsen et al., 2019 ). 

In this study, we propose an end-to-end training model for au-

tomatically predicting and spatially estimating the dynamic evo-

lution of WMH from baseline to the following time point using

deep neural networks called “Disease Evolution Predictor” (DEP)

model (discussed in Section 2.2 ). The DEP model produces a map

named “Disease Evolution Map” (DEM) which characterises each

WMH or brain tissue voxel as progressing, regressing, or stable

WMH (discussed in Section 2.1 ). For this study we have cho-

sen deep neural networks due to their exceptional performance

on WMH segmentation ( Rachmadi et al., 2017; Li et al., 2018;

Kuijf et al., 2019 ). We use a Generative Adversarial Network (GAN)

( Goodfellow et al., 2014 ) and the U-Residual Network (UResNet)

( Guerrero et al., 2018 ) as base architectures for the DEP model.

These architectures represent the state-of-the-art deep neural net-

work models. In other words, GANs do not need expert-annotated

manual labels in the learning process as they learn the regularities

within the input data to estimate the unknown patterns without

the need of pre-existing labels (i.e., unsupervised), whilst UResNet

adjusts each layer’s weights by recurrently optimising its response

in a regularisation process that needs a model expert-annotated

label to compare against (i.e., supervised). 

This study differs from previous studies on predictive modelling

in the fact that we are interested in predicting the evolution of

specific neuroradiological MRI features (i.e., WMH in T2-FLAIR), not

the progression of a disease as a whole and/or its effect. For ex-

ample, previous studies have proposed methods for predicting the

progression from mild cognitive impairment to Alzheimer’s dis-

ease ( Spasov et al., 2019; Korolev et al., 2016; Hinrichs et al., 2011 )

and progression of cognitive decline in Alzheimer’s disease patients

( Choi et al., 2018 ). These studies have used multiple kernel learn-

ing classification approaches, which can incorporate non-imaging
nputs to increase specificity in the classification, leading to relative

ccurate prediction of transitional stages or classes. However, it is

nclear whether such approaches can cope with voxel-based pre-

iction amidst the ill-posed boundary conditions that distinguish

ormal from abnormal tissue (i.e., WMH) in diseases that have a

ide range of structural abnormalities of different degrees coexist-

ng simultaneously, like the case of small vessel disease as previ-

usly mentioned. 

Our proposed DEP model generates three outcomes: 1) predic-

ion of WMH volumetric changes (i.e., either progressing or re-

ressing), 2) estimation of WMH spatial changes, and 3) spatial

istribution of white matter evolution at the voxel-level precision.

hus, using the DEP model, clinicians can estimate the size, extent,

nd location of WMH in time to study their progression/regression

n relation to clinical health and disease indicators, for ultimately

esign more effective therapeutic interventions ( Rachmadi et al.,

019 ). Results and evaluations can be seen in Section 4 . 

To the best of our knowledge, this is the first extensive study on

odelling the dynamic change and evolution of WMH, especially

sing deep learning algorithms. Some relevant studies which use

on-deep learning algorithms for predicting other types of brain

esions have been previously proposed. For example, a study that

odelled ischemic stroke lesion dynamics using longitudinal meta-

orphosis ( Rekik et al., 2014 ) and a study that modelled low-grade

liomas using tumor growth parameters estimation ( Rekik et al.,

013 ). Most of these studies use mathematical models that con-

ider a limited number of clusters with well-defined boundaries,

hich is not the case of the WMH ( Rekik et al., 2012; Elazab

t al., 2018 ). However, some recent relevant studies have proposed

he use of deep neural networks for estimating the brain tumor

rowth’s parameters ( Ezhov et al., 2019 ) with emphasis in the dy-

amic of glioma growth ( Petersen et al., 2019 ). The difference be-

ween our study and these recent studies is that our proposed DEP

odel allows modulating non-image information using auxiliary

nput (discussed in Section 2.3 ). 

This is an extensive study which expands our previous work

n MICCAI 2019 ( Rachmadi et al., 2019 ) where the first study on

robabilistic prediction method for WMH evolution was proposed.

he main contributions of this study, not addressed in our previous

ork are as follows. 

1. We propose and evaluate the use of three different in-

put modalities for the DEM: 1) irregularity map (IM)

( Rachmadi et al., 2019 ), 2) probability map (PM) gener-

ated from a supervised deep learning WMH segmentation

method, and 3) binary WMH label (LBL) generated by an ex-

pert or highly trained analyst. 

2. We performed an ablation study of using different GAN ar-

chitectures for DEP-GAN model, namely 1) Wasserstein GAN

with gradient penalty (WGAN-GP), 2) visual attribution GAN

(VA-GAN), 3) DEP-GAN with 1 critic (DEP-GAN-1C), and 4)

DEP-GAN with 2 critics (DEP-GAN-2C). 

3. We investigated three different levels of human supervision

in predicting WMH evolution: 1) supervised DEP-UResNet

using expert-generated manual labels, 2) unsupervised DEP-

GAN using IM produced by an unsupervised segmentation

method of LOTS-IM ( Rachmadi et al., 2019 ), and 3) semi-

supervised DEP-GAN using PM produced by a supervised

segmentation method of UResNet. 

4. We performed an ablation study of four different types of

auxiliary input for DEP model: 1) no auxiliary input, 2) base-

line WMH load, 3) baseline WMH and stroke lesions (SL)

loads, and 4) Gaussian noise. 

5. We performed clinical plausibility analysis of the application

of each DEP model in predicting WMH volumetric changes
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Fig. 1. “Disease evolution map” (DEM) ( right ) is produced by subtracting baseline images ( middle ) from follow-up image ( left ). In DEM produced by irregularity map (IM) 

( first row ) and probability map (PM) ( second row ), bright yellow pixels represent positive values (i.e., progression) while dark blue pixels represent negative values (i.e., 

regression). On the other hand, DEM produced by binary WMH label (LBL) ( third row ) has three foreground labels which represent progression or “Grow” (green), regression 

or “Shrink” (red), and “Stable” (blue). We named this special DEM as three-class DEM label (LBL-DEM). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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accounting for risk factors of WMH evolution using analysis

of covariance (ANCOVA). 

. Proposed methods 

.1. Disease Evolution Map (DEM) 

To produce a standard representation of WMH evolution, a sim-

le subtraction operation between two irregularity maps from two

ime points (i.e., baseline assessment from follow-up assessment)

amed “Disease Evolution Map” (DEM) was proposed in our previ-

us work ( Rachmadi et al., 2019 ). In the present study, we evaluate

he use of three different modalities in the subtraction operation:

rregularity map (i.e. as per Rachmadi et al., 2019 ), probability map,

nd binary WMH label. 

Irregularity map (IM) is a map/image that describes the “irreg-

larity” level of each voxel with respect to the normal brain tis-

ue using real values between 0 and 1 ( Rachmadi et al., 2018b ).

he IM is unique as it retains some of the original MRI tex-

ures (e.g., from the T2-FLAIR image intensities), including gradi-

nts of WMH. IM is also independent from a human rater or train-

ng data, as it is produced using an unsupervised method (i.e.,

OTS-IM) ( Rachmadi et al., 2020 ). Furthermore, previous studies

ave shown that IM can also be used for WMH segmentation

 Rachmadi et al., 2018b ), data augmentation of supervised WMH

egmentation ( Jeong et al., 2019 ), and simulation of WMH progres-

ion and regression ( Rachmadi et al., 2018c ). DEM resulted from

he subtraction of two IMs has values ranging from -1 to 1 (first

ow of Fig. 1 ). Note how both regression and progression (i.e. blue

or negative values and red for positive values) are well repre-

ented at the voxel level precision on the DEM obtained from IMs.
Probability map (PM) in the present study refers to the WMH

egmentation output from a supervised machine learning method.

imilar to IM, PM has real values between 0 and 1 which describe

he probability for each voxel of being WMH. However, PM differs

rom IM in the fact that PM only has WMH gradients on the bor-

ers of WMH (note that the centres of (big) WMH clusters mostly

ave probability of 1). Thus, the DEM produced from the subtrac-

ion of two PMs also has values ranging from -1 to 1 represent-

ng regression and progression respectively, but these are usually

ocated on the WMH clusters’ borders and/or representing small

MH. On the other hand, the rest of DEM’s regions (i.e., the cen-

ers of big WMH and non-WMH regions) have value of 0 (see the

econd row of Fig. 1 ). 

Lastly, binary WMH label (LBL) refers to the WMH label pro-

uced by an expert’s manual segmentation, which is often consid-

red as gold standard ( Valdés Hernández et al., 2015 ). DEM from

BL can be produced by subtracting the baseline LBL from the

ollow-up LBL, and each voxel of the resulted image is then la-

elled as either “Shrink” if it has value below zero, “Grow” if it has

alue above zero, or “Stable” if it has value of zero. We refer this

EM as three-class DEM label (LBL-DEM), and its depiction can be

een in the bottom-right of Fig. 1 . 

