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CONVERGENCE ANALYSIS OF STOCHASTIC
STRUCTURE-PRESERVING SCHEMES FOR COMPUTING

EFFECTIVE DIFFUSIVITY IN RANDOM FLOWS\ast 

JUNLONG LYU\dagger , ZHONGJIAN WANG\dagger , JACK XIN\ddagger , AND ZHIWEN ZHANG\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we develop efficient stochastic structure-preserving schemes to compute
the effective diffusivity for particles moving in random flows. We first introduce the motion of
a passive tracer particle in random flows using the Lagrangian formulation, which is modeled by
stochastic differential equations (SDEs). Then we propose stochastic structure-preserving schemes
to solve the SDEs and provide rigorous convergence analysis for the numerical schemes in computing
effective diffusivity. The convergence analysis follows a probabilistic approach, which interprets
the solution process generated by our numerical schemes as a Markov process. By exploring the
ergodicity of the solution process, we obtain a convergence analysis of our method in computing
long-time solutions of the SDEs. Most importantly, our analysis result reveals the equivalence of
the definition of the effective diffusivity by solving discrete-type and continuous-type (i.e., Eulerian)
corrector problems, which is fundamental and interesting. Finally, we present numerical results to
demonstrate the accuracy and efficiency of the proposed method and investigate the convection-
enhanced diffusion phenomenon in two- and three-dimensional incompressible random flows.
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1. Introduction. Diffusion enhancement in fluid advection has been studied for
nearly a century since the pioneering work of Sir G. Taylor [32]. It is a fundamental
problem to characterize and quantify the large-scale effective diffusion in fluid flows
containing complex and turbulent streamlines, which is of great theoretical and practi-
cal importance; see, e.g., [10, 12, 4, 20, 22, 25] and references therein. Its applications
can be found in many physical and engineering sciences, including atmosphere science,
ocean science, chemical engineering, and combustion.

In this paper, we study the diffusion enhancement phenomenon for particles mov-
ing in random flows, which is described by the following passive tracer model, i.e., a
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COMPUTING EFFECTIVE DIFFUSIVITY IN RANDOM FLOWS 3041

stochastic differential equation (SDE) with a random drift:

dX(t) = b(t,X(t), \omega )dt+ \sigma dw(t), X(0) = 0,(1)

where X(t) \in Rd is the position of the particle, \sigma > 0 is the molecular diffusivity,
and \{ w(t)\} t\geq 0 is the standard d-dimensional Brownian motion. Here the velocity
field b(t,x, \omega ), i.e., the random drift, is modeled by a random field in order to mimic
the energy spectra of the turbulent flow [19, 22]. Specifically, we assume b(t,x, \omega )
is a zero mean, jointly stationary, ergodic vector random field over a certain prob-
ability space, where \omega is an element of the probability space describing all possible
environments. The randomness in b(t,x, \omega ) is independent of the randomness in the
Brownian motion w(t). In addition, we assume that the realizations of b(t,x, \omega ) are
almost surely divergence-free, i.e., \nabla \bfx \cdot b(t,x, \omega ) = 0. To guarantee the existence of
the solution to (1), b(t,x, \omega ) should be at least almost surely locally Lipschitz in x.
To design numerical schemes and carry out convergence analysis, we assume b(t,x, \omega )
has certain regularity in the physical space; see Assumption 3.1. We emphasize that
since any statement, such as the effective diffusivity, involving statistical properties of
the solution X(t) requires only convergence in law, thus the regularity assumption on
the velocity field is natural and will facilitate our algorithm design and convergence
analysis in this paper.

We are interested in studying the long-time large-scale behavior of the particles
X(t) in (1). Namely, whether the motion of the particlesX(t) has a long-time diffusive
limit. More specifically, let X\epsilon (t) \equiv \epsilon X(t/\epsilon 2) denote the rescaled process of (1). We
want to find conditions under which X\epsilon (t) converges in law, as \epsilon \rightarrow 0, to a new
Brownian motion with a certain covariance matrix DE \in Rd\times d, where DE is called
the effective diffusivity matrix. This problem is referred to as the homogenization of
time-dependent flow problems.

Computing the effective diffusivity matrix DE (i.e., homogenization of time-
dependent flows) has been widely studied under various conditions on the flows. For
spatial-temporal periodic velocity fields and random velocity fields with short-range
correlations, one can apply the homogenization theory [1, 14, 16, 26] to compute the
effective diffusivity matrix DE , where DE can be expressed in terms of particle ensem-
ble average (Lagrangian framework) or an average of solutions to corrector problems
(Eulerian framework).

The dependence of DE on the velocity field of the problem is highly nontrivial.
For time-independent Taylor--Green flows, the authors of [27] proposed a stochastic
splitting method and calculated the effective diffusivity in the limit of vanishing mo-
lecular diffusion. For time-dependent chaotic flows, we proposed a Lagrangian-type
numerical integrator to compute the effective diffusivity using structure-preserving
schemes [34]. In the subsequent work [33], we provided a sharp and uniform-in-time
error estimate for the numerical integrator in computing the effective diffusivity. How-
ever, we point out that the method and the convergence analysis obtained in [34, 33]
were designated for flows generated from separable and deterministic Hamiltonians
only.

For random flows with long-range correlations, the long-time large-scale behavior
of the particle motion is complicated and difficult to study in general, since various
forms of anomalous diffusion, such as superdiffusion and subdiffusion, may exist. The
interested reader is referred to the review paper [22], where anomalous diffusion was
obtained in exactly solvable models. See also [8] for progress in understanding of the
intermittency (i.e., the occurrence of large fluctuations in the velocity field on small
scales) for the passive scalar transport in a turbulent velocity field.
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3042 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

There are several theoretical works on homogenization of time-dependent random
flows. Such results include, among others, [4], which proved the existence of the effec-
tive diffusivity for a two-dimensional time-dependent incompressible Gaussian veloc-
ity field. In [20, 18], the homogenization of convection-diffusion in a time-dependent,
ergodic, incompressible random flow was proved. The works [11, 9] proved some nec-
essary conditions under which the long-time behavior for convection-diffusion in a
turbulent flow is diffusive. There are some recent works on studying the effective
diffusivity in random flows; see, e.g., [2, 5, 3, 21, 29, 28]. Those results show that the
dependence of the effective diffusivity upon the molecular diffusion \sigma and the velocity
field b in the random flow is complicated and that describing this dependence is very
difficult in general. Additionally, it is difficult to study the existence of residual diffu-
sivity for the passive tracer model (1). The residual diffusivity refers to the nonzero
effective diffusivity in the limit of zero molecular diffusion \sigma .

