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Abstract: Epstein–Barr virus (EBV) lytic induction therapy is an emerging virus-targeted therapeutic
approach that exploits the presence of EBV in tumor cells to confer specific killing effects against
EBV-associated malignancies. Efforts have been made in the past years to uncover the mechanisms
of EBV latent-lytic switch and discover different classes of chemical compounds that can reactivate
the EBV lytic cycle. Despite the growing list of compounds showing potential to be used in the
lytic induction therapy, only a few are being tested in clinical trials, with varying degrees of success.
This review will summarize the current knowledge on EBV lytic reactivation, the major hurdles of
translating the lytic induction therapy into clinical settings, and highlight some potential strategies in
the future development of this therapy for EBV-related lymphoid and epithelial malignancies.

Keywords: Epstein–Barr virus; lytic induction therapy; endemic Burkitt lymphoma; Hodgkin
lymphoma; T-/NK-/B-cell non-Hodgkin lymphoma; nasopharyngeal carcinoma; EBV-associated
gastric carcinoma

1. Introduction

Epstein–Barr virus (EBV) infects more than 90% of adults worldwide. While its primary infection is
often asymptomatic, it can manifest as infectious mononucleosis (IM) in adolescents and young adults [1].
EBV is also associated with lymphomas such as endemic Burkitt lymphoma (BL), Hodgkin lymphoma
(HL), T-/NK-, and B-cell non-Hodgkin lymphoma as well as epithelial carcinomas, which include
undifferentiated nasopharyngeal carcinoma (NPC) and a subset of gastric carcinoma (EBVaGC) [2–4].
The biphasic lifecycle of EBV allows it to establish latency subsequent to primary infection in which
viral gene expression is limited to those that are responsible for tumorigenesis, apoptosis inhibition,
immune evasion, and so on [5]. Owing to the limited choice and the low expression of these viral
proteins, it is difficult to target EBV-positive tumor cells specifically. In most cases, treatment against
EBV-positive lymphomas is similar to those of EBV-negative lymphomas of the same histology,
for example, chemotherapy, radiation, and tumor resection [6]. Therapeutic strategies that target EBV
in the associated malignancies can result in highly specific killing effects to the tumor cells, but spare
the normal cells from toxic effects.

Occasionally, the latent virus within the infected cells enters into lytic cycle, in which >70 viral
proteins are produced [5]. The switch occurs upon the expression of immediate early (IE) proteins,
BZLF1 (Zta), and BRLF1 (Rta), which transactivate Zta and Rta promoters (Zp and Rp) and activate
the expression of viral genes for viral replication, such as BMRF1, BALF1, and BGLF4, as well as that
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for production of virions, such as BLLF1 and BFRF3 [7]. The activation of IE proteins and promoters
can be achieved through post-translational modification of activators or repressors, modulation of
cellular signaling pathways, epigenetic regulation, such as DNA methylation; histone modification;
cellular stresses, for example, oxidative stress, hypoxia, autophagy, and inflammation, as well as
through modulation of host and viral micro RNAs [8–11]. Owing to the massive number of viral
proteins expressed during the lytic cycle, they may be potentially utilized for EBV-specific therapies.
One such therapy is the lytic induction therapy in which EBV is reactivated into the lytic cycle that
confers cytotoxicity of antiviral drugs to achieve specific killing effects against EBV-positive cells.
Although there were many studies in the past decades studying the lytic induction therapy, only a few
were conducted in the setting of clinical trials. This review will summarize the current knowledge
on lytic reactivation of EBV, the major hurdles of the lytic induction therapy, and highlight some
potential strategies in the future development of this therapy for EBV-associated lymphoid and
epithelial malignancies.

2. Overview of the Lytic Induction Therapy

Lytic induction therapy is an emerging virus-targeted therapeutic approach that exploits the
presence of EBV in tumor cells to confer specific killing effects against EBV-associated malignancies.
This strategy involves two classes of compounds, that is, chemical lytic inducers and nucleoside
analogue antiviral pro-drugs. The EBV lytic cycle is first being reactivated by the chemical lytic inducers
producing an array of lytic proteins, one of which is the viral protein kinase encoded by BGLF4 [7].
This kinase phosphorylates and converts nucleoside analog anti-viral pro-drugs, such as ganciclovir,
to their cytotoxic forms, consequently killing their host cells. More importantly, the phosphorylated
drugs can be transferred to adjacent cells, which leads to a “bystander killing” effect [12] (refer to
Figure 1) [13]. As a result, the success of this method relies heavily on the effectiveness of lytic
inducers in reactivating EBV lytic cycle, emphasizing the importance of investigating a broad variety of
compounds in order to enable and consolidate this form of therapy for EBV-associated malignancies.
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Figure 1. Overview of Epstein–Barr virus (EBV) lytic induction therapy. EBV lytic cycle is first reactivated
by chemical inducers in which the viral protein kinase encoded by BGLF4 is produced. BGLF4 then
activates the nucleoside analogue antiviral pro-drug into its cytotoxic form, and consequently results
in a specific killing effect on EBV-positive cells. Moreover, the activated drugs can be transferred to
adjacent cells, resulting in a “bystander killing” effect. GCV, valganciclovir.