.2. Disease Evolution Predictor (DEP) model using deep neural 

etworks 

In this study, two Disease Evolution Predictor (DEP) models are

roposed and evaluated: 1) DEP model based on generative ad-

ersarial networks (DEP-GAN) ( Rachmadi et al., 2019 ) and 2) DEP

odel based on UResNet (DEP-UResNet). The differences between

EP-GAN and DEP-UResNet are input/output modalities and level
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Fig. 2. Schematic of the proposed DEP-GAN with 2 discriminators (critics). M ( x ) is 

a generator which generates “fake” disease evolution map (DEM) while C ( x ) and 

D ( x ) are critics to enforce anatomically realistic modifications to the follow-up im- 

ages and encode realistically plausible DEMs. The flows of “fake” images are shown 

by the dashed lines. DEP-GAN can take either irregularity map (IM) or probabil- 

ity map (PM) as input. DEP-GAN also has an auxiliary input to deal with the non- 

deterministic factors in WMH evolution (see Section 2.3 for full explanation). 
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of human supervision involved in the training. For input/output

modalities, DEP-GAN uses either IM or PM for both input and out-

put modalities to represent WMH whereas DEP-UResNet uses T2-

FLAIR and expert generated three-class DEM label (LBL-DEM) for

input and output respectively. In terms of the level of human su-

pervision, DEP-GAN using IM is categorised as unsupervised be-

cause the input modality (i.e., IM) is produced by an unsuper-

vised method (i.e., LOTS-IM), DEP-GAN using PM is categorised

as semi-supervised because the PM is produced by a supervised

deep learning algorithm (i.e., UResNet, see Section 3.2 ), and DEP-

UResNet is categorised as fully supervised as it simply learns DEM

labels from expert-generated LBL-DEM. 

2.2.1. DEP Generative Adversarial Network (DEP-GAN) 

DEP Generative Adversarial Network (DEP-GAN)

( Rachmadi et al., 2019 ) is based on a GAN, a well established

deep neural network model commonly used to generate fake

natural images ( Goodfellow et al., 2014 ). Thus, in this study,

DEP-GAN is mainly proposed to predict the evolution of WMH

when there are no longitudinal WMH labels available. DEP-GAN is

based on a visual attribution GAN (VA-GAN), originally proposed

to detect atrophy in T2-weighted MRI of Alzheimer’s disease

( Baumgartner et al., 2017 ). DEP-GAN consists of a generator

based on a U-Residual Network (UResNet) ( Guerrero et al., 2018 )

and two separate convolutional networks used as discriminators

(hereinafter will be referred as critics) which are based on the

VA-GAN’s critics ( Baumgartner et al., 2017 ). The schematic of

DEP-GAN can be seen in Fig. 2 . 

Let x 0 be the baseline (year-0) image and x 1 be the follow-up

(year-1) image. Then, the “real” DEM ( y ) can be produced by a sim-

ple subtraction ( y = x 1 − x 0 ). To generate the “fake” DEM ( y ′ ), i.e.

without x 1 , a generator function ( M ( x )) is used: y ′ = M( x 0 ) . Thus, a

“fake” follow-up image ( x ′ 
1 
) can be produced by x ′ 

1 
= x 0 + y ′ . Once

M ( x ) is well/fully trained, the “fake” follow-up ( x ′ 
1 
) and the “real”

follow-up ( x 1 ) should be indistinguishable by a critic function D ( x ),

while “fake” DEM ( y ′ ) and “real” DEM ( y ) should be also indistin-

guishable by another critic function C ( x ). Full schematic of DEP-

GAN’s architecture (i.e., its generator and critics) can be seen in

Fig. 3 . 

The DEP-GAN’s UResNet-based generator ( M ( x )) has two parts,

an encoder which encodes the input image information to a la-

tent representation and a decoder which decodes back image in-

formation from the latent representation. The baseline IM/PM ( x 0 )

is feed-forwarded to this generator to generate a “fake” DEM ( y ′ ).
There is also an auxiliary input modulated into the generator us-

ing a FiLM layer ( Perez et al., 2018 ) inside the residual block (Res-

Block) to deal with non-deterministic factors of WMH evolution.

This auxiliary input and its modulation will be fully discussed in

Section 2.3 . The architecture of the DEP-GAN’s generator is de-

picted in the upper side of Fig. 3 (with “A”, “B”, and “E” anno-

tations for UResNet-based generator of M ( x ), auxiliary input, and

residual block (ResBlock) respectively). 

Unlike VA-GAN that uses only one critic (i.e., only D ( x ))

( Baumgartner et al., 2017 ), DEP-GAN uses two critics (i.e., D ( x ) and

C ( x )) to enforce anatomically realistic modifications to the follow-

up images ( Baumgartner et al., 2017 ) and encode realistic plausibil-

ity in the modifier (i.e., DEM) ( Rachmadi et al., 2019 ). Anatomically

realistic modifications to the follow-up images can be achieved by

optimising the critic D ( x ) and the anatomically realistic plausibil-

ity of the modifier can be achieved by optimising the critic C ( x ). In

other words, we argue that an anatomically realistic DEM is essen-

tial to produce anatomically realistic (fake) follow-up images. The

architecture of the DEP-GAN’s critics and their connection to the

generator are depicted in the lower side of Fig. 3 (with “C” and

“D” annotations for critic C ( x ) and D ( x ) respectively). 
The DEP-GAN’s optimisation process is the same as the opti-

isation of VA-GAN, where the optimisation processes of Wasser-

tein GAN (WGAN-GP) using a gradient penalty factor of 10 is used

 Gulrajani et al., 2017 ). The optimisation of M ( x ) is given by the fol-

owing function 

 

∗ = arg min 

M 

max 
D ∈D 

L critic (M, D ) 

+ arg min 

M 

max 
C∈C 

L critic (M, C) + L reg (M) (1)

here 

 critic (M, D ) = E x 1 ∼P 1 
[ D ( x 1 )] 

− E x 0 ∼P 0 
[ D ( x 0 + M( x 0 ))] , (2)

 critic (M, C) = E x 0 , x 1 ∼P 0 , P 1 [ C( x 1 − x 0 )] 

−E x 0 ∼P 0 
[ C(M( x 0 ))] , (3)

 reg (M) = λ1 MAE ( x 

′ 
1 , x 1 ) 

+ λ2 (1 − DSC ( x 

′ 
1 , x 1 )) 

+ λ3 MSE (v ol( x 

′ 
1 ) , v ol( x 1 )) , (4)

 0 is the baseline image that has an underlying distribution P 0 ,

 1 is the follow-up image that has an underlying distribution P 1 ,

 ( x 0 ) represents the “fake” DEM, x ′ 
1 

= x 0 + M( x 0 ) is the “fake”

ollow-up image, D and C are the critics (i.e. a set of 1-Lipschitz

unctions ( Baumgartner et al., 2017; Gulrajani et al., 2017 )), and

AE and MSE are mean absolute error and mean squared error

i.e., L1 and L2 losses) respectively. The optimisation is performed

y updating the parameters of the generator and critics alternately,

here (each) critic is updated 5 times per generator update. Also,
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Fig. 3. Architecture of DEP-GAN, which consists of one generator ( upper side , “A”) and two critics ( lower side , “C” and “D”). Note how the proposed auxiliary input is 

feed-forwarded to convolutional layers (yellow, “B”) and then modulated to the generator using FiLM layer (green) inside residual block (ResBlock) (light blue, “E”). Please 

see Fig. 2 for connections between each part and Section 2.3 for full explanation about auxiliary input. On the other hand, DEP-UResNet is based on DEP-GAN’s generator, 

including its auxiliary input, with modification of the last non-linear activation function (i.e., use softmax for segmentation instead of tanh ). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n the first 25 iterations and every 100 iterations, the critics are

pdated 100 times per generator update ( Baumgartner et al., 2017;

ulrajani et al., 2017 ). 

In summary, to optimise the generator ( M ( x )), we need to op-

imise Eq. (1) , which optimises both critics ( D ( x ) and C ( x )) using

qs. (2) and (3) respectively based on WGAN-GP’s optimisation

rocess ( Gulrajani et al., 2017 ), and use the regularisation function

escribed in Eq. (4) . Each term in the Eq. (4) simply says: 

1. Intensities of “fake” follow-up images ( x ′ 
1 
) have to be similar

to the “real” follow-up images ( x 1 ) based on MAE (i.e., L1

loss). 

2. The WMH segmentation estimated from x ′ 
1 

has to be spa-

tially similar to the WMH segmentation estimated from x 1 
based on the Dice similarity coefficient (DSC) (see Eq. (6) ). 

3. The WMH volume (in ml ) estimated from x ′ 
1 

has to be sim-

ilar to the WMH volume estimated from x 1 based on MSE

(i.e., L2 loss). 

The WMH segmentation of x ′ 
1 

and x 1 is estimated by either

hresholding IM values (i.e., irregularity values) to be above 0.178

 Rachmadi et al., 2020 ) or PM values (i.e., probability values) to be

bove 0.5. Furthermore, each term in Eq. (4) is weighted by λ1 , λ2 ,

nd λ3 which equals to 100 ( Baumgartner et al., 2017 ), 1, and 100

espectively. 