This motivates us to develop efficient numerical schemes so that we can compute
the effective diffusivity of random flows. Notice that these random flows are generated
from nonseparable Hamiltonians, which are much more difficult than the problems
studied in [34]. In this work, we first propose an implicit structure-preserving scheme
to solve the SDE (1) in order to deal with the nonseparable Hamiltonian. Second,
we provide a sharp error estimate for the numerical scheme in computing effective
diffusivity. Our analysis is based on a probabilistic approach. We interpret the solu-
tion process generated by our numerical scheme as a discrete Markov process, where
the transition kernel can be constructed according to the numerical scheme in solving
(1). By exploring the ergodicity of the solution process, we obtain a sharp conver-
gence analysis for our method. Most importantly, our convergence analysis reveals
the equivalence of the definition of the effective diffusivity by solving discrete-type
and continuous-type (i.e., Eulerian) corrector problems; see Theorem 4.3, which is
fundamental and interesting. Finally, we present numerical results to demonstrate
the accuracy of the proposed method in computing effective diffusivity for several
incompressible random flows in both two- and three-dimensional spaces.

To the best of our knowledge, this paper appears to be the first one in the lit-
erature to develop Lagrangian numerical methods to compute effective diffusivity in
random flows through their connection with the Eulerian corrector problem. The
probabilistic approach in the convergence analysis takes into account the ergodic na-
ture of the solution process and leads to a sharp error estimate. Notice that if one
chooses the Gronwall inequality in the error estimate, one cannot get rid of the ex-
ponential growth prefactor in the error term, which makes the estimate not sharp.
Moreover, the stochastic structure-preserving Lagrangian scheme enables us to inves-
tigate the convection-enhanced diffusion phenomenon in random flows. In particular,
we can numerically study the dependence of effective diffusivity in the regime of small
molecular diffusion \sigma and the setting of the velocity field b in random flows.

The rest of the paper is organized as follows. In section 2, we briefly review some
existing results for diffusion in random flows and introduce the definition of effective
diffusivity by solving a continuous-type corrector problem. In section 3, we propose
our stochastic structure-preserving schemes in computing effective diffusivity for the
passive tracer model (1). In section 4, we provide the convergence analysis for the
proposed method based on a probabilistic approach. In addition, we show the equiv-
alence of the definition of effective diffusivity through discrete-type and continuous-
type corrector problems. In section 5, we present numerical results to demonstrate
the accuracy and efficiency of our method. Concluding remarks are made in section 6.
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COMPUTING EFFECTIVE DIFFUSIVITY IN RANDOM FLOWS 3043

2. Preliminaries. To make this paper self-contained, we give a brief review of
existing results on convection-enhanced diffusion in random flows and the effective
diffusivity. Since these are standard results, we adopt the notation that was used in
[11, 9].

2.1. Some formulations and results for diffusion in random flows. We
first define a function space that satisfies the stationary and ergodic property in
Rd. Let (\scrX ,\scrH , P0) be a probability space. Let \tau \bfx , x \in Rd be an almost surely
continuous, jointly measurable group of measure-preserving transformations on \scrX 
with the following properties:
(T1) \tau \bfzero = Id\scrX and \tau \bfx +\bfy = \tau \bfx \tau \bfy for all x,y \in Rd.
(T2) The mapping (\chi ,x) \mapsto \rightarrow \tau \bfx \chi is jointly measurable.
(T3) P0(\tau \bfx (A)) = P0(A) for x \in Rd, A \in \scrH .
(T4) lim\bfx \rightarrow \bfzero P0

\bigl( 
\chi : | f \circ \tau \bfx (\chi ) - f(\chi )| \geq \eta 

\bigr) 
= 0 for all f \in L2(\scrX ) and all \eta > 0.

(T5) If P0

\bigl( 
A\Delta \tau \bfx (A)

\bigr) 
= 0 for all x \in Rd, then A is a trivial event, i.e., P0(A) is

either 0 or 1.
One can verify that \tau \bfx induces a strongly continuous group of unitary mappings U\bfx 

on L2(\scrX ) which satisfies

U\bfx f(\chi ) = f(\tau \bfx (\chi )), f \in L2(\scrX ), x \in Rd.(2)

In addition, it is easy to find that the group U\bfx has d independent, skew-adjoint
generators Dk : \scrD k \rightarrow L2(\scrX ) corresponding to directions e\bfk , k = 1, . . . , d.

We introduce some function spaces that are useful in the analysis. Let Cm
b (\scrX ) be

the space of functions f in the intersection of the domains of D\alpha with | | D\alpha f | | L\infty (\scrX ) <
+\infty , where \alpha = (\alpha 1, . . . , \alpha d) is a multi-index, each component \alpha i is a nonnegative

integer,
\sum d

i=1 \alpha i \leq m, and the partial derivative operator D\alpha = D\alpha 1
1 \circ D\alpha 2

2 \circ \cdot \cdot \cdot \circ D\alpha d

d .
It is well known that C\infty 

b (\scrX ) = \cap m\geq 1C
m
b (\scrX ) is dense in Lp(\scrX ), 1 \leq p < +\infty ; see [6].

Let L2
0(\scrX ) = \{ f \in L2(\scrX )| E0f = 0\} , where E0 is the expectation associated with the

probability measure P0.
Next, we incorporate the time variable and study the Markov property. The

following setting is standard for a general Markov process.
Let \Omega be the space of \scrX -valued continuous function C([0,\infty );\scrX ), and let \ell be

its Borel \sigma -algebra. Let P t, t \geq 0, be a strongly continuous Markov semigroup on
L2(\scrX ) which satisfies the following properties:

(P1) P t1 = 1 and P tf \geq 0 if f \geq 0.
(P2)

\int 
P tfdP0 =

\int 
fdP0 for all f \in L2(\scrX ), t \geq 0.

(P3) E\chi [f(\theta t+h(\omega ))| \ell \leq t] = PhF (\omega (t)), where F (\chi ) := E\chi f for any f \in L1(\Omega ), t,
h \geq 0, \chi \in \scrX .

In property (P3), E\chi is the expectation associated with the probability measures P\chi ,
which can be considered as the conditional probability for all events in \ell under the
condition that their initial points lie on \chi . \ell \leq t are the \sigma -algebras generated by events
measurable up to time t, and \theta t(\omega )(\cdot ) := \omega (\cdot + t), t \geq 0, is the standard shift operator
on the path space (\Omega , \ell ).

Moreover, we can define a measure P on the path space (\Omega , \ell ) through

P (B) =

\int 
P\chi (B)P0(d\chi ), B \in \ell ,(3)

and define E to be the corresponding expectation operator with respect to the measure
P . As a direct consequence of (T3) and (P2), we know that P is stationary.
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Proposition 2.1. P is invariant under the action of \theta t and \tau \bfx for any (t,x) \in 
R+ \times Rd.

Let L : \scrD (L) \rightarrow L2(\scrX ) be the generator of the semigroup P t. To establish
the central limit theorem for the Markov process associated with P t, we assume the
generator L satisfies the following time relaxation property, also known as the spectral
gap condition:

 - (Lf, f)L2(\scrX ) \geq c1| | f | | 2L2(\scrX ), where c1 > 0.(4)

The time relaxation property (4) is equivalent to the exponential decay property

| | P tf | | L2(\scrX ) \leq exp( - 2c1t)| | f | | L2(\scrX ), f \in L2
0(\scrX ).(5)

In addition, the time relaxation property (4) is equivalent to \rho -mixing of the process
X(t), t \geq 0. Specifically, let \rho (h) = sup\{ Cor(Y1, Y2) : Y1 is \ell \geq t+h measurable, Y2 is
\ell \leq t measurable\} , where Cor(Y1, Y2) is the correlation function. Then (4) or (5) im-
plies that limh\rightarrow \infty \rho (h) = 0; see [30, 7]. The time relaxation property (4) (or the
exponential decay property (5)) plays an important role in proving the existing of the
effective diffusivity. We will numerically investigate this property in section 5.