3. Lytic Inducers

The lytic induction potential and the modes of lytic reactivation of different compounds, such as
histone deacetylase (HDAC) inhibitors, chemotherapeutics agents, phorbol esters, butyrates, and novel
compounds, in various cell lines harboring EBV have been summarized in detail in a recent review [14].
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Despite having a continuously growing list of lytic inducers that can potentially be incorporated into
the lytic induction therapy, very few drugs have been tested in clinical settings [15]. The only clinical
trial study to date that has shown a promising outcome tested the effect of combining lytic inducers,
gemcitabine (GCb) and valproic acid (VPA), with valganciclovir (GCV) on patients with end-stage
NPC [16]. As different classes of lytic inducers have been addressed in detail in other reviews [14,17,18],
we will briefly summarize the mechanisms of EBV lytic reactivation and outline the lytic inducers that
possess the corresponding reactivation mechanism.

EBV lytic cycle can be reactivated by modulating different signaling pathways of the host,
for example, by activating protein kinase C (PKC) directly or together with mitogen-activated protein
kinase (MAPK) family consisting of extracellular-signal-regulated kinase (ERK), c-Jun N-terminal
kinases (JNK), and p38 signaling pathways [8]. HDAC inhibitors such as suberanilohydroxamic acid
(SAHA), romidepsin, valproic acid (VPA), trichostatin A (TSA), and sodium butyrate (NaB) [19,20];
phorbol esters such as tetradecanoylphorbol acetate (TPA) [21]; and microtubule depolymerization
compounds such as colchicine and vinblastine [22] have been shown to activate the PKC and/or
JNK and p38 signaling to reactivate EBV lytic cycle. TPA activates nuclear factor-κB (NF-κB) and
activator protein 1 (AP-1) that mediate the activation of JNK, which may interact with Zp through
the binding of c-Jun to the ZI and ZII elements [21]. Another study revealed that Zp activation
via PKC-δ activation requires the ZID element, which allows binding of the transcription factor
Sp1 [23]. Proteasome inhibitor such as bortezomib and endoplasmic reticulum (ER) stress inducers
such as thapsigargin and tunicamycin, on the other hand, can induce EBV lytic cycle by activating
ER stress/unfolded protein response (UPR), which induces JNK and/or C/EBP-β and activates Zp
through C/EBP-binding sites in ZII and ZIIIB elements [24,25]. UPR-induced lytic reactivation was
also observed in clofoctol treatment, which mediates the activation of the PERK-XBP1 axis [26].

Activation of PI3K/Akt signaling pathway can also reactivate EBV lytic cycle. Compounds that
possess this property include chemotherapeutic drugs such as gemcitabine, doxorubicin, cis-platinum,
and 5-FU [17,27] and immunosuppressive drug such as methotrexate [28]. Phosphoinositide 3-kinases
(PI3K) activation was shown to be required for Rta activation of Zp and BMRF1 promoters, albeit
the exact mechanism has not been completely elucidated [29]. Immunomodulatory agents such as
lenalidomide and thalidomide suppress Ikaros, which can regulate EBV latency as well as activate
PI3K signaling [30].

Cellular stress-related signaling pathways involving ATM and p53 can also be associated
with reactivation of EBV lytic cycle. Reactive oxygen species (ROS) inducers such as H2O2,
methylnitronitrosoguanidine (MNNG), and the chemotherapeutic drug gemcitabine activate p53,
which subsequently binds to the Sp1-binding element in Zp and Rp and activates the lytic cycle [31,32].
Additionally, chloroquine can reactive EBV lytic cycle by chromatin remodeling through the activation
of the ATM pathway and the downstream phosphorylation of KAP1/TRIM28 [33], allowing the access
of cellular transcription factors to activate the viral promoters [34].

Induction of hypoxia has been shown to reactivate EBV lytic cycle through the binding of
hypoxia-inducible factor 1 (HIF-1) to the hypoxia response element motif on Zp and/or by the activation
of the ERK1/2 signaling pathway [35,36]. Iron chelators such as deferoxamine, Dp44mT, and a novel
compound known as C7 were found to stabilize HIF-1α, which subsequently leads to the reactivation
of EBV lytic cycle [36]. Apart from stabilizing HIF-1α, C7 was also found to reactivate EBV lytic
cycle through the activation of the ERK1/2-autophagy (ATG5) axis [36]. In addition to C7, autophagy
induction through the PKCδ-p38 MAPK axis by combination of TPA and NaB has also been shown to
promote EBV lytic cycle [37].

In addition to the above lytic reactivation pathways, other mechanisms such as induction of
psychological stress by glucocorticoids such as hydrocortisone and dexamethasone [38], as well
as inhibition of NF-κB signaling by antiretroviral medication such as azidothymidine [39],
anti-inflammatory drugs or natural compounds such as aspirin [40] and curcuminoids [41], have
been found to reactivate EBV lytic cycle. The detailed mechanisms for the reactivation have not been
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completely delineated. Large-scale screenings of chemical compounds have also identified several
novel organic compounds, named E11 and A10 [42], and tetrahydrocarboline derivatives, named
C09, C50, C51, C60, and C67, which can induce EBV lytic induction through as yet undetermined
mechanisms [43].