Compared to the other GAN architectures reviewed in

i et al. (2019) and Kazeminia et al. (2018) , DEP-GAN is closely re-

ated to conditional GAN ( Mirza and Osindero, 2014 ) with WGAN-

P’s training scheme ( Gulrajani et al., 2017 ), both of which are the

asis of the VA-GAN. The use of two discriminator/critics is also

ot unheard of as some relevant studies have proposed similar idea

 Lanfredi et al., 2019 ). In regards to the application of GAN, DEP-

AN is closer to cross modality transformation than segmentation

ecause the DEP-GANs generator transforms the input of IM/PM

nto a different modality of DEM. The uniqueness of DEP-GAN com-
ared to other GAN architectures is the use of auxiliary input for

odulating non-image information, especially the use of Gaussian

oise for simulating the non-deterministic nature of WMH evolu-

ion (see Section 2.3 ). While modulating different modalities into

eep neural networks is not entirely new, this study shows that

he proposed auxiliary input improves the performance on predict-

ng the evolution of WMH (see Section 4.2 ). 

.2.2. DEP U-Residual Network (DEP-UResNet) 

In the case of WMH binary labels (LBL) for both time points

i.e., baseline and follow-up in longitudinal data set) are available,

 simple supervised deep neural network method can be used to

utomatically estimate WMH evolution. As previously described in

ection 2.1 , DEM produced from LBL (i.e., three-class DEM label

LBL-DEM)) consists of 3 foreground labels (i.e., “Grow” (green),

Shrink” (red), and “Stable” (blue)) and 1 background label (black).

n example of LBL-DEM can be seen in the bottom-right figure of

ig. 1 . 

In this study, the DEP-GAN’s generator is detached from the

ritics and modified into DEP U-Residual Network (DEP-UResNet)

y changing the last non-linear activation layer of tanh (i.e., for re-

ression) to softmax (i.e., for multi-label segmentation). Thus, the

EP-UResNet’s schematic is similar to the DEP-GAN’s generator,

hich can be seen in Fig. 3 (with “A”, “B”, and “E” annotations).

EP-UResNet uses T2-FLAIR as input and LBL-DEM as target out-

ut. Note that this configuration makes all DEP models have simi-

ar generator networks based on UResNet. Furthermore, the auxil-

ary input proposed in this study can be also applied to the DEP-

ResNet. 

.3. Auxiliary input in DEP model 

The biggest challenge in modelling the evolution of WMH is

ainly the amount of factors involved in WMH evolution. In our
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Table 1 

Demographics and clinical characteristics of the samples used in this study 

( n = 152 ). SVD and PV stand for small vessel disease and periventricular re- 

spectively. 

Vascular risk 

factors 

Diabetes (n, (%)) 18 (12) 

Hypertension (n, (%)) 114 (75) 

Hypercholesterolaemia (n, (%)) 86 (57) 

Recent or present smoker (n, (%)) 96 (64) 

Relevant SVD 

imaging 

markers 

Presence of at least 1 microbleed (n, (%)) 26 (17) 

Presence of a previous lacune (n, (%)) 37 (24) 

SVD score (median [IQR]) 1 [0 2] 

PV WMH Fazekas score (median [IQR]) 1 [1 2] 

Deep WMH Fazekas score (median [IQR]) 1 [1 2] 
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previous work, we proposed an auxiliary input module which

modulates random noises from normal (Gaussian) distribution

to every layer of the DEP-GAN’s generator to simulate the un-

known/missing factors (i.e., non-image features) involved in WMH

evolution and the non-deterministic property of WMH evolution

( Rachmadi et al., 2019 ). To modulate the auxiliary input to ev-

ery layer of the DEP-GAN’s generator we used Feature-wise Linear

Modulation (FiLM) layer ( Perez et al., 2018 ). The FiLM layer is de-

picted as the green block inside the residual block (ResBlock) in

Fig. 3 (annotated as “E”). In the FiLM layer, γm 

and βm 

modulate

feature maps F m 

, where subscript m refers to m 

th feature map, via

the following affine transformation 

F iLM(F m 

| γm 

, βm 

) = γm 

F m 

+ βm 

. (5)

where γm 

and βm 

for each ResBlock in each layer are automatically

determined by convolutional layers (depicted as yellow blocks in

Fig. 3 with “B” annotation). Note that the proposed auxiliary input

module can be easily applied to any deep neural network model.

Thus, we applied the auxiliary input module to the two DEP mod-

els proposed in the present study: DEP-GAN and DEP-UResNet. 

In this study, we performed an ablation study of auxiliary in-

put modalities for DEP model by using: 1) no auxiliary input, 2)

baseline WMH volume, 3) both baseline WMH and SL volumes,

and 4) Gaussian noise. The WMH and SL volumes were obtained

from WMH and SL labels/masks (see Section 3.1 ). Whereas, an ar-

ray of 32 random noises which follow Gaussian distribution (Gaus-

sian noise) of z ∼ N (0 , 1) was used as per our previous work

( Rachmadi et al., 2019 ). It is worth to mention that changing the

auxiliary input modality from WMH and SL loads to Gaussian noise

changes the nature of the DEP model from deterministic to non-

deterministic (i.e., probabilistic). 

3. Data and experiments 

3.1. Subjects and data 

We used MRI data from stroke patients ( n = 152 ) enrolled in a

study of stroke mechanisms from which full recruitment and as-

sessments have been published ( Wardlaw et al., 2017b ). Written

informed consent was obtained from all patients on protocols ap-

proved by the Lothian Ethics of Medical Research Committee (REC

09/81101/54) and NHS Lothian R+D Office (2009/W/NEU/14), on

the 29th of October 2009. In the clinical study that provided the

data, patients were imaged at three time points (i.e., first time

(baseline) 1–4 weeks after presenting to the clinic with stroke

symptoms, at approximately 3 months, and a year after (follow-

up)). All images were acquired at a GE 1.5T MRI scanner following

the same imaging protocol ( Valdés Hernández et al., 2015 ). Ground

truth segmentations were performed using a multi-spectral semi-

automatic method ( Valdés Hernández et al., 2015 ) only from base-

line and 1-year follow-up scan visits in the image space of the T1-

weighted scan of the second visit, in n = 152 (out of 264) patients.

T2-weighted, FLAIR, gradient echo, and T1-weighted structural im-

ages at baseline and 1-year scan visits were rigidly and linearly

aligned using FSL-FLIRT ( Jenkinson et al., 2002 ). The resulted res-

olution of the images is 256 × 256 × 42 with slice thickness of

0.9375 × 0.9375 × 4 mm. We used data from all patients who

had the three scan visits and ground truth generated as per above.

Hence, our sample consists on MRI data (i.e., s = n × 2 = 304 MRI

scans) for baseline and 1-year follow-up data. Out of all patients,

there are 70 of them that have stroke subtype lacunar (46%) with

median small vessel disease (SVD) score of 1. Other demographics

and clinical characteristics of the patients that provided data for

this study can be seen in Table 1 . 

The primary study that provided the data used a semi-

automatic multi-spectral method to produce several brain masks
ncluding intracranial volume (ICV), cerebrospinal fluid (CSF),

troke lesions (SL), and WMH, all which were visually checked

nd manually edited by an expert ( Valdés Hernández et al., 2015 ).

he image processing protocol followed to generate these masks

s fully explained in ( Valdés Hernández et al., 2015 ). Extracranial

issues, SL, and skull were removed from the baseline and follow-

p T2-FLAIR images using the SL and ICV binary masks from pre-

ious analyses ( Chappell et al., 2017; Wardlaw et al., 2017b ). Fur-

hermore, binary WMH labels produced for the primary study that

rovided the data ( Valdés Hernández et al., 2015 ) were used as the

old standard (i.e. ground truth) for evaluating the DEP models. As

er these labels, 98 and 54 out of the 152 subjects have increasing

nd decreasing volume of WMH respectively. 

As previously explained, IM and PM are needed for DEP-GAN.

e used LOTS-IM with 128 target patches ( Rachmadi et al., 2020 )

o generate IM from each MRI data. To generate PM, we trained a

D UResNet ( Guerrero et al., 2018 ) with gold standard WMH and

L masks for WMH and SL segmentation. For this training, we used

ll subjects in our data set and a 4-fold cross validation training

cheme. See Section 3.2 to see how the 4-fold cross validation is

one for this study. Furthermore, note that this UResNet is dif-

erent from the DEP-UResNet, which is the newly proposed model

n this study. Notice that we affix “DEP” key-word to any model’s

ame used for prediction and delineation of WMH evolution. 

.2. Experiment setup 

For the present study, we opted to use 2D architectures for all

ur networks rather than 3D ones because the number of data

vailable in this study is limited (i.e. only 152 subjects). VA-GAN

i.e., the GAN scheme used as basis for DEP-GAN) used roughly

0 0 0 subjects for training its 3D network architecture, yet there

as still an evidence of over-fitting ( Baumgartner et al., 2017 ). The

D version of VA-GAN has been previously tested on synthetic data

 Baumgartner et al., 2017 ). 

To train DEP models (i.e., DEP-GAN and DEP-UResNet) and also

ResNet (i.e., for generating PM), 4-fold cross validation was per-

ormed. Note that cross validation was not used in the previous

tudy that introduced DEP-GAN ( Rachmadi et al., 2019 ). In each

old, out of 304 MRI data (152 subjects × 2 scans), 228 MRI data

114 subjects × 2 scans) were used for training and 76 MRI data

38 subjects × 2 scans) were used for testing. Note that DEP mod-

ls are subject-specific models, so pairwise MRI scans (i.e., base-

ine and follow-up) are needed and necessary for both training

nd testing. Out of all slices from the training set in each fold (i.e.,

14 pairwise MRI scans), 20% of them were randomly selected for

alidation. Furthermore, we omitted slices without any brain tis-

ues. Thus, around 40 0 0 slices were used in the training process

n each fold. For further regularisation, we performed geometrical

ata augmentations (i.e., flip and rotation) and used dropout layers

nside the ResBlock (see Fig. 3 “E”). Values of IM/PM did not need

o be normalised as these are between 0 and 1. Finally, each DEP
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odel was trained for 200 epochs (i.e., 200 generator updates for

EP-GAN). 