2.2. The continuous-type corrector problem and effective diffusivity.
Equipped with the necessary properties and notation, we are ready to study the
effective diffusivity of the random flows associated with the passive tracer model
(1). First we assume that the random flow b = (b1, . . . , bd) \in (L2(\scrX ))d is jointly
continuous in (t,x), is locally Lipschitzian in x, with finite second moments, and is
divergence-free.

For each fixed realization \omega of the environment, we consider the stochastic process
generated by the SDE

(6)

\Biggl\{ 
dX\omega 

t = b(t,X\omega 
t , \omega )dt+ \sigma dwt,

X\omega 
0 = 0,

where X\omega 
t \in Rd is the position of the particle, the superscript in X\omega 

t means that it de-
pends on the realization of the environment \omega , and wt is a standard Brownian motion
starting at the origin. Its corresponding probability space is denoted by (\Sigma ,\scrB , Q) and
the associated expectation operator is denoted by M. The SDE (6) is well-defined [9].
Moreover, the random flow in (6) means b(t,x, \omega ) = b(\tau \bfx \omega (t)). Viewed from a parti-
cle at any instant of time t, we can define an environment process \eta : [0,\infty )\times \Omega \rightarrow \scrX 
as

(7)

\Biggl\{ 
\eta (t) = \tau \bfX \omega 

t
\omega (t),

\eta (0) = \omega (0).

In addition, the environment process generates a semigroup of transformation,

(8) Stf(\chi ) = ME\chi f(\eta (t)), t \geq 0, f \in L\infty (\scrX ),

where \eta (t) is defined by (7), and St satisfies the following properties.

Proposition 2.2 ([9, Prop. 3]).
(P1) St, t \geq 0, is a strongly continuous, Markov semigroup of contraction on

L2(\scrX ).
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COMPUTING EFFECTIVE DIFFUSIVITY IN RANDOM FLOWS 3045

(P2) St, t \geq 0, is measure-preserving, that is,

(9)

\int 
StfdP0 =

\int 
fdP0, t \geq 0, f \in L2(\scrX ).

Let D1 = \scrD (L) \cap C2
b (\scrX ), and let \scrL denote the generator of the semigroup St,

t \geq 0, i.e.,

(10) \scrL f = Lf +
\sigma 2

2
\Delta f + b \cdot \nabla f,

where L is the generator of the semigroup P t. One can easily verify the following
properties.

Proposition 2.3 ([9, Prop. 4]).
(P1) D1 is dense in L2(\scrX ) and is invariant under the semigroup P t, t \geq 0, i.e.,

P t(D1) \subseteq D1 for all t \geq 0.
(P2) Assume that the random flow b is bounded. Then D1 is invariant under the

semigroup St, t \geq 0, i.e., St(D1) \subseteq D1 for all t \geq 0.

Lemma 2.4. From the spectral gap condition (4), we obtain that for any f \in 
L2
0(\scrX )

| | Stf | | L2(\scrX ) \leq exp( - 2c1t)| | f | | L2(\scrX ), where c1 > 0.(11)

Proof. We first assume b is bounded and f \in D1 \subseteq \scrD (\scrL ). Using the spectral gap
condition, and with b divergence-free, we have

(12) ( - \scrL f, f)L2
0(\scrX ) \geq ( - Lf, f)L2

0(\scrX ) \geq c1| | f | | 2L2
0(\scrX )

for all f \in D1 \cap L2
0(\scrX ). By Proposition 2.3, Stf \in D1, t \geq 0, for any f \in D1.

Consequently,

(13)
d

dt
| | Stf | | 2L2(\scrX ) = 2(\scrL Stf, Stf)L2(\scrX ) \leq  - 2c1| | Stf | | 2L2(\scrX ),

and thus

(14) | | Stf | | 2L2(\scrX ) \leq exp( - 2c1t)| | f | | 2L2(\scrX ) \forall t \geq 0,

for all f \in D1 \cap L2
0(\scrX ). Then the statement in (11) is extended to L2

0(\scrX ) by using an
approximation argument. Finally, the boundedness of the random flow b is removed
by using another approximation argument.

Given the semigroup of transformation St in (8) and its associated properties (see
Proposition 2.2), we can define

(15) \bfitpsi =

\int \infty 

0

Stbdt,

which satisfies the following continuous-type corrector problem:

\scrL \bfitpsi =  - b,(16)

where \scrL is the generator of St defined in (10). By solving the corrector problem (16),
we are able to define the effective diffusivity. This can be summarized as the following
result.
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Proposition 2.5. Let X(t) be the solution to (1), and let X\epsilon (t) \equiv \epsilon X(t/\epsilon 2). For
any unit vector v \in Rd, let \psi \bfv = \bfitpsi \cdot v denote the projection of the vector solution
\bfitpsi along the direction v, where \bfitpsi is the solution to corrector problem (16). Then the
law of the process X\epsilon (t) \cdot v converges weakly in C[0,+\infty ) to a Brownian motion with
diffusion coefficient given by

vTDEv =
\sigma 2

2
+ ( - \scrL \psi \bfv , \psi \bfv )L2(\scrX ),(17)

where DE is the effective diffusivity associated with the passive tracer model (1).

The proof of Proposition 2.5 relies on an approximation of the additive func-
tional of an ergodic Markov process by a martingale and on applying the central limit
theorem to a continuous-time Markov process, which is very useful in studying the
long-time behavior of random dynamics; see Lemma 1 of [9] or Theorem 1.1 of [4]. We
shall prove in Theorem 4.3 that the numerical solutions obtained by our Lagrangian
numerical scheme recover the definition of the effective diffusivity in (17).