4. Weaknesses and Concerns Related to the Lytic Inducing Compounds

As mentioned in the previous sections, many efforts have been made in the past years to uncover
the mechanisms of chemical compounds in reactivating EBV lytic cycle in both EBV-positive lymphomas
and epithelial carcinomas. Despite having the potential of being incorporated into EBV lytic induction
therapy regimens, as shown in in vitro testing and Phase I/II clinical trial [16,44], these compounds
have major weaknesses in their action. For instance, they have relatively low efficiencies in the
reactivation of EBV lytic cycle. Table 1 summarizes the efficiencies of EBV lytic induction by the
different compounds from multiple studies. In general, HDAC inhibitors such as NaB could reactivate
2–60% of EBV-positive B cells into lytic cycle, while SAHA could reactivate 30–65% of EBV-associated
epithelial cells (AGS-BX1, HA, and HK1-EBV) into lytic cycle [45–47]. VPA could induce around 10%
of AGS-EBV cells, while the percentage was low in LCL and C666-1 cells [48]. Novel compounds
identified by our group such as C7, E11, C8, E7, and A10 could induce 30–60% of AGS-BX1 cells
into lytic cycle [42]. Follow-up studies on C7, the best-performing compound identified, showed its
ability to induce 6–12% of HA, C666-1, and NPC43 cells into lytic cycle [36,46]. Another new class of
compounds, curcuminoids, were shown to induce 20–50% of AGS-BX1, C666-1, and HONE1-EBV cells
into lytic cycle [41]. Combination of lytic compounds such as VPA and cisplatin was able to induce
50% of AGS-EBV cells into lytic cycle [48], while 40–70% could be achieved in AGS-BX1, HONE1-EBV,
and C666-1 cells treated with VPA together with gemcitabine [41]. The above studies showed that a
considerable proportion of cells are refractory to lytic cycle induction by most compounds studied.
This refractory population greatly hinders the implementation of these lytic inducers into the lytic
induction therapy and the translation to clinical settings.

Second, these lytic compounds rely heavily on the cellular background for inducing EBV lytic
cycle. For example, HDAC inhibitor, VPA, could induce EBV lytic cycle in EBV-associated epithelial
carcinomas such as C666-1 and AGS-EBV cells [48], but not in EBV-positive lymphomas such as
HH514-16, Raji, and Akata cells [49,50]. NaB was shown to induce lytic cycle in EBV-positive
lymphoma cell lines including P3HR-1, B95.8, Raji, Daudi [51], and AK2003 [47], as well as in
EBV-associated epithelial carcinoma cell line, AGS-BX1 [47], but does so very weakly in NPC cells [41].
SAHA could induce lytic cycle in AGS-BX1, HA [45,46], AK2003 [47], and C666-1 [42] cells, but not
in NPC43 [46] and LCLs [47]. Similar results were found in chemotherapy agents such as 5-FU and
cis-platinum, which could induce lytic cycle in Akata and AGS-EBV cells [27], but not in LCLs [17].
For other classes of compounds such as tetrahydrocarboline derivatives [43], curcuminoids [41], iron
chelators [36], and the novel compounds [36,41,43], lytic induction studies were only examined in
either EBV-positive lymphoma cells or a subset of EBV-associated epithelial carcinoma cell lines, thus
limiting general conclusions on their abilities to reactivate EBV lytic cycle in both cell types (Table 1).
None of the compounds studied to date could induce EBV lytic cycle in all EBV-positive cell lines and
their action dependent on cellular background and EBV latency states greatly hinder the incorporation
of the available inducers in clinically relevant lytic induction therapeutic regimens.

Lastly, the concern of promoting viral dissemination through chemical induction of EBV lytic cycle
has to be addressed with caution. Most of the chemical compounds studied reactivate a complete
EBV lytic cycle with production of virions. For instance, supernatant from HONE1-EBV cells induced
with SAHA could transduce 71% of Daudi cells in an EBV transduction assay [45]. This raises the
concern of promoting viral dissemination in the midst of the therapy. Indeed, a pilot study on the
efficacy and safety of romidepsin in treating extranodal natural killer/T-cell lymphoma found a substantial
increase in viremia in these patients [52]. The novel compound C7 [36,42,46] and anti-bacterial antibiotic,
clofoctol [26], were found to induce the expression of immediately early and early lytic proteins, but not
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late lytic proteins. Moreover, EBV virions were not produced after lytic induction by these two compounds.
The reactivation of EBV lytic cyle without production of virions puts them as potentially suitable candidates
for incorporation in lytic induction therapy with minimal risk of viral dissemination.

All of the previously studied compounds have at least one of the three major weaknesses mentioned
above. For instance, HDAC inhibitors appear to be efficient in reactivating 30–50% of the cell population
into EBV lytic cycle in both EBV-positive lymphoma and epithelial carcinoma cells, but their induction
of full viral lytic cycle raises concerns in promoting EBV dissemination during the therapy. On the
other hand, C7 and clofoctol are able to induce EBV lytic cycle without production of virions, but a
relatively low percentage (10–20%) of cells can be induced into lytic cycle. Therefore, efforts such as
structural refinements, as demonstrated in studies by Tikhmyanova et al. [43,53] and our group [36], will
be important in promoting the utility of these compounds in lytic induction therapy. Apart from refining
the currently available lytic inducers, combination of these different classes of compounds, repurposing of
other classes of clinically available compounds, or designing novel chemical molecules or peptides can be
employed to facilitate the translation of lytic induction therapy for EBV-associated malignancies into the
clinics. These strategies will be discussed in detail in Section 5.

Table 1. Summary of the efficiency of lytic induction of Epstein–Barr virus (EBV) of the lytic inducers
and the cell types in which lytic cycle can be induced *.

Class Compound
Cell Type That Can Be

Induced
(% of Cell Population)

Cell Type That
Cannot Be
Induced

Ref.