In this study, we first performed an ablation study using differ-

nt GAN architectures for DEP model, which are based on WGAN-

P, VA-GAN, DEP-GAN with 1 critic (DEP-GAN-1C), and DEP-GAN

ith 2 critics (DEP-GAN-2C). This ablation study is intended to see

he impact of the number of critics, the location of the critic(s),

nd the additional losses proposed in this study. WGAN-GP only

enerates DEM and has one critic for DEM ( C ( x )). VA-GAN and

EP-GAN-1C generate both: DEM and the follow-up image, but

nly have one critic for generating the follow-up image ( D ( x )).

he difference between VA-GAN and DEP-GAN-1C is that DEP-

AN-1C has additional losses for optimisation in the training (see

ection 2.2.1 ). Lastly, DEP-GAN-2C has two critics ( C ( x ) and D ( x ))

nd additional losses for the training. In this ablation study, all

ethods used IM and PM as main input modality and did not use

ny auxiliary input. 

Furthermore, we also performed an ablation study using differ-

nt types of auxiliary input and studied their effects to the DEP

odels (i.e., DEP-UResNet, DEP-GAN-2C using IM, and DEP-GAN-

C using PM). Note that we used DEP-GAN-2C for the rest of the

tudy. The procedure of using auxiliary input depends on the in-

ut modality and training/testing process. If SL and WMH vol-

mes were used as auxiliary input, these (i.e., not the volumes

er slice, but the volume per subject) were feed-forwarded to-

ether with one MRI slice. Thus, all slices from one subject used

he same number of WMH and stroke lesion volumes. Note that

MH and SL loads for the whole data set (i.e., all subjects) were

rst normalised to zero mean unit variance before their use in

raining/testing. 

If Gaussian noise were used as auxiliary input, an array of Gaus-

ian noise was feed-forwarded together with an MRI slice in the

raining process as follows: 10 different sets of Gaussian noise

ere first generated and only the “best” set (i.e., the set that

ielded the lowest M 

∗ loss ( Eq. (1) )) was used to update the DEP

odel’s parameters. Note that this approach is similar to and in-

pired by Min-of-N loss in 3D object reconstruction ( Fan et al.,

017 ) and variety loss in Social GAN ( Gupta et al., 2018 ). In the

esting process, 10 different sets of Gaussian noise were generated

nd the average performance was calculated. Furthermore, in the

valuation, the “best” prediction of WMH evolution based on Dice

imilarity coefficient (DSC) was also reported. 

.3. Evaluation measurements 

In this study, we used the following tests to assess the perfor-

ance of DEP models: 

1. Prediction error of WMH volumetric change (i.e., whether

WMH volume in a subject will increase or decrease). 

2. Volumetric agreement between ground truth and predicted

WMH volumes of the follow-up assessment using Bland-

Altman plot ( Bland and Altman, 1986 ). 

3. Volumetric correlation between ground truth and predicted

WMH volumes of the follow-up assessment. 

4. Spatial agreement of the automatic map of WMH evolution

in a patient (i.e. after binarisation) using Dice similarity co-

efficient (DSC) ( Dice, 1945 ). 

5. Clinical plausibility test between the outcome of DEP mod-

els in relation with baseline WMH load and clinical risk fac-

tors of WMH evolution suggested in clinical studies. 

Prediction error is a simple measurement to assess how good

 DEP model can predict the WMH evolution in the future follow-

p assessment (i.e., increasing or decreasing). On the other hand,

olumetric agreement using Bland-Altman plot presents the mean

olumetric difference and upper/lower limit of agreements (i.e.,
ean ± 1.96 × standard deviation) between ground truth and

redicted WMH volumes of the follow-up assessment. We also

alculated the Volumetric correlation between ground truth and

ollow-up predicted WMH volumes, complementary to the Bland-

ltman plot. Whereas, for evaluating the spatial agreement be-

ween ground truth and automatic delineation results, we used the

ice similarity coefficient (DSC). Higher DSC means better perfor-

ance, and it can be computed as follow: 

SC = 

2 × TP 

FP + 2 × TP + FN 

(6) 

here TP is true positive, FP is false positive and FN is false nega-

ive. 

In addition, we performed clinical plausibility test which eval-

ate the outcome of DEP models in relation with the baseline

MH load and clinical risk factors of WMH change and evolution

uggested in clinical studies. For this, analyses of covariance (AN-

OVA) were performed as follows: 

1. The WMH volume at follow-up, predicted from each of the

schemes evaluated was used as outcome (dependent) vari-

able. 

2. The baseline WMH volume was the independent variable or

predictor. 

3. After running Belsley collinearity diagnostic tests, the co-

variates in the models were: 1) type of stroke (i.e. lacunar

or cortical), 2) basal ganglia perivascular spaces (BG PVS)

score, 3) presence/absence of diabetes, 4) presence/absence

of hypertension, 5) recent or current smoker status (yes/no),

6) volume of the index stroke lesion (abbreviated as “in-

dex SL”), and 7) volume of old stroke lesions (abbreviated

as “Old SL”). 

The outcome from an ANCOVA model using the baseline and

ollow-up WMH volumes of the gold-standard expert-delineated

inary masks was used as reference to compare the outcome of the

NCOVA models that used the volumes generated by thresholding

he input and output of the DEP models. All volumetric measure-

ents involved in the ANCOVA models were previously adjusted

y patient’s head size. Therefore, all ANCOVA models used the per-

entage of these volumetric measurements in ICV rather than the

aw volumes. 

. Results and discussions 

.1. Ablation study of different GAN architectures for DEP model 

In this ablation study, we used different GAN architectures for

ur DEP model to evaluate the impact of the number of critics,

ocation of critic(s), and additional losses. See the third paragraph

f Section 3.2 for full explanation of the experiments. 

.1.1. Spatial agreement (DSC) and qualitative (visual) analyses 

Based on Table 2 (columns 8–13), we can see that DEP-GAN-

C produced better spatial agreement (i.e., higher DSC score) than

GAN-GP, VA-GAN, and DEP-GAN-1C, especially for changing and

rowing WMH. Qualitative (visual) assessment of generated DEM

epicted in Fig. 4 also shows that DEP-GAN-2C produced more de-

ailed DEM than the other methods, especially when compared to

A-GAN. These results show that DEP-GAN-1C and DEP-GAN-2C

re more responsive to the changes of WMH and better in pre-

icting the changes of WMH than VA-GAN. Furthermore, we also

an see from both Table 2 and Fig. 4 that the use of PM produced

etter spatial agreement than IM, regardless of the GAN architec-

ure. 
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Table 2 

Results from ablation study of different GAN architectures for DEP models. We calculated the prediction error of WMH change, volumetric agreement of WMH volume, and 

spatial agreement of WMH evolution, compared to the gold standard expert-delineated WMH masks (i.e., three-class DEM labels). “DSC” stands for similarity coefficient, 

“Vol.” stands for volumetric, “LoA” stands for limit of agreement, and “G” and “S” stand for percentage of subjects correctly predicted as having growing and shrinking 

WMH by DEP models. The best value for each learning approaches and evaluation measurements is written in bold. 

Irregularity 

Map 

Grow (G) 

[%] 

Shrink (S) 

[%] 

Avg. [%] 

((G + S)/2) 

Vol. Bias [ ml ] 

mean(std) 

Lower 

LoA [ ml ] 

Upper 

LoA [ ml ] 

Entire 

WMH 

Change 

(C) 

Stable 

(St) 

Shrink 

(Sr) 

Grow 

(Gr) 

Avg. ((St + 

Sr+Gr)/3) 

WGAN-GP 85.71 40.74 63.23 

−11.70(24.12) 

−59.11 35.70 0.3179 0.0809 0.3294 0.0595 0.0325 0.1405 

VA-GAN 65.31 62.96 64.13 2.52(16.43) −29.69 34.72 0.3361 0.0789 0.3506 0.0356 0.0361 0.1408 

DEP-GAN- 

1C 

65.31 68.52 66.91 3.88(15.93) −27.33 35.10 0.3343 0.0583 0.3711 0.0388 0.0265 0.1454 

DEP-GAN- 

2C 

61.22 72.22 66.72 5.54(15.98) −25.79 36.87 0.3204 0.0946 0.3684 0.0238 0.0445 0.1456 

Probability 

Map 

Grow (G) 

[%] 

Shrink (S) 

[%] 

Avg. [%] 

((G + S)/2) 

Vol. Bias [ ml ] 

mean(std) 

Lower 

LoA [ ml ] 

Upper 

LoA [ ml ] 

Entire 

WMH 

Change 

(C) 

Stable 

(St) 

Shrink 

(Sr) 

Grow 

(Gr) 

Avg.((St + 

Sr+Gr)/3) 

WGAN-GP 55.10 79.63 67.37 4.19(8.28) −12.05 20.42 0.6139 0.2082 0.5906 0.1494 0.0899 0.2766 

VA-GAN 42.86 94.44 68.65 5.78(8.13) −10.15 21.70 0.6070 0.1946 0.5952 0.1584 0.0641 0.2726 

DEP-GAN- 

1C 

59.18 85.19 72.18 3.66(7.64) −11.32 18.63 0.6116 0.1711 0.6012 0.1186 0.0800 0.2666 

DEP-GAN- 

2C 

69.30 75.93 72.66 2.48(8.47) −14.13 19.08 0.6083 0.2246 0.5812 0.1515 0.1105 0.2811 

Table 3 

Volumetric correlation analysis in ablation study of GAN architectures for DEP model. The best value for each correlation measurement is 

written in bold. 