3. Stochastic structure-preserving schemes and related properties.

3.1. Derivation of numerical schemes. In this section, we construct numer-
ical schemes for the passive tracer model (6), which is based on an operator splitting
method [31]. For each fixed realization \omega of the environment, we first split the original
problem (6) into two subproblems,

dX\omega 
t = b(t,X\omega 

t , \omega )dt,(18)

dX\omega 
t = \sigma dwt,(19)

where we assumewt in (19) is the same process as in (6). LetX\omega 
n denote the numerical

solution of X\omega 
t at time t = tn, n = 0, 1, 2, . . . . From time t = tn to time t = tn+1,

where tn+1 = tn+\Delta t, t0 = 0, assuming the solution X\omega 
n is given, we now discuss how

to discretize the above two subproblems (18)--(19) separately.
In subproblem (18), the velocity b(t,x, \omega ) is almost surely divergence-free and has

certain regularity in the physical space. Thus, we apply a volume-preserving scheme to
discretize (18). Let \Phi \Delta t denote the numerical integrator associated with the volume-
preserving scheme during \Delta t time, and let D\bfx \Phi \Delta t denote the corresponding Jacobian
matrix. The volume-preserving property requests det(D\bfx \Phi \Delta t) = 1. We obtain the
numerical integrator for the subproblem (18) as follows:

X\omega 
n+1 = \Phi 

\omega (n\Delta t)
\Delta t

\bigl( 
X\omega 

n

\bigr) 
,(20)

where the superscript in \Phi 
\omega (n\Delta t)
\Delta t means that the numerical integrator implicitly de-

pends on the realization of b at different computational times. Suppose b has bounded
first derivatives with respect to x for almost all \omega ; it is easy to verify that the volume-

preserving integrator \Phi 
\omega (n\Delta t)
\Delta t also has bounded first derivatives for \Delta t small enough.

Thus, \Phi 
\omega (n\Delta t)
\Delta t is well-defined.

In addition, we assume that the numerical scheme only relies on the information
of X and b at the beginning of each computational time in order to make sure the
solution process generated by our method is a Markov process. For instance, to
compute X\omega 

n+1 the numerical scheme only relies on the information of X and b at
t = tn.

We illustrate this idea by constructing a volume-preserving scheme for a two-
dimensional problem. Let X\omega 

n = (X\omega 
n,1, X

\omega 
n,2)

T denote the numerical solution at time
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COMPUTING EFFECTIVE DIFFUSIVITY IN RANDOM FLOWS 3047

t = tn and b(t,x, \omega ) = (b1(t,x, \omega ), b2(t,x, \omega ))
T the velocity. Then we use the following

numerical scheme to discretize (18):
(21)

(X\omega 
n+1,1, X

\omega 
n+1,2)

T = (X\omega 
n,1, X

\omega 
n,2)

T+\Delta tb

\Biggl( 
tn,

\biggl( 
X\omega 

n,1+X
\omega 
n+1,1

2
,
X\omega 

n,2+X
\omega 
n+1,2

2

\biggr) T

, \omega 

\Biggr) 
,

where we evaluate the velocity b(t,x, \omega ) at t = tn to ensure the Markov property.
By solving (21) to get (X\omega 

n+1,1, X
\omega 
n+1,2)

T , we implicitly define a numerical integrator

\Phi 
\omega (n\Delta t)
\Delta t ; see (20). Since b(t,x, \omega ) is almost surely divergence-free, we can easily

verify that the scheme (21) is volume-preserving, i.e., det(D\bfx \Phi 
\omega (n\Delta t)
\Delta t ) = 1. As we

will demonstrate in the proof of Theorem 3.4, using a volume-preserving numerical
scheme to discretize (18) is essential.

For a d-dimensional subproblem (18), we split the velocity field b(t,x, \omega ) into a
summation of d - 1 velocity fields, where each will generate a two-dimensional problem,
and thus we can design the volume-preserving scheme accordingly. By applying a
splitting method [23], we can construct volume-preserving schemes for the original
d-dimensional subproblem (18). More details can be found in [13, 15].

Given the numerical integrator \Phi 
\omega (n\Delta t)
\Delta t , we define the mapping

B
\omega (n\Delta t)
\Delta t (x) = \Phi 

\omega (n\Delta t)
\Delta t (x) - x.(22)

One can easily verify that B
\omega (n\Delta t)
\Delta t (X\omega 

n) is an approximation of the increment for the
exact solution of subproblem (18) as follows:

X\omega 
(n+1)\Delta t  - X\omega 

n\Delta t =

\int (n+1)\Delta t

n\Delta t

b(t,X\omega 
t , \omega )dt.(23)

Subproblem (19) can be exactly solved by many numerical schemes for SDEs,
including the Euler--Maruyama scheme [17].

Finally, we apply the Lie--Trotter splitting method and get the stochastic structure-
preserving scheme as follows:

X\omega 
n+1 = X\omega 

n +B
\omega (n\Delta t)
\Delta t (X\omega 

n) + \sigma \bfitxi n,(24)

where \bfitxi n = (\xi 1, . . . , \xi d)
T is a d-dimensional independent and identically distributed

(i.i.d.) mean-free Gaussian random vector with E\bfitxi n \otimes \bfitxi n = \Delta tId. Here Id is an
identity matrix.

The volume-preserving schemes for subproblem (18) are implicit in general. Com-
pared with explicit schemes, however, they allow us to choose a relatively larger time
step to compute. In practice, we find that a few steps of Newton iterations are good
enough to maintain accurate results. Therefore, the computational cost is control-
lable. Designing an adaptive time-stepping method for the passive tracer model (6)
is an interesting issue which will be studied in our future work.

In general, second-order Strang splitting [31] is more frequently used in developing
numerical schemes. In fact, the only difference between the Strang splitting method
and the Lie--Trotter splitting method is that the first and last steps are half of the
time step \Delta t. For the SDEs, however, the dominant source of error comes from the
random subproblem (19). Thus, it is not necessary to implement the Strang splitting
scheme here.
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3.2. Some properties of the numerical schemes. In this subsection, we
shall prove some properties of the proposed stochastic structure-preserving scheme.
Specifically, we shall show that some important properties of the random flows are
maintained after numerical discretization. Before proceeding to the analysis, we first
introduce some notation and assumptions. To emphasize the properties in the spatial
domain, for any f \in L1(\scrX ), we use f\chi (x) to represent f(\tau \bfx \chi ). Moreover, we denote
b(t,x, \omega ) = b(\tau \bfx \omega (t)), where \tau \bfx \omega (t) \in \scrX .

Assumption 3.1. Suppose the velocity field has certain regularity with respect to
spatial variables, i.e., b \in (Cm

b (\scrX ))d for some m \geq 1, and has a first-order partial
derivative bounded with respect to the temporal variable, i.e., | | Dtb| | L\infty (\scrX ) \leq c <\infty .

Assumption 3.2. B\chi 
\Delta t(x) defined in (22) is a stationary process with respect to

x, i.e., we can write B\chi 
\Delta t(x) = B\Delta t(\tau \bfx \chi ).

Assumption 3.3. If \Delta t is small enough, we have B\Delta t \in (Cm
b (\scrX ))d, provided that

b \in (Cm
b (\scrX ))d. In addition, | | B\Delta t| | Cm

b (\scrX ) = K| | b| | Cm
b (\scrX )\Delta t, where K is a constant

that does not depend on \Delta t.

Under Assumption 3.1, we compute the local truncation error of the numerical
scheme (21). Recall that the numerical solution X\omega 

n = (X\omega 
n,1, X

\omega 
n,2)

T at time t = n\Delta t.
We rewrite (21) in a compact form as follows:

X\omega 
n+1 = X\omega 

n +\Delta tb

\biggl( 
tn,

X\omega 
n +X\omega 

n+1

2
, \omega 

\biggr) 
.