HDAC inhibitors

NaB
HH514-16, B95.8 Raji [49,50]

AHS-BX1, BL-AK2003 LCLs [47]

TSA
HH514-16, P3J-HR1 Raji, B95.8, Akata [49,50]

AHS-BX1, BL-AK2003 LCLs [47]

VPA

LCL (low), C666-1 (low),
AGS-EBV (10%) / [48]

AGS-BX1 LCLs, BL-AK2003 [47]

TPA B95.8, Raji HH514-16 [49,50]

SAHA

AGS-BX1, BL-AK2003 LCLs, NPC43 [47]

HK1-EBV, HONE-1-EBV,
HA (30–65%), C666-1 / [46]

Romidepsin HA (75%), C666-1 (6%) NPC43 [19,46]

DNA
methyltransferase

inhibitor

AZC
(5 ara2’-deoxycytidine)

HH514-16 / [49,50]

RaeI (80%) / [54]

Iron chelators
Deferoxamine, Dp44mT AGS-BX1, SNU719, HA / [36]

Deferasirox, Deferiprone AGS-BX1, SNU719 / [36]

Novel compounds

C7

AGS-BX1, SNU719,
HONE1-EBV, YCCEL-1,
HA (10%), C666-1 (6%),

NPC43 (12%)

/ [36,46]

E11 AGS-BX1 (60%),
HONE1-EBV, YCCEL-1 SNU719, C666-1 [42]

C8 AGS-BX1 (30%),
HONE1-EBV, C666-1 SNU719, YCCEL-1 [42]

E7
AGS-BX1 (30%),

HONE1-EBV, C666-1,
SNU719

YCCEL-1 [42]

A10
AGS-BX1 (30%),

HONE1-EBV, C666-1,
YCCEL-1

SNU719 [42]
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Table 1. Cont.

Class Compound
Cell Type That Can Be

Induced
(% of Cell Population)

Cell Type That
Cannot Be
Induced

Ref.

Chemotherapeutic
agents

5-FU Akata, AGS-EBV (24–28%) LCL [17,27]

Gemcitabine AGS-EBV (30%), Akata,
AGS-EBV (24–28%) LCL [17,27,48]

Doxorubicin LCL [17] LCL [48] [17,48]

Taxol LCL [17] LCL [48] [17,48]

5 aza-CR Akata, AGS-EBV (24–28%) / [27]

Immunomodulatory
agents

Lenalidomide,
thalidomide,

pomalidomide

B95.8, D4 LCL, DAUDI,
KEM-I, MUTU-I / [17]

Anti-bacterial
antibiotic Clofoctol Akata (40%), SNU719 (2%),

C666-1 (0.5%), LCLs (0.5%) / [26]

Curcuminoids

41
AGS-BX1 (40–60%),

C666-1 (10–30%),
HONE1-EBV (20–40%)

SNU719 [41]

EF24
AGS-BX1 (50–70%),

C666-1 (10–30%),
HONE1-EBV (40–60%)

SNU719 [41]

Tetrahydrocarboline
derivatives C09, C50, C53, C60, C67 MutuI, LCL, Akata, C666-1 / [43]

ER stress inducers Thapsigargin LCL / [25]

ROS inducer
N-Methyl-N’-Nitro-N-

Nitrosoguanidine
(MNNG)

HA, C666-1, NA (70%) / [32]

* HDAC, histone deacetylase; NaB, sodium butyrate; TSA, trichostatin A; VPA, valproic acid; TPA,
tetradecanoylphorbol acetate; SAHA, suberanilohydroxamic acid; 5 aza-CR, 5-azacytidine; ER, endoplasmic
reticulum; ROS, reactive oxygen species.

5. Potential Drugs and Strategies in the Future Development of Lytic Induction Therapy

5.1. Combining Currently Available Lytic Inducers for Induction of EBV

Different lytic inducers have been combined in previous studies for reactivating lytic cycle of
EBV. The combination between TPA and NaB was found to enhance EA-D expression by 1.5–15-fold
more than that by either compound alone in Raji cells [55]. Combination of VPA with cisplatin
could induce 50% of AGS-EBV cells into lytic cycle with 1.5–5-fold increase relative to treatment with
either compound alone [48]. Additionally, when lenalidomide was combined with doxorubicin or
melphalan, lytic induction was enhanced in Daudi and Mutu-I cells [30]. These studies showed that
combining different classes of lytic inducers with divergent modes of action in lytic reactivation of
EBV could complement one another and achieve a higher efficiency in the induction of lytic cycle
of EBV. Iron chelators and SAHA could reactivate EBV lytic cycle by stabilizing HIF-1α [36,56] and
activating the PKC-δ pathway, respectively [47]. Our group showed that iron chelators could reactivate
the lytic cycle through autophagy-dependent pathways, while SAHA’s action was independent of
autophagy [46]. These two compounds might synergize with one another in inducing lytic cycle of
EBV (Figure 2A). Combining iron chelators with immunomodulatory agent such as lenalidomide will
also be of interest. Lenalidomide could reactivate lytic cycle of EBV by suppressing Ikaros [30], which
is a transcription factor that was found to upregulate the expression of cellular factors responsible for
maintaining EBV latency [57,58]. Direct activation of Zta promoter by iron chelator through HIF-1α
binding, together with the suppression of inhibitory factors that prevent Zta transactivation of other
lytic genes by lenalidomide, may provide a feed-forward loop for lytic reactivation of EBV (Figure 2B).
Some criteria may need to be considered in the design of combination therapy. First, matching the
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kinetics of lytic induction of different compounds will be important. Our group found that combination
of C7 and SAHA could only enhance lytic reactivation when the treatment duration of C7 matched
with its reactivation kinetics [46]. Second, compounds of the same class may not utilise the same mode
of action in inducing lytic cycle of EBV. VPA antagonized the reactivation of lytic cycle of EBV by
other compounds of the same class such as NaB, TSA, AzaCdR, MS-275, apicidin, and SAHA and
uniquely enhanced expression of some cellular genes [55]. Similar antagonism was also observed when
romidepsin, another HDAC inhibitor thought to have similar action as that of SAHA, was combined
with C7 [46]. Therefore, in-depth study should be performed to delineate the modes of action of
different lytic inducers before deciding on the combination therapy.Cancers 2020, 12, x 7 of 24 
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reactivation, thus enhancing EBV lytic induction.