Irregularity Map WGAN-GP VA-GAN DEP-GAN-1C DEP-GAN-2C 

R 2 0.1394 0.5644 0.5999 0.6068 

Trend y = 0 . 3354 x + 6 . 5866 y = 0 . 4056 x + 2 . 7858 y = 0 . 4225x + 2 . 3714 y = 0 . 4159 x + 2 . 0128 

Probability Map WGAN-GP VA-GAN DEP-GAN-1C DEP-GAN-2C 

R 2 0.8735 0.8813 0.8916 0.8659 

Trend y = 0 . 8525 x − 0 . 1265 y = 0 . 8289 x − 0 . 3792 y = 0 . 8799 x − 0 . 1667 y = 0 . 898x + 0 . 0258 

Fig. 4. Examples of real DEM and generated DEMs produced by different GAN architectures for DEP model. From left to right: real DEM and generated DEMs produced by 

WGAN-GP, VA-GAN, DEP-GAN with 1 critic (DEP-GAN-1C), and DEP-GAN with 2 critics (DEP-GAN-2C) respectively. 

 

 

 

 

 

 

 

 

 

H  

a  

d

 

F  

v  

t  

t  

t  

a  
4.1.2. Volumetric agreement (bland-Altman) and correlation analyses 

From Table 3 , we can see that the volume of WMH predicted

by DEP-GAN-1C and DEP-GAN-2C correlated better with the vol-

ume of the ground truth than the volume of WMH predicted using

WGAN-GP and VA-GAN. However, as per the volumetric agreement

(Bland-Altman) analysis, the performance of DEP-GAN-1C and DEP-

GAN-2C depended on the working domain, IM or PM (see columns

5–7 of Table 2 ). If PM was used, DEP-GAN-1C and DEP-GAN-2C

performed better than the other methods. On the other hand, VA-

GAN achieved the best volumetric agreement when IM was used.
owever, VA-GAN’s good performance in the volumetric agreement

nalysis did not translate to good spatial agreement as previously

escribed in Section 4.1.1 . 

Based on the Bland-Altman and correlation plots depicted in

ig. 5 , we can see that PM is better than IM for representing the

olumetric change of WMH where the correlation between ground

ruth and predicted WMH volumes when PM was used is higher

han when IM was used, regardless of the GAN architecture. Fur-

hermore, Bland-Altman plots show evidence of increasing discrep-

ncy and variability between ground truth and predicted volumes
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Fig. 5. Volumetric agreement (in ml ) and correlation (in ICV %) analyses between ground truth (GT) and predicted volume of WMH (Pred) produced by WGAN-GP, VA-GAN, 

DEP-GAN-1C, and DEP-GAN-2C using (a) IM and (b) PM using Bland-Altman and correlation plots. 
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ith increasing volume of WMH when IM was used. These dis-

repancy and variability are less prominent when PM was used. 

.1.3. Prediction error analysis and discussion 

From Table 2 (columns 2–4), we can see that most GAN-based

EP models could correctly predict the progression/regression of

MH volume, as they performed better than a random guess sys-

em ( ≥ 50%). Furthermore, we can conclude that DEP-GAN-2C per-

ormed generally better for predicting the evolution of WMH due
o additional losses and two critics in the architecture. There is also

vidence that PM is better for representing the evolution of WMH

han IM when GAN-based deep learning methods are used. 

.2. Ablation study of auxiliary input in DEP models 

In this ablation study, we used different types (modalities) of

uxiliary input to see how they affect the performance of DEP

odels for predicting the evolution of WMH. Please read the
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Table 4 

Results from ablation study of auxiliary input in DEP models. Prediction error of WMH change, volumetric agreement of WMH volume, and spatial agreement of WMH 

evolution were calculated to the gold standard expert-delineated WMH masks (i.e., three-class DEM labels). “DSC” stands for similarity coefficient, “Vol.” stands for volu- 

metric, “LoA” stands for limit of agreement, and “G” and “S” stand for percentage of subjects correctly predicted as having growing and shrinking WMH by DEP models. 

The best value for each machine learning approaches and evaluation measurements is written in bold. Furthermore, the best value of all learning approaches for each 

evaluation measurements is underlined and written in bold. 

DEP-UResNet Grow 

(G)[%] 

Shrink (S) 

[%] 

Avg. [%] 

((G + S)/2) 

Vol. Bias [ ml ] 

mean(std) 

Lower LoA 

[ ml ] 

Upper LoA 

[ ml ] 

Entire 

WMH 

Change 

(C) 

Stable 

(St) 

Shrink 

(Sr) 

Grow 

(Gr) 

Avg. ((Sr + 

Gr+St)/3) 

No Auxiliary 70.41 72.22 71.32 1.16(7.31) −13.17 15.48 0.6091 0.2234 0.6332 0.1551 0.1128 0.3004 

+ WMH 73.47 77.78 75.62 1.59(7.85) −13.80 16.97 0.6005 0.2532 0.6188 0.1688 0.1409 0.3095 

+ WMH+Stroke 79.59 75.93 77.76 0.81(8.14) −15.14 16.76 0.6080 0.2565 0.6311 0.1688 0.1415 0.3138 

+ Gaussian 

(mean) 

81.63 59.26 70.45 -0.58(7.99) −16.24 15.09 0.6135 0.2629 0.6230 0.1717 0.1477 0.3141 

+ Gaussian 

(best) 

81.63 57.41 69.52 −0.79(7.96) −16.40 14.81 0.6162 0.2686 0.6280 0.1787 0.1409 0.3159 

DEP-GAN-2C & 

IM 

Grow 

(G) [%] 

Shrink (S) 

[%] 

Avg. [%] 

((G + S)/2) 

Vol. Bias [ ml ] 

mean(std) 

Lower LoA 

[ ml ] 

Upper LoA 

[ ml ] 

Entire 

WMH 

Change 

(C) 

Stable 

(St) 

Shrink 

(Sr) 

Grow 

(Gr) 

Avg. ((Sr + 

Gr+St)/3) 

No Auxiliary 61.22 72.22 66.72 5.58(15.98) −25.79 36.87 0.3204 0.0946 0.3684 0.0238 0.0445 0.1456 

+ WMH 75.51 53.70 64.61 −1.18(19.71) −39.80 37.45 0.3249 0.0901 0.3551 0.0580 0.0458 0.1530 

+ WMH+Stroke 71.43 64.81 68.12 0.92(19.91) −38.11 39.95 0.3291 0.0922 0.3476 0.0590 0.0468 0.1511 

+ Gaussian 

(mean) 

61.22 70.37 65.80 4.59(14.99) −24.79 33.98 0.3359 0.2252 0.3768 0.0485 0.0361 0.1538 

+ Gaussian 

(best) 

72.45 64.81 68.83 0.44(15.37) −29.67 30.56 0.3429 0.1053 0.3795 0.0619 0.0633 0.1682 

DEP-GAN-2C & 

PM 

Grow 

(G) [%] 

Shrink (S) 

[%] 

Avg. [%] 

((G + S)/2) 

Vol. Bias [ ml ] 

mean(std) 

Lower LoA 

[ ml ] 

Upper LoA 

[ ml ] 

Entire 

WMH 

Change 

(C) 

Stable 

(St) 

Shrink 

(Sr) 

Grow 

(Gr) 

Avg. 

((Sr + Gr+St)/3) 

No Auxiliary 69.39 75.93 72.66 2.48(8.47) −14.13 19.08 0.6083 0.2246 0.5812 0.1515 0.1105 0.2811 

+ WMH 68.37 70.37 69.37 1.70(8.24) −14.45 17.84 0.6125 0.2295 0.6006 0.1467 0.1267 0.2913 

+ WMH+Stroke 66.33 75.93 71.13 2.69(9.14) −15.22 20.60 0.6098 0.2229 0.5943 0.1581 0.1091 0.2872 

+ Gaussian 

(mean) 

58.16 79.63 68.90 2.91(8.81) −14.36 20.18 0.6107 0.1801 0.6245 0.1216 0.0868 0.2776 

+ Gaussian 

(best) 

65.31 88.89 77.10 3.63(7.85) −11.75 19.02 0.6155 0.2415 0.6044 0.1834 0.1265 0.3048 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Volumetric correlation analysis of DEP models with different types/modalities 

of auxiliary input in ablation study of auxiliary input. 