Assume X\omega 
n is equal to the exact solution X\omega 

t at time t = n\Delta t. Then we can
obtain the exact solution of subproblem (18) at time t = (n+ 1)\Delta t as

X\omega 
(n+1)\Delta t = X\omega 

n +

\int (n+1)\Delta t

n\Delta t

b(t,X\omega 
t , \omega )dt.

Let T\omega 
n+1 denote the local truncation error at time t = (n+ 1)\Delta t. We have

T\omega 
n+1 = X\omega 

(n+1)\Delta t  - X\omega 
n+1 =

\int (n+1)\Delta t

n\Delta t

\biggl( 
b(t,X\omega 

t , \omega ) - b

\biggl( 
tn,

X\omega 
n +X\omega 

n+1

2
, \omega 

\biggr) \biggr) 
dt.

(25)

We know that b satisfies an inequality of the following form:\bigm\| \bigm\| \bigm\| \bigm\| b(t,X\omega 
t , \omega ) - b

\biggl( 
tn,

X\omega 
n +X\omega 

n+1

2
, \omega 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 
\bigm\| \bigm\| \bigm\| \bigm\| b(t,X\omega 

t , \omega ) - b

\biggl( 
t,
X\omega 

n +X\omega 
n+1

2
, \omega 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| b\biggl( t, X\omega 
n +X\omega 

n+1

2
, \omega 

\biggr) 
 - b

\biggl( 
tn,

X\omega 
n +X\omega 

n+1

2
, \omega 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\leq | | D\bfx b| | L\infty (\scrX )

\bigm\| \bigm\| \bigm\| \bigm\| X\omega 
t  - 

X\omega 
n +X\omega 

n+1

2

\bigm\| \bigm\| \bigm\| \bigm\| + | | Dtb| | L\infty (\scrX )

\bigm| \bigm| t - tn
\bigm| \bigm| ,(26)

where tn \leq t \leq tn+1 and | | \cdot | | denotes the Euclidean norm of a vector. If Assumption
3.1 holds true, we can easily obtain that the local truncation error T\omega 

n+1 = O(\Delta t)2,
where the constant in O(\Delta t)2 depends on | | D\bfx b| | L\infty (\scrX ) and | | Dtb| | L\infty (\scrX ).

We restrict ourselves to the convergence analysis based on Assumption 3.1 in this
paper. In fact, when b satisfies a H\"older-\gamma continuous assumption in the time domain
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COMPUTING EFFECTIVE DIFFUSIVITY IN RANDOM FLOWS 3049

with 0 < \gamma < 1, the local truncation error of (21) becomes O(\Delta t)1+\gamma . We can still
prove the convergence analysis of our method for computing effective diffusivity in
such kinds of flows; see Remark 4.4.

As an analogy to the continuous-time case (7), we define the environment process
as viewed from the numerical solution X\omega 

n at different time steps:

(27)

\Biggl\{ 
\eta n = \tau \bfX \omega 

n
\omega (n\Delta t),

\eta 0 = \omega (0).

The above environment process is defined on the space of trajectories (\~\Omega , \ell ), where
\~\Omega = C([0,\infty ) \cap \Delta t\BbbZ ;\scrX ) is a subspace of \Omega with time parameter lying only on \Delta t\BbbZ .
The corresponding expectation operator is still denoted by E\chi , which is the same as
the one defined in property (P3) in section 2.1. Under this process, we can write

B\Delta t(\eta n) = B
\omega (n\Delta t)
\Delta t (X\omega 

n ). In addition, we define

Snf(\chi ) = ME\chi f(\eta n),(28)

where M denotes the expectation with respect to wt. We shall prove that Sn is a
discrete-time Markov semigroup of contraction on L2(\scrX ) and is measure-preserving
with respect to P0 defined in section 2.1. For clarity, we denote by \BbbE the total
expectation with respect to all randomness, i.e., \BbbE = ME, in the remaining part of
this paper.

Theorem 3.4. P0 is an invariant probability measure of \eta n, i.e., P0 is an invari-
ant measure of the Markov semigroup \{ Sn\} .

Proof. Let p1\chi (x,y) denote the transition probability density of the solution pro-
cess, which is defined by applying the numerical scheme (24) for one time step. For
simplicity of notation, let x be the current solution and y the solution obtained by
applying the scheme (24) with time step \Delta t. Notice that \bfitxi n in (24) is a mean-free
Gaussian random vector. We have

p1\chi (x,y) =
1

(2\pi \sigma 2\Delta t)d/2
exp

\biggl( 
 - 
| | y  - x - B\chi 

\Delta t(x)| | 2

2\sigma 2\Delta t

\biggr) 
=

1

(2\pi \sigma 2\Delta t)d/2
exp

\biggl( 
 - 
| | y  - \Phi \chi 

\Delta t(x)| | 2

2\sigma 2\Delta t

\biggr) 
.(29)

Let us define p0(x,y) =
1

(2\pi \sigma 2\Delta t)d/2
exp

\bigl( 
 - | | \bfy  - \bfx | | 2

2\sigma 2\Delta t

\bigr) 
. Then we can verify that

\int 
p1\chi (x,y)dx =

\int 
p0(x+B\chi 

\Delta t(x),y)dx

=

\int 
p0(z,y) det(D\Phi \chi 

\Delta t)
 - 1dz =

\int 
p0(z,y)dz = 1 for a.e. \chi ,(30)

where we have used the fact that the numerical scheme (20) for subproblem (18) is
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3050 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

volume-preserving, i.e., det(D\Phi \chi 
\Delta t) = 1. Thus, for all f \in L2(\scrX ), we have\int 

\scrX 
S1f(\chi )P0(d\chi ) =

\int 
\scrX 
E\chi f(\eta 1)P0(d\chi ) =

\int 
\scrX 
P0(d\chi )

\int 
Rd

p1\chi (0,y)E\chi f(\tau \bfy \omega (\Delta t))dy

=

\int 
\scrX 
E\chi f(\omega (\Delta t))P0(d\chi )

\int 
Rd

p1\tau  - \bfy \chi (0,y)dy

=

\int 
\scrX 
E\chi f(\omega (\Delta t))P0(d\chi )

\int 
Rd

p1\chi ( - y,0)dy

=

\int 
\scrX 
E\chi f(\omega (\Delta t))P0(d\chi ),(31)

where we have used the facts that p1\tau \bfx \chi (y, z) = p1\chi (x+ y,x+ z) and
\int 
Rd p

1
\chi ( - y,0)dy =

1. The first equality is easy to verify, since

p1\tau \bfx \chi (y, z) = p0(y +B\tau \bfx \chi 
\Delta t (y), z) = p0(y +B\chi 

\Delta t(x+ y), z)

= p0(x+ y +B\chi 
\Delta t(x+ y),x+ z) = p1\chi (x+ y,x+ z).

Thus, we obtain from (31) that ES1f = EP\Delta tf = Ef , where P\Delta t is measure-
preserving by property (P2) in section 2.1. A similar argument shows that ESnf =
ESn - 1f for all n. We prove that Sn is measure-preserving.