5.2. Repurposing Other Classes of Clinically Available Compounds for Lytic Induction of EBV

Many groups have identified new compounds or re-purposed currently available drugs for
reactivating lytic cycle of EBV for lytic induction therapy. The following are some other classes of
compounds that have not been explored, but have been shown to modulate pathways involved in
regulating the latent-lytic switch of EBV.

5.2.1. Modulators of Autophagy

Autophagy is a conserved cellular mechanism that is involved in regulating cellular homeostasis
as well as governing cell death and survival. Its progression involves a number of sequential events,
that is, vesicle initiation, elongation, maturation, fusion, and degradation, that involve many different
tightly regulated autophagic proteins [59–61]. Several studies have reported the interaction between
the autophagy machinery and EBV latent proteins. For instance, the autophagy machinery processed
EBNA1 for its presentation on major histocompatibility complex class II (MHC-II) molecules in
EBV-positive B cells [62]. Expression of autophagic proteins was enhanced in B cells and epithelial
cells by EBNA3C [63] and LMP2A [64], respectively. Furthermore, LMP1 was shown to initiate
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autophagy progression in B cells [65,66]. Apart from EBV latent proteins, Rta was shown to initiate
autophagy through ERK1/2 signaling pathway. The same study also found that autophagy inhibition
by 3-methyladenine (3-MA) or ATG5 knockdown abrogated the expression of EBV lytic proteins and
production of virions in B cells [67]. Therefore, modulators of autophagy may represent a potential
new class of compounds to be employed for lytic reactivation of EBV. Indeed, our group showed that
C7 and iron chelators could reactivate lytic cycle of EBV through autophagy, in particular, through
ATG5-related mechanisms [46]. Furthermore, bafilomycin A1, an inhibitor of autophagy, enhanced
expression of EBV lytic genes in Akata and Mutu-I cells [68]. On the other hand, a mammalian target
of rapamycin (mTOR) inhibitor, rapamycin, which activates autophagy, was found to induce lytic
cycle of EBV in EBV-associated epithelial cells [69], but not in B cells [70]. In addition, the effects of
other pre-clinical or clinically available modulators of autophagy in the reactivation of lytic cycle of
EBV have not been studied in detail. For example, an activator of autophagy, genistein, was shown
to have anti-tumor effects in a Phase II clinical trial for prostate cancer [71] and might be a potential
compound to be investigated for its role in lytic reactivation of EBV [72,73]. New compounds that
have more specific action on particular autophagic proteins such as ULK1, Vps34, and ATG4B have
also been developed [74]. Exploring different modulators of autophagy on their effects in inducing
lytic cycle of EBV may be relevant for the development of lytic induction therapy (Figure 3).
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Figure 3. Relationship between induction of lytic cycle of EBV and the autophagy machinery and
the modes of action of compounds with lytic induction potentials. EBNA1 could be processed by
the autophagy machinery for MHC-II presentation, while LMP1, LMP2A, Rta, and Zta could initiate
autophagy. Rapamycin reactivates EBV lytic cycle by inhibiting mTOR. Iron chelators and C7, on the
other hand, activate the ERK1/2-ATG5 axis to induce the lytic cycle of EBV. New compounds that target
ATG4, ULK1, and Vps34 could potentially reactivate lytic cycle of EBV.

5.2.2. Modulators of NF-κB Signaling

NF-κB transcription factors consist of the REL family members, that is, RelA(p65), RelB, c-Rel, p50,
and p52, which are involved in regulating the proliferation, differentiation, and survival of lymphoid
cells as well as modulating innate and adaptive immune responses [75]. In response to receptor signal
transduction, degradation of the NF-κB inhibitor, IκB, results in the translocation of the transcription
factor from the cytosol to the nucleus for transcriptional activation of genes including Blimp1 [76],
HIF-1α [77], and YY1 [78], which are known transcription factors that have been shown to modulate
lytic cycle of EBV. In addition, activation of NF-κB signaling pathway was shown to be involved in the
pathogenesis of EBV-associated diseases. For instance, LMP1 was reported to activate both canonical
and non-canonical NF-κB signaling pathways [79,80]. RelA(p65) was shown to bind and activate
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Qp-EBNA1 expression in EBV-associated epithelial cells [81], while EBNA1 could, in turn, inhibit
RelA(p65) by preventing IκK phosphorylation [82]. A more complex interaction was found between
Zta and the NF-κB pathway. Interaction between RelA(p65) and Zta abrogated the ability of Zta to
transactivate other genes [83,84]. At the same time, Zta inhibited the activation of NF-κB-responsive
gene promoters [85], including IκB, which normally retains the inactive NF-κB in the cytoplasm. As a
result, a high level of NF-κB was observed in the nucleus [86] along with Zta, inhibiting one another.
On the other hand, BGLF2 was shown to interact with RelA(p65), preventing its phosphorylation and
nuclear translocation [87]. Therefore, inhibiting NF-κB may lead to reactivation of lytic cycle of EBV
lytic [88]. Some previously reported that lytic inducers also act by modulating the NF-κB pathways.
For example, a proteasome inhibitor, bortezomib, could reactivate lytic cycle of EBV in Akata and RaeI
cells [24] and inhibit the activation of the NF-κB pathway by preventing the proteasomal degradation
of the NF-κB inhibitor, IκBα [89]. Aspirin was shown to reactivate EBV lytic cycle in B95.8 and Raji
cells by inhibiting RelA(p65) translocation to the nucleus [40]. Owing to the complex interactions
among NF-κB, its regulated gene products, and EBV proteins such as Zta, detailed investigations of
the effects of modulators of NF-κB signaling pathway on the reactivation of lytic cycle of EBV are
indicated. Some potential compounds, including a small molecule, known as PS1145, could specifically
inhibit IκB phosphorylation and degradation and the subsequent nuclear translocation of NF-κB in
NPC cells [90]. It was also reported to induce lytic cycle of EBV in another study [91]. A sesquiterpene
lactone, pathenolide, found in medicinal plants such as feverfew could also inhibit NF-κB and activate
the expression of Zta and Rta in Raji cells [92]. Therefore, it is of interest to study the effects of
modulators of NF-κB signaling pathway in the reactivation of lytic cycle of EBV (Figure 4).