DEP-UResNet R 2 Trend 

No Auxiliary 0.9031 y = 0 . 9781 x − 0 . 1397 

+ WMH 0.8893 y = 1 . 0113x − 0 . 2435 

+ WMH+Stroke 0.8939 y = 0 . 984 x − 0 . 2768 

+ Gaussian (mean) 0.8855 y = 0 . 9772 x + 0 . 2841 

+ Gaussian (best) 0.8869 y = 0 . 9821 x + 0 . 3073 

DEP-GAN-2C & IM R 2 Trend 

No Auxiliary 0.6068 y = 0 . 4159 x + 2 . 0128 

+ WMH 0.3293 y = 0 . 3539 x + 3 . 9732 

+ WMH+Stroke 0.3129 y = 0 . 3817 x + 3 . 275 

+ Gaussian (mean) 0.6461 y = 0 . 4684x + 1 . 9418 

+ Gaussian (best) 0.6037 y = 0 . 4724 x + 2 . 9103 

DEP-GAN-2C & PM R 2 Trend 

No Auxiliary 0.8659 y = 0 . 898 x + 0 . 0258 

+ WMH 0.8755 y = 0 . 9541x − 0 . 1169 

+ WMH+Stroke 0.8916 y = 0 . 9102 x − 0 . 0987 

+ Gaussian (mean) 0.8541 y = 0 . 9228 x − 0 . 23 

+ Gaussian (best) 0.8836 y = 0 . 8972 x − 0 . 2629 
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fourth and fifth paragraphs of Section 3.2 for full explanation of

the experiments. 

4.2.1. Volumetric agreement (Bland-Altman) and correlation analyses 

From Table 4 (columns 5–7), DEP-UResNet using Gaussian noise

(+Gaussian (mean)) produced the best estimation of WMH volu-

metric changes. Also, almost all DEP-UResNet models with auxil-

iary input performed better in volumetric agreement analysis than

ones without auxiliary input. Only DEP-UResNet with WMH per-

formed slightly lower than DEP-UResNet without auxiliary input.

This shows the importance of auxiliary input for predicting the

evolution of WMH using deep neural networks. 

On the other hand, from all DEP models, DEP-GAN-2C using IM

produced the worst standard deviation (std) and (lower and up-

per) limits of agreement (LoA) in the volumetric agreement anal-

ysis, regardless of the modalities of auxiliary input. This is an-

other indication that IM is not adequate for predicting the evo-

lution of WMH. Interestingly, DEP-GAN-2C using PM, which seem-

ingly had better (lower and upper) LoA than the DEP-GAN-2C us-

ing IM, had some of the worst mean of volumetric bias. This in-

dicates that there is a bias towards regression (i.e., shrinking of

WMH) when DEP-GAN-2C using PM was used for predicting the

evolution of WMH. Furthermore, the correlations between ground

truth and predicted volumes of WMH for DEP-UResNet and DEP-

GAN-2C using PM were much higher than the ones produced by

DEP-GAN-2C using IM, especially when auxiliary input is incorpo-

rated (see Table 5 ). All Bland-Altman and correlation plots can be

found in the Appendix A . 

4.2.2. Spatial agreement (DSC) analysis 

On the automatic delineation of WMH change’s boundaries in

the follow-up year, DEP-UResNet using Gaussian noise produced

the best performances for the entire WMH and the average of

stable, shrinking, and growing WMH clusters (in Table 4 columns
–13). Furthermore, it also outperformed the rest of the mod-

ls on changing, shrinking, and growing WMH clusters. Compared

o the “vanilla” DEP-UResNet with No Auxiliary, paired two-sided

ilcoxon signed rank tests yielded p -values of 0.1563, 0.0425,

.0625, 0.0313, 0.0313, and 0.0425 for the entire WMH, chang-

ng WMH, stable WMH, shrinking WMH, growing WMH, and aver-

ge respectively. These results clearly show the advantage of per-

orming fully human supervised learning and modulating Gaussian

oise as auxiliary input for predicting the evolution of WMH. It is

lso worth mentioning that its performance is even better when

he “best” Gaussian noise is used for evaluation. 
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Fig. 6. Distributions of DSC scores from all evaluated DEP models in auxiliary input ablation study. These distributions correspond to the Table 4 , columns 8–13. 
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From the results in Table 4 , DEP-GAN-2C using PM had close

erformance to the DEP-UResNet in all performed analyses, espe-

ially in the spatial agreement analysis (columns 8–13). To give a

etter visualisation of the spread of the performances, we plot-

ed the distributions of DSC scores for all WMH categories us-

ng box-plots ( Fig. 6 ). Performances of DEP-GAN-2C using PM and

EP-UResNet on delineating different WMH clusters were simi-

ar in the distribution of DSC scores. Based on paired two-sided

ilcoxon signed rank tests, there was no significant difference

etween the performances of DEP-GAN-2C using PM and DEP-

ResNet in all WMH clusters, especially when the same auxiliary

nput was used, with p-value > 0.17. In contrast, the differences of

SC scores in all WMH clusters produced by DEP-GAN-2C using IM

nd DEP-UResNet were significantly different from each other with

-value < 0.0012. 

.2.3. Qualitative (visual) analysis 

It is worth to mention first that the growing and shrinking re-

ions of WMH are considerably smaller than those unchanged (sta-

le) as depicted in Fig. 8 . Furthermore, it is very difficult to discern

he borders between growing and shrinking regions when stroke

esions coalesce with WMH despite stroke lesions being removed

rom the analysis as previously explained. Nevertheless, inaccura-

ies while determining the borders between coalescent WMH and
troke lesions and the small size of the volume changes in each

MH cluster ( Rachmadi et al., 2018a ) might have influenced in the

ow DSC values obtained in the regions that experienced change as

een in Table 4 . Furthermore, it is also worth to note that most

egions of WMH are stable, and DEP-UResNet and DEP-GAN-2C us-

ng PM did not have any problem on segmenting these regions as

epicted in Figs. 8 and 9 . 

Based on the qualitative (visual) assessment of the DEM pro-

uced by DEP-GAN-2C using IM/PM depicted in Fig. 7 , auxiliary

nput improved the quality of the generated DEMs where they

ad more correct details than the ones generated without using

uxiliary input. However, good details of the generated DEM from

M/PM did not necessarily translate to good three-class DEM label

i.e., three labels of growing, shrinking, and stable WMH) as de-

icted in Fig. 9 . Some reasons that might have caused this are; 1)

he generated DEM from IM/PM is result of a regression process

rom the baseline IM/PM using DEP-GAN and 2) the three-class

EM label itself is generated from the resulted regression, where

MH is defined by having irregularity/probability values greater

han or equal to 0.178 for IM and 0.5 for PM ( Rachmadi et al.,

020 ). Note that regression of the whole brain using IM/PM is

arder than direct segmentation of three regions of WMH (i.e., sta-

le, shrinking, and growing WMH). Furthermore, small changes in

M/PM did not necessarily change the state of voxel from WMH
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Fig. 7. Qualitative (visual) assessment of DEM produced by DEP-GAN-2C using irregularity map (IM) and DEP-GAN-2C using probability map (PM) with different 

types/modalities of auxiliary input. The corresponding T2-FLAIR (input data) can be seen in Fig. 9 . 

Fig. 8. Qualitative (visual) assessment of DEM label produced by DEP-UResNet with different types/modalities of auxiliary input. The corresponding T2-FLAIR (input data) 

can be seen in Fig. 9 . 

 

 

 

 

 

 

 

 

 

 

 

r  

e  

o  

a  

m  

W  

f  

o  

m  

f  

s  

W  

t

to non-WMH or vice versa. These are the challenges of performing

prediction of WMH evolution using DEP-GAN-2 and IM/PM instead

of DEP-UResNet. 

4.2.4. Clinical plausibility analysis 

From Table 6 , we can see that the use of expert-delineated bi-

nary WMH masks and WMH maps obtained from thresholding IM

or PM (see from second to fourth rows), all produced the same

ANCOVA model’s results; none of the covariates of the model had

an effect in the 1-year WMH volume change, yielding almost iden-

tical numerical results in the first two decimal places. Therefore,

the use of LOTS-IM and UResNet, generators of the IM and PM re-

spectively, for producing WMH maps in clinical studies of mild to

moderate stroke seems plausible. 
As discussed in Section 1 , baseline WMH volume has been

ecognised the main predictor of WMH change over time ( Chappell

t al., 2017; Wardlaw et al., 2017b ), although the existence of previ-

us stroke lesions (SL) and hypertension have been acknowledged

s contributed factors. However, from the results of the ANCOVA

odels ( Table 6 ), none of the DEP models that used these (i.e

MH and/or SL volumes) as auxiliary inputs showed similar per-

ormance (i.e. in terms of strength and significance in the effect

f all the covariates in the WMH change) as the reference WMH

aps. The only DEP model that shows promise in reflecting the ef-

ect of the clinical factors selected as covariates in WMH progres-

ion was the DEP-GAN-2C that used as input the PM of baseline

MH and Gaussian noise (i.e. written in bold and underlined in

he left hand side column of Table 6 ). 
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Fig. 9. Qualitative (visual) assessment of DEM and its corresponding DEM label produced by DEP-GAN-2C using irregularity map (IM) and DEP-GAN-2c using probability 

map (PM) respectively, with different types/modalities of auxiliary input. The corresponding golden standard of DEM label can be seen in Fig. 8 . 

Table 6 

Results from the ANCOVA models that investigate the effect of several clinical variables (i.e. stroke subtype, stroke-related imaging markers and vascular risk factors) in 

the WMH volume change from baseline to one year after. The first column at the left hand side refers to the models/methods used to obtain the follow-up WMH volume 

used in the ANCOVA models as outcome variable. The rest of the columns show the coefficient estimates B and the significance level given by the p-value (i.e. B(p)), for 

each covariate included in the models. 