Remark 3.1. Theorem 3.4 plays an important role in the remaining part of our
convergence analysis. Throughout the proof, one can see that using a volume-preserving
numerical scheme for solving subproblem (18) is essential.

Remark 3.2. In the proof of Theorem 3.4, the probability measures p1\chi (x,y)dy
and p0(x,y)dy are associated with the Brownian motion in the passive tracer model,
while P0(d\chi ) is the probability measure associated with the randomness in the velocity
field and initial data. In the remaining part of this paper, we shall keep the same
notation.

The following lemma will be very useful in our analysis.

Lemma 3.5. For any y \in Rd and f \in L2(\scrX ), we have that

\BbbE f(\tau \bfy \eta n) = \BbbE f(\eta n - 1) = \BbbE f.(32)

Moreover,

\BbbE f(\eta n+1) = \BbbE f
\Bigl( 
\tau \bfX \omega 

n+\bfB \Delta t(\eta n)\omega 
\bigl( 
(n+ 1)\Delta t

\bigr) \Bigr) 
= \BbbE f.(33)

Proof. We prove the above equations through direct calculations. For (32), we
have
(34)

\BbbE f(\tau \bfy \eta n) = EME\eta n - 1
f(\tau \bfy \~\eta 1)=

\int 
\scrX 
P0(d\chi )ME\chi 

\biggl[ \int 
Rd

p1\eta n - 1
(0, z)E\eta n - 1

f
\bigl( 
\tau \bfy +\bfz \omega (\Delta t)

\bigr) 
dz

\biggr] 
=

\int 
\scrX 
ME\chi 

\bigl[ 
E\eta n - 1

f
\bigl( 
\omega (\Delta t)

\bigr) 
P0(d\chi )

\int 
Rd

p1\tau  - \bfy  - \bfz \eta n - 1
(0, z)dz

\bigr] 
=

\int 
\scrX 
ME\chi 

\bigl[ 
E\eta n - 1f

\bigl( 
\omega (\Delta t)

\bigr) 
P0(d\chi )

\int 
Rd

p1\eta n - 1
( - y  - z, - y)dz

\bigr] 
=

\int 
\scrX 
ME\chi 

\bigl[ 
E\eta n - 1

f
\bigl( 
\omega (\Delta t)

\bigr) \bigr] 
P0(d\chi ) =

\int 
\scrX 
ME\chi 

\bigl[ 
f(\eta n - 1)

\bigr] 
P0(d\chi ),
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where \~\eta 1 is defined according to (27) but with initial condition \~\eta 0 = \eta n - 1. Thus, the
first equation in (32) is proved. The second equation in (32) is obvious according to
the definition (28), and Sn is measure-preserving.

To prove (33), let Y\omega 
n = X\omega 

n +B\Delta t(\eta n) = X\omega 
n+1  - \sigma \bfitxi n. Then we have

(35)

\BbbE f(\eta n+1) = EME\eta nf
\bigl( 
\tau \bfY \omega 

n+\sigma \bfitxi n\omega (\Delta t)
\bigr) 

=

\int 
\scrX 
P0(d\chi )

\int 
Rd

p0(0, z)ME\chi E\eta nf
\bigl( 
\tau \bfz \tau \bfY \omega 

n
\omega (\Delta t)

\bigr) 
dz

=

\int 
\scrX 
ME\chi E\eta nf

\bigl( 
\tau \bfY \omega 

n
\omega (\Delta t)

\bigr) 
P0(d\chi )

\int 
Rd

p0(0, z)dz

= \BbbE f
\Bigl( 
\tau \bfX \omega 

n+\bfB \Delta t(\eta n)\omega 
\bigl( 
(n+ 1)\Delta t

\bigr) \Bigr) 
.

Notice that in the proof we use the property that \tau is a measure-preserving transfor-
mation.

Equipped with these preparations, we can state the main results. The first result
is that the operator Sn defined in (28) is a contractive map on L2(\scrX ).

Theorem 3.6. Sn has the property that

| | Snf | | L2(\scrX ) \leq exp( - 2c1n\Delta t)| | f | | L2(\scrX )(36)

for all f \in L2
0(\scrX ).

Proof. We first consider the case when n = 1. The key observation is that\int 
\scrX 
S1f(\chi ) \cdot S1f(\chi )P0(d\chi ) =

\int 
\scrX 
E\chi f(\eta 1) \cdot E\chi f(\eta 1)P0(d\chi )

=

\int 
\scrX 
P0(d\chi )

\int 
Rd

p1\chi (0,y)ME\chi f(\tau \bfy \omega (\Delta t))dy \cdot 
\int 
Rd

p1\chi (0,y)ME\chi f(\tau \bfy \omega (\Delta t))dy

\leq 
\int 
\scrX 
P0(d\chi )

\int 
Rd

p1\chi (0,y)E\chi f(\tau \bfy \omega (\Delta t)) \cdot E\chi f(\tau \bfy \omega (\Delta t))dy

=

\int 
\scrX 
E\chi f(\omega (\Delta t)) \cdot E\chi f(\omega (\Delta t))P0(d\chi )

\int 
Rd

p1\chi ( - y,0)dy

=

\int 
\scrX 
P\Delta tf(\chi ) \cdot P\Delta tf(\chi )P0(d\chi ),(37)

where P\Delta t is a strongly continuous Markov semigroup on L2(\scrX ). In the third line of
(37), we use the fact that p1\chi (0,y) is a probability density function, so we can easily
get the result by using the Cauchy--Schwarz inequality. Therefore, we obtain

| | S1f | | L2(\scrX ) \leq | | P\Delta tf | | L2(\scrX ) \leq exp( - 2c1\Delta t)| | f | | L2(\scrX ),(38)

where the exponential decay property (5) is used. The assertion in (36) can be ob-
tained if we repeatedly use the above property n times.

Next, we define \=B\Delta t = \BbbE B\Delta t and \~B\Delta t = B\Delta t  - \=B\Delta t. We aim to get some
estimates for the mean values \=B\Delta t and \BbbE X\omega 

n , which are important in our convergence
analysis for the effective diffusivity later.