5.2.3. Inhibitors of Signal Transducer and Activator of Transcription 3 (STAT3)

STAT3 is a transcription factor that regulates a number of physiological processes including
apoptosis, immune responses, and cell proliferation. Cytokine such as IL-6 or engagement of growth
factor receptors mediates the activation of STAT3, which subsequently translocates to the nucleus and
activates the transcription of genes that are involved in the aforementioned biological processes [93,94].
STAT3 is also closely related to the function of various EBV proteins. For instance, LMP2A was found to
induce the phosphorylation of STAT3 that activates DNMT1 transcription and leads to the loss of PTEN
expression, a common phenomenon observed in EBV-associated gastric carcinoma [95]. A positive
auto-regulatory loop between LMP1 and STAT activation was reported in NPC cells [96]. A subsequent
study showed that LMP1 triggered the NF-κB, AP-1, and STAT signaling pathways in NPC cells [97],
while NF-κB, AKT, and STAT3 were activated by LMP1 in B lymphoma cells [98]. STAT3 was
constitutively activated in EBV-positive T or NK lymphoma cell lines [99]. Daigle et al. found that
STAT3 level was substantially increased in EBV-positive B cells that were refractory to induction of
lytic cycle by NaB [100]. Knockdown of STAT3 sensitized BL cells to lytic inducers for reactivation
of lytic cycle, while STAT3 inhibition by small molecules, AG490, WP1066, or stattic was found to
reactivate lytic cycle of EBV and enhance induction of lytic cycle in EBV-positive BL cells and LCLs
by NaB or Aza [101]. Furthermore, icaritin inhibited STAT3 and AKT pathways by downregulating
LMP1 expression, which consequently induced EBV lytic gene expression in ENKL cell lines [102].
In contrast, berberine was found to repress the level of EBNA1 by inhibiting EBNA1 promoter Qp.
It also inhibits p-STAT3, consequently reducing the expression of EBV lytic genes and production of
virions in HONE1 and HK1-EBV cells upon treatment with NaB and TPA [103]. Cucurbitacin I was
found to possess anti-proliferative effects in NPC cells by inhibiting STAT3 phosphorylation. However,
its effect in reactivation of lytic cycle of EBV was not examined [104]. JAK2/STAT3 inhibitor such as
AZD1480 was found to suppress STAT3 without affecting ERK and AKT signaling pathways [105,106].
Other STAT3 inhibitors such as S3I-201 [107], STA-21 [108], 5,15-DPP [109], and S3I-1757 [110], which
prevent STAT3 homodimerization, DNA-binding, and transcriptional activities, should be investigated
in their effects on reactivation of lytic cycle of EBV (Figure 4).
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Figure 4. Relationship between EBV proteins, NF-κB, and STAT3 signaling pathways and the modes
of action of compounds with lytic induction potentials. LMP1 could activate both canonical and
non-canonical NF-κB pathways. RelA(p65) could bind and activate Qp-EBNA1 expression, while itself
could, in turn, be inhibited by EBNA1 through the prevention of IκK phosphorylation. RelA(p65)
interacts with Zta and abrogates its ability to transactivate other EBV genes, while Zta inhibits the
activation of NF-κB-responsive gene promoters. EBV lytic protein encoded by BGLF2 was shown
to interact with RelA(p65), preventing its phosphorylation and nuclear translocation. Bortezomib,
PS1145, and aspirin reactivate EBV lytic cycle by preventing the degradation of NF-κB inhibitor,
the phosphorylation of Iκβα, and translocation of RelA(p65), respectively. Both LMP1 and LMP2A
could phosphorylate STAT and inhibit the activation of lytic cycle of EBV. STAT inhibitors such as
cucurbitacin I, AZD1480, and S3I-201 reactivate lytic cycle of EBV by either inhibiting phosphorylation,
homodimerization, DNA binding, or transcriptional activities of STAT3.