Reference (binary mask) Stroke lacunar BG PVS scores Diabetes (y/n) Hypertension (y/n) Smoker (y/n) Index SL (% in ICV) Old SL (% in ICV) 

Expert-delineated −0.04(0.65) 0.07(0.25) −0.10(0.48) −0.05(0.66) −0.07(0.42) −0.03(0.46) 0.13(0.15) 

Thresholded IM −0.04(0.66) 0.08(0.19) −0.12(0.44) −0.04(0.71) −0.09(0.38) −0.03(0.43) 0.14(0.14) 

Thresholded PM −0.04(0.66) 0.08(0.19) −0.12(0.44) −0.04(0.71) −0.09(0.38) −0.03(0.43) 0.14(0.14) 

DEP-UResNet Stroke lacunar BG PVS scores Diabetes (y/n) Hypertension (y/n) Smoker (y/n) Index SL (% in ICV) Old SL (% in ICV) 

No Auxiliary −0.12(0.11) 0.10(0.03) −0.06(0.57) 0.03(0.73) −0.08(0.29) −0.04(0.14) 0.30( < 0.001) 

+ WMH −0.10(0.13) 0.11(0.006) 0.04(0.65) 0.01(0.87) −0.05(0.38) −0.04(0.13) 0.20( < 0.001) 

+ WMH+Stroke −0.07(0.29) 0.06(0.14) 0.07(0.48) −0.02(0.75) −0.10(0.15) −0.05(0.10) 0.32( < 0.001) 

+ Gaussian (mean) −0.09(0.26) 0.11(0.04) 0.06(0.61) 0.02(0.81) −0.10(0.21) −0.06(0.08) 0.36( < 0.001) 

DEP-GAN-2C & IM Stroke lacunar BG PVS scores Diabetes (y/n) Hypertension (y/n) Smoker (y/n) Index SL (% in ICV) Old SL (% in ICV) 

No Auxiliary 0.03(0.68) −0.03(0.58) −0.07(0.54) 0.0006(0.99) −0.08(0.33) −0.11(0.001) 0.25(0.001) 

+ WMH 0.22(0.09) 0.08(0.36) −0.004(0.98) 0.12(0.40) −0.08(0.54) −0.06(0.25) 0.32(0.01) 

+ WMH+Stroke −0.11(0.45) −0.08(0.40) 0.03(0.88) 0.10(0.53) 0.11(0.47) −0.02(0.77) 0.34(0.02) 

+ Gaussian (mean) −0.02(0.86) −0.07(0.24) −0.06(0.69) −0.05(0.62) −0.07(0.43) −0.14(0.0004) 0.20(0.03) 

DEP-GAN-2C & PM Stroke lacunar BG PVS scores Diabetes (y/n) Hypertension (y/n) Smoker (y/n) Index SL (% in ICV) Old SL (% in ICV) 

No Auxiliary −0.10(0.24) 0.14(0.009) 0.10(0.45) 0.04(0.67) −0.03(0.70) −0.05(0.18) 0.18(0.03) 

+ WMH −0.03(0.72) 0.09(0.09) −0.14(0.31) −0.04(0.68) −0.06(0.46) −0.04(0.30) 0.19(0.03) 

+ WMH+Stroke −0.10(0.28) 0.17(0.006) 0.10(0.50) 0.10(0.36) −0.02(0.81) −0.08(0.05) 0.24(0.01) 

+ Gaussian (mean) −0.09(0.25) 0.10(0.04) 0.02(0.87) −0.0001(0.99) −0.08(0.27) −0.04(0.17) 0.14(0.05) 
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Some factors might have adversely influenced the performance

f these predictive models. First, all deep-learning schemes require

 very large amount of balanced (e.g. in terms of the appearance,

requency and location of the feature of interest, i.e. WMH in this

ase) data, generally not available. The lack of data available im-

osed the use of 2D model configurations, which generated un-

alance in the training: for example, not all axial slices have the
ame probability of WMH occurrence, also WMH are known to be

ess frequent in temporal lobes and temporal poles are a common

ite of artefacts affecting the IM and PM, error that might prop-

gate or even be accentuated when these modalities are used as

nputs. Second, the combination of hypertension, age and the ex-

ent, type, lapse of time since occurrence and location of the stroke

ight be influential on the WMH evolution, therefore rather than a
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Table 7 

Results from ablation study of the DEP-GAN-2C’s regularisation terms tested using PM (see Eq. (4) ). We calculated the prediction error of WMH change, volumetric 

agreement of WMH volume, and spatial agreement of WMH evolution, compared to the gold standard expert-delineated WMH masks (i.e., three-class DEM labels). “DSC”

stands for similarity coefficient, “Int.” stands for intensity,“Vol.” stands for volumetric, “LoA” stands for limit of agreement, and “G” and “S” stand for percentage of subjects 

correctly predicted as having growing and shrinking WMH by DEP models. The best value for each learning approaches and evaluation measurements is written in bold. 

DEP-GAN-2C (PM) Grow Shrink Avg. [%] Vol. Bias [ ml ] Lower Upper Entire Change Stable Shrink Grow Avg. ((St + 

λ1 (Int.) λ2 (DSC) λ3 (Vol.) (G) [%] (S) [%] ((G + S)/2) mean(std) LoA [ ml ] LoA [ ml ] WMH (C) (St) (Sr) (Gr) Sr + Gr)/3) 

0 0 0 64.29 85.19 74.74 3.03(7.65) −11.9684 18.0372 0.6131 0.1667 0.6178 0.1045 0.0813 0.2679 

0 0 100 65.31 79.63 72.47 2.28(8.16) −13.7197 18.2747 0.6132 0.1749 0.6166 0.1009 0.0909 0.2695 

0 1 0 50.00 83.33 66.67 4.32(8.18) −11.7181 20.3473 0.6093 0.1919 0.6063 0.1366 0.0706 0.2712 

100 0 0 57.14 83.33 70.24 3.79(7.83) −11.5525 19.1234 0.6075 0.1827 0.6143 0.1312 0.0741 0.2732 

0 1 100 67.35 75.93 71.64 2.37(8.50) −14.2904 19.0237 0.6101 0.1889 0.6177 0.1203 0.0922 0.2767 

100 1 0 58.16 77.78 67.97 2.23(8.85) −15.1197 19.5748 0.6096 0.1912 0.6079 0.1209 0.0925 0.2738 

100 0 100 57.14 88.89 73.02 4.51(8.15) -11.4546 20.4778 0.6078 0.1993 0.5996 0.1446 0.0760 0.2734 

100 1 100 56.12 81.48 68.80 3.46(8.26) −12.7218 19.6500 0.6107 0.1801 0.6245 0.1216 0.0868 0.2776 
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single value, the incorporation of a model that combines these fac-

tors would be beneficial. However, such model is still to be devel-

oped also due to lack of data available. Third, the tissue proper-

ties have not been considered. A model to reflect the brain tissue

properties in combination with vascular and inflammatory risk fac-

tors is still to be developed. Lastly, the deep-learning models as we

know them, although promising, are reproductive, not creative. The

development of more advanced inference systems is paramount

before these schemes can be used in clinical practice. 

4.2.5. Prediction error analysis and discussion 

From Table 4 (columns 2–4), we can see that all DEP models

tested in this ablation study could correctly predict the progres-

sion/regression of WMH volume better than a random guess sys-

tem ( ≥ 50%). Furthermore, DEP models with auxiliary input, ei-

ther Gaussian noise or known risk factors of WMH evolution (i.e.,

WMH and SL loads), produced better performances in most cases

and evaluation analyses than the DEP models without any auxiliary

input. These results show the importance of auxiliary input, espe-

cially Gaussian noise which simulates the non-deterministic nature

of WMH evolution. 

Based on our careful examinations, the Gaussian noise can

change the predictions on individual subjects, but not drastically in

every subject. In fact, the most probable prediction result of DEP

models can be determined by the help of Gaussian noise auxil-

iary input. For example, subjects with high numbers of progres-

sion/regression prediction (i.e., predicted as such in more than 6

tests out of 10) can be considered of having higher probability of

WMH progression/regression respectively. It is also worth mention-

ing that any outlier in prediction can be generalised by averaging

all possible outputs for the final prediction. Thus, we can sample

more than 10 times in the testing to get a better final prediction

result. This generalisation cannot be done without using Gaussian

noise as auxiliary input. 

Furthermore, it is clear now that PM is better for representing

the evolution of WMH than IM when DEP-GAN is used, especially

if ones would like to have good volumetric agreement and correla-

tion, spatial agreement, and clinical plausibility of the WMH evo-

lution. This is mostly due to false positives represented as changes

observed in some cortical regions of the DEP model using IM due

to brain atrophy and imaging artefacts. 