Theorem 3.7. Under Assumptions 3.1, 3.2, and 3.3, if we choose a volume-
preserving numerical scheme (20) to compute subproblem (18), where the local trun-
cation error is O(\Delta t)2, then \=B\Delta t is of order O(\Delta t)2. In addition, \BbbE X\omega 

n  - n \=B\Delta t is
bounded.
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Proof. By using a volume-preserving numerical scheme (with a local truncation
error O(\Delta t)2) to compute (18), we have

\BbbE B\Delta t = \BbbE 
\int \Delta t

0

b(t,X\omega 
t , \omega )dt+O(\Delta t)2 = \BbbE 

\int \Delta t

0

b(\eta 0t )dt+O(\Delta t)2,(39)

where \eta 0t is the environment process defined in (7) with \sigma = 0. Based on the regularity
Assumption 3.1 for b, although the constant in the local truncation error O(\Delta t)2 of
the numerical scheme (20) is random, it has a uniform upper bound. Thus, the error
in (39) is still of order O(\Delta t)2 after taking the expectation. Notice that when we
define B\Delta t, we only consider subproblem (18). Recalling the fact that St is measure-
preserving, we get

\BbbE 
\int \Delta t

0

b(\eta 0t )dt =

\int \Delta t

0

\int 
\scrX 
E\chi b(\eta 

0
t )dP0(\chi )dt =

\int \Delta t

0

\BbbE Stbdt =

\int \Delta t

0

\BbbE bdt = 0,(40)

where we have used the definition of St in (8) and b is mean-zero. Therefore, \BbbE B\Delta t

is of the order (\Delta t)2. Moreover, from the numerical scheme (24) we have

(41)

\BbbE X\omega 
n = \BbbE X\omega 

n - 1 + \BbbE B\omega ((n - 1)\Delta t)
\Delta t (X\omega 

n - 1) = \BbbE X\omega 
0 +

n - 1\sum 
i=0

\BbbE SiB\Delta t

= \BbbE X\omega 
0 +

n - 1\sum 
i=0

\BbbE Si
\~B\Delta t + n \=B\Delta t.

Under Assumptions 3.1, 3.2, and 3.3, we know that \=B\Delta t and \~B\Delta t are bounded.
According to (36) in Theorem 3.6, | | Si

\~B\Delta t| | L2(\scrX ) decays exponentially with respect

to i, so we can easily verify that
\sum n - 1

i=0 Si
\~B\Delta t is bounded in L2(\scrX ), which implies\bigm| \bigm| \sum n - 1

i=0 \BbbE Si
\~B\Delta t

\bigm| \bigm| <\infty . Thus, we prove that \BbbE X\omega 
n  - n \=B\Delta t is bounded.

3.3. A discrete-type corrector problem. The corrector problem (16) plays
an important role in defining the effective diffusivity for the random flow. To study the
property of the numerical solutions, we will define a discrete-type corrector problem
and study the property of its solution.

Theorem 3.8. Let us define \bfitpsi \Delta t =
\sum \infty 

i=0 Si
\~B\Delta t. Then \bfitpsi \Delta t is the unique solu-

tion of the discrete-type corrector problem in (L2
0(\scrX ))d defined as follows:

(S1  - I)\bfitpsi \Delta t =  - \~B\Delta t.(42)

Proof. The formulation of \bfitpsi \Delta t solving the discrete-type corrector problem (42)
can be easily verified through simple calculations, i.e.,

(S1  - I)\bfitpsi \Delta t =

\infty \sum 
i=1

Si
\~B\Delta t  - 

\infty \sum 
i=0

Si
\~B\Delta t =  - \~B\Delta t.(43)

The property E\bfitpsi \Delta t = 0 is a straightforward result from the formulation of \bfitpsi \Delta t. The
uniqueness of the solution comes from Theorem 3.6. Supposing (42) has two different
solutions \bfitpsi 1,\bfitpsi 2 \in L2

0(\scrX ), we have that (S1  - I)(\bfitpsi 1  - \bfitpsi 2) = 0. Then

| | \bfitpsi 1  - \bfitpsi 2| | L2(\scrX ) = | | S1(\bfitpsi 1  - \bfitpsi 2)| | L2(\scrX ) \leq exp( - 2c1\Delta t)| | \bfitpsi 1  - \bfitpsi 2| | L2(\scrX ),

which implies that \bfitpsi 1  - \bfitpsi 2 = 0. Thus, the uniqueness of the solution for (42) is
proved.
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Remark 3.3. The formulation of the discrete-type corrector problem (42) is equiv-
alent to the equation

\BbbE 
\bigl[ 
\bfitpsi 

\omega (i\Delta t)
\Delta t (X\omega 

i )| \eta i - 1] - \bfitpsi \omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1) =  - \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1).(44)

This can be seen by replacing \chi with \eta n - 1 in the definition of S1; see (28).

Finally, we study the regularity of the solution of the discrete-type corrector
problem (42). The following result is based on the regularity assumption on the
velocity field b. Since we are interested in statistical properties of the solution X(t),
which only requires convergence in law, we can choose smooth realizations of the
velocity field b.

Theorem 3.9. Suppose b \in (Cm
b (\scrX ))d; then \bfitpsi \Delta t is in (Hm(\scrX ))d.

Proof. First we prove that, under the assumption b \in (Cm
b (\scrX ))d for m \geq 1, we

have that for any f \in L2(\scrX ), S1f \in H1(\scrX ). This is because

S1f(\tau \bfx \chi ) =

\int 
Rd

p1\tau \bfx \chi (0,y)P
\Delta tf(\tau \bfx +\bfy \chi )dy =

\int 
Rd

p1\chi (x,x+ y)P\Delta tf(\tau \bfx +\bfy \chi )dy

=

\int 
Rd

p1\chi (x,y)P
\Delta tf(\tau \bfy \chi )dy,(45)

where p1\chi (x,y) is the transition probability density defined in (29). Noticing that

D\bfx p
1
\chi (x,y) =

\bigl( 
I +DB\chi 

\Delta t(x)
\bigr) \bigl( 
y  - x - B\chi 

\Delta t(x)
\bigr) 
p1\chi (x,y)/(\sigma 

2\Delta t)(46)

and B\Delta t \in (Cm
b (\scrX ))d, we can obtain that

\int 
Rd(y  - x - B\chi 

\Delta t(x))
2
i p

1
\chi (x,y)dx is uni-

formly bounded for almost all \chi . Here the indicator i represents the ith component.
This concludes that \int 

Rd

D\bfx p
1
\chi (x,y)P

\Delta tf(\tau \bfy \chi )dy \in (L2(\scrX ))d.(47)

The statement (47) implies that DS1f \in (L2(\scrX ))d by the dominant convergence the-
orem. Thus S1f \in H1(\scrX ). According to the definition of the discrete-type corrector
problem (42), \bfitpsi \Delta t satisfies

\bfitpsi \Delta t = S1\bfitpsi \Delta t + \~B\Delta t.(48)

Therefore, we obtain that \bfitpsi \Delta t \in (H1(\scrX ))d. Moreover, noticing that

DS1f(\chi ) =

\int 
Rd

D\bfx p
1
\chi (0,y)P

\Delta tf(\tau \bfy \chi )dy

=

\int 
Rd

\bigl( 
I +DB\chi 

\Delta t(0)
\bigr) \bigl( 
y  - 0 - B\chi 

\Delta t(0)
\bigr) 
p1\chi (x,y)P

\Delta tf(\tau y\chi )dy/(\sigma 
2\Delta t)

=
\bigl( 
I +DB\chi 

\Delta t(0)
\bigr) \int 

Rd

 - D\bfy p
1
\chi (0,y)P

\Delta tf(\tau \bfy \chi )dy/(\sigma 
2\Delta t)

=
\bigl( 
I +DB\chi 

\Delta t(0)
\bigr) \int 

Rd

p1\chi (0,y)D\bfy P
\Delta tf(\tau \bfy \chi )dy/(\sigma 

2\Delta t)

= (\sigma 2\Delta t) - 1
\bigl( 
I +DB\chi 

\Delta t(0)
\bigr) 
S1Df(\chi ),(49)

we arrive at

D\bfitpsi \Delta t = (\sigma 2\Delta t) - 1(I +DB\Delta t)S1D\bfitpsi \Delta t +D \~B\Delta t.(50)

A similar argument shows thatD\bfitpsi \Delta t \in (H1(\scrX ))d\times d. Doing this argument recursively,
we prove that \bfitpsi \Delta t is in (Hm(\scrX ))d.
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4. Convergence analysis. In this section, we shall prove the convergence rate
of our stochastic structure-preserving scheme in computing effective diffusivity. The
convergence analysis is based on a probabilistic approach, which allows us to get rid
of the exponential growth factor in the error estimate.