5.2.4. Inhibitors of hTERT/NOTCH Signaling

EBV proteins promote tumorigenesis through different mechanisms, one of which is by activating
the human telomerase reverse transcriptase (hTERT) promoter by LMP1 through NF-κB, MAPK,
and ERK1/2 signaling pathways in B cells and through c-MYC in NPC cells [111]. hTERT is the catalytic
component of telomerase that can stabilize telomeres, preventing it from shortening after rounds of
cell cycles, thus contributing to the immortalization of cells [112]. In addition, hTERT inhibits the
expression of BZLF1 through the NOTCH2/BATF pathway [113] and hTERT silencing by shRNA
induces lytic cycle of EBV in BL and LCLs [114]. Apart from its potential role in lytic reactivation,
inhibiting telomerase itself may also inhibit tumorigenesis. It would be of interest to study the lytic
reactivation ability and cytotoxic effects of the available hTERT inhibitors on EBV-positive cancers.
A hTERT inhibitor, BIBR1532, is a synthetic non-nucleoside compound that can selectively inhibit
telomerase activity [115]. It can also induce senescence in human cancer cells [116] and possess
anti-proliferative effects to leukemia cells, but not normal hematopoietic stem cells [117,118]. It can
mediate S-phase arrest in LCLs and BL cells and result in apoptosis [119]. However, its effect on
lytic reactivation of EBV has not been studied. Cautions have to be taken with the use of hTERT
inhibitors as long-term exposure such as 130 days’ treatment of a hTERT inhibitor, MST-312 [120–122],
was found to cause cell adaptation by overexpression of telomerase in response to the inhibition in
breast cancer cells [123]. Moreover, costunolide was shown to diminish hTERT expression as well as
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EZH2, H3K27me3, and MSH2 levels in glioblastoma cells. Disruption of EZH2 was shown to increase
the expression of both EBV lytic and latent genes including LMP1 [124], suggesting that some hTERT
inhibitors might cause reveral of the induction of lytic cycle [125,126] and short incubation time with
these inhibitors might be warranted.

As hTERT inhibits the expression of BZLF1 through the NOTCH2/BATF pathway [113], targeting
the NOTCH signaling pathway and examining its effects on induction of lytic cycle of EBV will be of
interest. NOTCH receptors are located in the plasma membrane. Upon ligand binding, cleavage on
different domains of the NOTCH receptor will occur. The intracellular domain (Notch-IC) released
from the transmembrane domain by γ-secretase enters the nucleus and interacts with the transcription
factor complex, which consequently activates a number of NOTCH target genes such as MYC and
p21 [127]. In the context of EBV, EBNA2 is regarded as the functional homolog of active Notch-IC [128],
while LMP2A can activate the NOTCH pathway [129]. Furthermore, activated NOTCH2 was shown
to inhibit the reactivation of lytic cycle of EBV through the upregulation of Zeb2, a transcription factor
that represses BZLF1 transcription in B cells [130]. Moreover, γ-secretase inhibitors including compound
E and dibenzazepine prevented the cleavage of NOTCH2 and inhibited the release of Notch-IC and
could transactivate lytic cycle of EBV in LCLs [113]. Another γ-secretase inhibitor, DAPT, may be able to
reactivate the lytic cycle of EBV by reducing the amount of cleaved Notch1-IC [129] and the expression
of transcription factors involved in endothelial–mesenchymal transition such as ZEB1 and ZEB2 [131].
Indeed, treatment with doxycycline and DAPT in KSHV-infected iSLK.RGB cells were found to increase
mRNA expression of viral lytic genes [132]. L-685,458 was also shown to down-regulate c-MYC expression
as well as NF-κB and NOTCH pathways in tongue carcinoma cells [133]. It will be of interest to examine
the effects of these inhibitors on the reactivation of lytic cycle of EBV (Figure 5).
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of action of compounds with lytic induction potentials. hTERT inhibits the expression of BZLF1
through the NOTCH2/BATF pathway. EBNA2 is regarded as the functional homolog of active NOTCH
intracellular domain (Notch-IC) and LMP2A can activate the NOTCH pathway. NOTCH2 inhibits the
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reactivation of lytic cycle of EBV through the upregulation of Zeb2 by NOTCH-IC, a transcription factor
that represses BZLF1 transcription. γ-secretase inhibitors such as compound E and dibenzazepine
can reactivate lytic cycle of EBV by preventing the release of Notch-IC. Other compounds that may
reactivate the lytic cycle include hTERT inhibitor, BIBR1532, which selectively inhibits telomerase
activity, and another γ-secretase inhibitor, DAPT.

5.2.5. Inhibitors of MYC

MYC regulates many different essential cellular processes including cell proliferation, cell-cycle
progression, DNA repair, and survival. Under normal circumstances, MYC expression is tightly
regulated and has been shown to be deregulated in over 50% of human cancers [134,135]. In the
context of EBV, a recent study on identifying host factors that repress lytic cycle of EBV by a human
genome-wide CRISPR-Cas9 screen was performed in BL cells. The identified host repressors were
found to be centered on MYC. It was found that MYC bound to the OriLyt on the EBV genome and
suppressed its looping to the BZLF1 promoter. Furthermore, depletion of MYC or factors related to
MYC expression reactivated the lytic cycle, suggesting that MYC inhibition could reactivate the EBV
lytic cycle [136]. Although MYC inhibition would be a direct and powerful approach for the treatment
of many types of cancers, MYC lacks a specific active site for binding by small molecules. Therefore, this
“undruggable protein structure” greatly hinders the development of chemical compounds inhibiting
MYC [137]. As a result, different compounds that indirectly target MYC such as interrupting MYC
transcription [138,139], stability [140,141], and the MYC–MAX complex [142] have been developed.
MYC transcription is under the regulation of Bromodomain-containing 4 (BRD4) and a BRD4 inhibitor,
JQ1, was found to possess anti-tumor effects [138,139]. Of interest, JQ1 was found to inhibit the lytic
reactivation of EBV as JQ1 inhibited not only MYC expression, but also other host factors required for
activation of lytic cycle including BACH1, whose knockdown reduced the expression of BZLF1 upon
treatment with gemcitabine [143]. Similarly, inhibiting CDK7, a transcription factor that regulates MYC
expression [144], prevented EBV replication [145], but significantly inhibited cell growth of NPC [146].
Despite the above observations, it was found that DRB’s inhibition of CDK9, another transcription
factor that regulates MYC transcription, reduced both MYC and EBNA2-activated transcription [147].
As EBNA2 is the functional homologue of NOTCH that inhibits activation of lytic cycle of EBV,
inhibiting EBNA2’s function may reverse the inhibition on lytic cycle. Upon initiation of lytic cycle by
transfection of BZLF1 in HEK/EBV cells and incubation with CDK2/CDK9 inhibitor or alsterpaullone
2-cyanoethyl (A2CE), only the expression of late lytic proteins, but not the early lytic proteins was
reduced [148]. Other compounds that target the DNA binding domain of the MYC–MAX complex
such as KSI-3716 [149], MYCi975 [150], sAJM589 [151], and 10074-G5 [152,153] were found to have
anti-tumor effects in multiple tumor cell types. New compounds such as PKUMDL-YC-1202-1205 [154],
7594-0035 [155], VPC70063 [156], and JKY-2-169 [157] have also been developed. It would be of interest
to investigate the effects of these compounds on the reactivation of lytic cycle of EBV (Figure 6).
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5.3. Designing Peptides or Small Chemical Molecules for Lytic Induction of EBV