4.3. Ablation study of the DEP-GAN’s regularisation terms 

In this study, we proposed three regularisation terms for DEP-

GAN (i.e., intensity, DSC, and volume) instead of one term (i.e.,

only intensity) like in the VA-GAN. Table 7 shows prediction results

where the weights of each term are set to 0 to investigate how

each of these three terms affect the prediction results. Note that λ1 

is the weight for intensity loss, λ is the weight for DSC loss, and
2 
3 is the weight for volumetric loss (see Eq. (4) ). We performed

his ablation study using DEP-GAN-2C using PM. From this ablation

tudy, the use of more terms in the regularisation had a positive

mpact in the prediction results. It is expected because multiple

erms forced the DEP-GAN’s generator to generalise and perform

ell on all important measurements used in the evaluation of the

rediction of WMH evolution, i.e., intensities in the regression of

M’s values, WMH segmentation correctness in DSC, and volumet-

ic prediction of WMH. However, it is worth mentioning that the

mprovements were limited and still could be improved in the fu-

ure. 

. Conclusion and future work 

In this study, we proposed a training scheme to predict the

volution of WMH using deep learning algorithms, namely Dis-

ase Evolution Predictor (DEP) model. We also proposed, evalu-

ted, and studied different configurations of DEP models (i.e., with

o human supervision or unsupervised (DEP-GAN using irregular-

ty map), partial human supervision or semi-supervised (DEP-GAN

sing probability map), and full human supervision or fully su-

ervised (DEP-UResNet) and different types of auxiliary input (i.e.,

aussian noise, WMH load, and WMH and stroke lesion loads)

or prediction of WMH evolution. DEP models are more suitable

or the problem of predicting WMH evolution than other models

eveloped for predicting disease or stroke lesion evolution ( Rekik

t al., 2012; 2014 ) mainly because of two reasons: 1) DEP models

se auxiliary input for modulating both image data (i.e., MRI) and

on-image data (i.e., other risk factors) in different levels of con-

olutional layers and 2) DEP models can be configured to become

robabilistic models and follow the nature of the prediction prob-

em. To the best of our knowledge, this is the first extensive study

n modelling WMH evolution using deep learning algorithms. 

Based on the two ablation analyses done as part of the present

tudy, DEP-GAN with 2 critics (DEP-GAN-2C) performed better than

GAN-GP, VA-GAN, and DEP-GAN using 1 critic (DEP-GAN-1C). We

ould like to emphasise the importance of the two critics in our

roposed DEP-GAN model. While it is possible to perform direct

egression of DEM values and not using GAN (as we have “paired”

aseline and follow-up images), our previous experiments indicate

hat the direct regression using deep neural networks without crit-

cs did not work properly for our task and its performance was

orse than our proposed DEP-GAN model. We observed that the

hanges of IM/PM values from baseline to follow-up (i.e., the DEM

alues), in addition to their subtlety, are small or very small, re-

ulting in very sparse data. This causes the deep neural network

i.e., the generator) to struggle, failing to learn anything useful

rom the training data when regressing IM/PM values. Thus, it pro-

uced only zeros to all voxels in the testing stage despite the mean

quared error (MSE) value being very low and close to zero in
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he training. This is a strong indication of strong overfitting when

o discriminators/critics are used, i.e. with coefficients equal zero

r close to zero, the terms in the regression model also become

ero, and the fitness expressed in the MSE rather than reflecting a

rue model fit expresses the fitness of a model that barely has any

eaningful terms. By using two critics, the generator has to learn

ot only the regression of DEM values but also the “context” of

he DEM while performing realistic modifications to the follow-up

mages. 

Furthermore, Gaussian noise successfully improved all DEP

odels in almost all evaluation measurements when it was used

s auxiliary input, probably because it compensates for the spar-

ity of the input data. At the same time, it shows that there are in-

eed some unknown factors that influence the evolution of WMH.

hese unknown factors make the problem of predicting/delineating

MH evolution non-deterministic, and Gaussian noise were pro-

osed to simulate this scenario. The intuition behind this approach

s that Gaussian noise fills in the missing (unavailable) risks fac-

ors or their combination, which could influence the evolution of

MH. Note that it is very challenging to collect and compile all

isk factors of WMH evolution in a longitudinal study. 

From our experiments, on average, DEP-UResNet (i.e., a fully su-

ervised scheme) yielded the best results in almost every evalua-

ion measurement. However, it is worth to mention that it did not

erform well in the clinical plausibility test. DEP-GAN-2C using PM

ielded similar average performance to the DEP-UResNet’s perfor-

ance and yielded the best results out of all schemes in the clini-

al plausibility test. Moreover, results from DEP-UResNet and DEP-

AN-2C using PM were not statistically different to each other on

elineating the WMH clusters. 

If we consider the results, time, and resources spent in

his study, then DEP-GAN-2C using PM showed the biggest and

trongest potential of all DEP models. Not only did it perform sim-

larly to the DEP-UResNet but it did not need manual WMH la-

els in baseline and follow-up scans for training. The PM needed

s input for this model can be efficiently produced by any super-

ised deep/machine learning model. Moreover, the development of

utomatic WMH segmentation for producing better PM could be

one separately and independent from the development of the DEP

odel. If a better PM model is available in the future, then the

odel can be retrained using the newly produced PM for better

erformance. Also, DEP-GAN-2C using PM could be used for other

neuro-degenerative) pathologies, as long as a set of PM from these

ther pathologies is produced and used to (re-)train the model. 

There are several shortcomings anticipated from the results of

his study. Firstly, manual WMH labels of two MRI scans (i.e.,

aseline and follow-up scans) are necessary for training the DEP-

ResNet. In many scenarios, this is not practical and efficient

n terms of time and resources. Secondly, the DEP-GAN-2C us-

ng IM is computationally very demanding as it involves regress-

ng IM values across the whole brain tissue. This resulted in low

erformances in almost all evaluation measurements. Thirdly, the

chemes’ performances depend on the accuracy of the quality of

nput. For example, the PM generated in this study are slightly bi-

sed towards overestimating the WMH in the optical radiation and

nderestimating WMH in the frontal lobe. This could be caused by

he absence of correcting the FLAIR images for b1 magnetic field

nhomogeneities. However, a previous study on small vessel dis-

ase images demonstrated this procedure might affect the results

nderestimating the subtle white matter abnormalities character-

stics of this disease, and recommends this procedure to be used

n T1- and T2-weighted structural images but not in FLAIR images

or WMH segmentation tasks ( Hernández et al., 2016 ). Hence, the

iggest challenge of using DEP-GAN-2C using PM is its highly de-

endency on the quality of initial PM. Fourthly, volumetric agree-

ent analyses suggest that there are still large differences in ab-
olute volume and in change estimates produced by the proposed

EP models. While this study is intended as a “proof-of-principle”

tudy to advance the field of white matter -and ultimately brain

ealth- prediction, it is worth to mention that better reliability in

he WMH assessment is necessary so as DEP models can be used

n clinical practice. Furthermore, better understanding of what DEP

odels extract to estimate WMH evolution would be very useful in

linical practice. Lastly, the limitation of using (Gaussian) random

oise in DEP models is the fact that we do not really know which

et of Gaussian random noise should be used to generate the best

esult for each subject. Note that, in this study, all DEP models that

sed Gaussian noise as auxiliary input were tested 10 times to cal-

ulate the mean and the “best” set of Gaussian noise which pro-

uced the best automatic delineation of WMH evolution overall. In

onclusion, DEP models suffer similar problems and limitations to

ny machine learning based medical image analysis methods. 

The DEP models proposed in this study open up several possi-

le future avenues to further improve their performances. Firstly,

ulti-channel (e.g., PM and T2-FLAIR) input could be used instead

f single channel input. In this study, we only used single channel

o draw a fair comparison between DEP-UResNet which uses T2-

LAIR and DEP-GAN which uses either IM or PM. Secondly, 3D ar-

hitecture of DEP-GAN could be employed when more subjects are

ccessible in the future. 3D deep neural networks have been re-

orted to have better performances than the 2D ones, but they are

ore difficult to train ( Çiçek et al., 2016; Baumgartner et al., 2017 ).

hirdly, enhanced learning techniques such as transfer learning and

dvance data augmentation can be applied in future studies to im-

rove the performance of DEP models. Fourthly, Gaussian noise

nd known risk factors (e.g., WMH and SL loads) could be mod-

lated together instead of modulating them separately in differ-

nt models. By modulating them together, the DEP model would

e influenced by both known (available) risk factors and unknown

missing) factors represented by Gaussian noise. Lastly, different

andom noise distribution could be used for auxiliary input. Note

hat each risk factor of WMH evolution (e.g., WMH load, age, and

lood pressure) could have different data distribution, not only

aussian distribution with zero mean and unit variance. If a spe-

ific data distribution (i.e., the same or similar to the real risk fac-

or’s data distribution) could be used for a specific risk factor, then

he real data could replace the random noise if available in the

esting. 
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Appendix A. Volumetric agreement and correlation graphs 

Fig. A1. Volumetric agreement analysis (in ml ) between ground truth (GT) and pr

Bland-Altman plot which correspond to data presented in Table 4 . Solid lines corre

of the same table. “LoA” stands for limit of agreement. 
d volume of WMH with different types/modalities of auxiliary input (Pred) using

to “Vol. Bias” while dashed lines correspond to either “Lower LoA” or “Upper LoA”
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Fig. A2. Correlation plots between manual WMH volume produced by the expert (GT) and predicted WMH volume by various DEP models with different types/modalities 

of auxiliary input (Pred). WMH volume is in the percentage of intracranial volume (ICV) to remove any potential bias associated with head size. 
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Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.media.2020.101712 . 
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