Protein structural analyses using nuclear magnetic resonance (NMR), cryogenic electron
microscopy (Cryo-EM), and crystallography as well as the increasing usage of computer programs
in the prediction of active functional domains of protein and docking simulation have accelerated
the progress of structure-based drug discovery [154,156,158–160]. For example, an EBNA1-specific
probe was designed and shown to disrupt EBNA1 oligomerization and transactivation. Furthermore,
the probe could reactivate lytic cycle of EBV, indicating that inhibition of repressor of lytic cycle can be
harnessed to reactivate lytic cycle of EBV [161–164]. Hence, cellular factors that were shown previously
to inhibit reactivation of lytic cycle can be targeted. Examples are Oct-2 and Pax-5, which are B
cell-specific transcription factors [165,166] shown to interact directly with Zta and prevent its binding
and transactivation of EBV gene promoters. Furthermore, knockdown of either Oct-2 or Pax-5 could
increase the expression of lytic proteins [58,167]. In contrast, the cellular factor, nuclear factor Y (NF-Y),
was shown to bind to Rp and the overexpression of NF-YA enhanced the expression of Zta and Rta
in NPC. Molecules can be designed to stabilize the binding of NF-Y to the IE promoters, which may,
in turn, enhance reactivation of lytic cycle of EBV [168]. Advancement in computational modelling
and the resolution of structural interactions between proteins and compounds or peptides can lead to
the rational design of highly specific molecules to be incorporated in lytic induction therapy.

6. Beyond Lytic Induction Therapy

Apart from lytic induction therapy, identification of essential host factors for the survival of
EBV-positive cells can be manipulated to facilitate the development of synthetic lethality. For example,
BATF and IRF4 were found to be upregulated upon EBV infection of primary B cells. This resulted in
the suppression of BIM and upregulation of MYC, which were found to be important transformation
factors for primary B cells upon EBV infection. Knockout of either gene triggered apoptosis of
EBV-LCL, suggesting that LCL is addicted to BATF and IRF4 for survival [169]. IRF4 antisense
oligonucleotides were found to possess anti-tumor activity in multiple myeloma [170], which was
also found to be addicted to IRF4 for survival. Recently, a high-throughput screening of chemical
compounds that deplete IRF4 identified several compounds of interest [171] that may be relevant in
novel therapeutic approaches against EBV-positive lymphomas. Likewise, the consequences on the
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host cells upon induction of lytic cycle may potentially be manipulated as therapeutic approaches
against EBV-associated cancers. For example, many of the EBV lytic proteins, such as BGLF4 (viral
protein kinase), BGLF5 (DNA exonuclease), BALF3 (terminase), and BNRF1 (major tegument protein),
were found to induce genome instability [172–175]. Furthermore, BPLF1 (large tegument protein
and deubiquitinating (DUB) enzyme) was found to regulate DNA damage response (DDR) by
targeting ubiquitinated proliferating cell nuclear antigen (PCNA). Moreover, overexpression of BPLF1
deubiquitinated PCNA, abolished DDR, and sensitized EBV-positive cells to ultraviolet light and
hydroxyurea [176]. Further inhibition of DNA repair mechanism by chemical drugs may overload
EBV-positive cells that undergo lytic cycle to DNA damage, thus killing the cells. Advancement of
omics technologies may serve to provide an overview of the virus–host interactions and identify
host factors that regulate the lytic cycle, which eventually leads to new directions in the design of
therapeutic strategies against EBV-associted malignancies.

7. Conclusions

In this review, we have summarized the current knowledge of the reactivation of lytic cycle of
EBV and the lytic inducers that have been studied in the past decades. We have also addressed the
three major weaknesses of the lytic induction therapy, namely, the relatively low efficiency, the high
reliance on the cellular background of lytic inducers in the lytic reactivation of EBV, and the concern of
viral dissemination during lytic induction therapy. In addition, we have suggested future strategies
such as combining different classes of lytic inducing compounds, repurposing other classes of clinically
available compounds, or designing novel chemical molecules or peptides to potentiate and translate
lytic induction therapy into the clinical settings. Identification of EBV-dependent host factors and
proteins involved in the reactivation of lytic cycle will expand our basic understanding of EBV
biology and provide valuable insights into the development of new therapeutic approaches against
EBV-associated malignancies.
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