4.1. Convergence of the discrete-type corrector problem to the con-
tinuous one. We first show that if \Delta t is small enough, S\Delta t will converge to S1.
Moreover, the following statement holds.

Lemma 4.1. If f is a globally Lipschitz function with respect to x, then we have

| | Snf  - Sn\Delta tf | | L2(\scrX ) \leq c2L\Delta t,(51)

where L is the Lipschitz constant for f and c2 depends only on the computational time
n\Delta t.

Proof. According to the definitions of the semigroups in (8) and (28), we have
that (Sn  - Sn\Delta t)f(\chi ) = E\chi 

\bigl( 
f(\eta n) - f(\eta (n\Delta t))

\bigr) 
, which implies

(Sn  - Sn\Delta t)f(\chi ) \leq LE\chi 

\bigm| \bigm| X\omega 
n  - X\omega 

n\Delta t

\bigm| \bigm| .(52)

The error estimate for the Euler--Maruyama method has been intensively studied
in the literature (see, e.g., [17, 24]). According to Assumption 3.1, the regularity as-
sumption for b is satisfied. Thus, the strong order of accuracy of the Euler--Maruyama
scheme for SDEs driven by additive noise is 1, i.e.,\sqrt{} 

E\chi | X\omega 
n  - X\omega 

n\Delta t| 2 \leq c2\Delta t.(53)

The proof is a simple application of Theorem 1.1 in [24]. We apply the Jensen's
inequality for expectation and obtain

E\chi | X\omega 
n  - X\omega 

n\Delta t| \leq 
\sqrt{} 
E\chi | X\omega 

n  - X\omega 
n\Delta t| 2 \leq c2\Delta t.(54)

Combining the estimate results in (52) and (54), we prove the assertion of Lemma
4.1.

Then we show that under certain conditions the discrete-type corrector problem
converges to the continuous one, which facilitates the convergence analysis of our
numerical method in computing the effective diffusivity for random flows.

Theorem 4.2. The solution \bfitpsi \Delta t converges to the solution \bfitpsi of the continuous-
type corrector problem defined in (15) in L2(\scrX ), as \Delta t\rightarrow 0.

Proof. Using the exponential decay properties of St and Sn, we first choose a
truncation time T0 and obtain the following two inequalities:

(55)

\bigm\| \bigm\| \bigm\| \bigm\| \int \infty 

T0 - \Delta t

Stbdt

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

\leq 1

2c1
exp( - 2c1T0)

and

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 

n=[T0/\Delta t] - 1

Sn
\~B\Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

\leq 1

2c1
exp( - 2c1T0),

where c1 > 0 is defined in (11). Then, for any \epsilon > 0, we choose T0 big enough

such that 1
c1

exp( - c1T0) < \epsilon . Next, we estimate the error between
\sum N - 1

n=0 Sn
\~B\Delta t and
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0
Stbdt for N \leq T0/\Delta t. We know that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int N\Delta t

0

Stbdt - 
N - 1\sum 
n=0

Sn\Delta tb\Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

\leq C1\Delta t(56)

due to the strong continuity of St (see Proposition 2.2) and\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

Sn
\~\bfB \Delta t  - 

N - 1\sum 
n=0

Sn\Delta t\bfb \Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

Sn
\~\bfB \Delta t  - 

N - 1\sum 
n=0

Sn\bfb \Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

Sn\bfb \Delta t - 
N - 1\sum 
n=0

Sn\Delta t\bfb \Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

.(57)

We can estimate the two terms on the right-hand side of inequality (57) sepa-
rately. Since the local truncation error of the numerical scheme (20) is at least
second order, we have

\bigm| \bigm| \bigm| \bigm| \~B\Delta t  - b\Delta t
\bigm| \bigm| \bigm| \bigm| 
L2(\scrX )

\leq O(\Delta t)2. From Lemma 4.1, we know\bigm| \bigm| \bigm| \bigm| (Sn  - Sn\Delta t)b\Delta t
\bigm| \bigm| \bigm| \bigm| 
L2(\scrX )

\leq O(\Delta t)2 for all n \leq N . This gives the estimate

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N - 1\sum 
n=0

Sn
\~B\Delta t  - 

N - 1\sum 
n=0

Sn\Delta tb\Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

\leq c2N(\Delta t)2 \leq c2T0\Delta t.(58)

Finally, we take \Delta t \leq \epsilon /(c2T0) and obtain\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int \infty 

0

Stbdt - 
\infty \sum 

n=0

Sn
\~B\Delta t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrX )

\leq 2\epsilon +O(\epsilon 2).(59)

We prove the assertion of the theorem.

Remark 4.1. The constant c2 in Lemma 4.1 actually exponentially depends on T0,
i.e., c2 = exp(c3T0) with c3 > 0. To balance each value of \epsilon , we have 1

2c1
exp( - 2c1T0) =

exp(c3T0)T0\Delta t, which requires T0 \approx  - 1/(2c1 + c3) log\Delta t and \epsilon \approx 1
c1
\Delta t

2c1
2c1+c3 .

4.2. Convergence of the numerical method in computing effective dif-
fusivity. Now we are in a position to show the main results of our paper. We prove
that the effective diffusivity obtained by our numerical method converges to the exact
one defined in (17).

Theorem 4.3. Let X\omega 
n, n = 0, 1, . . . , be the numerical solution of the stochastic

structure-preserving scheme (24), and let \Delta t be the time step that is fixed. Let \=X\omega 
n =

X\omega 
n - n \=B\Delta t. We have the convergence estimate of the numerical method in computing

effective diffusivity as

\BbbE \=X\omega 
n \otimes \=X\omega 

n

n\Delta t
= \sigma 2Id + 2S

\int 
\scrX 
\bfitpsi \otimes bdP0 + \rho (\Delta t) +O

\biggl( 
1\surd 
n\Delta t

\biggr) 
,(60)

where \rho (\Delta t) = O(\Delta t
2c1

2c1+c3 ) is a function satisfying lim\Delta t\rightarrow 0 \rho (\Delta t) = 0 and is inde-
pendent of the computational time T , and S represents the symmetrization operator

on a matrix, i.e., SA = \bfA +\bfA \bfT 

\bftwo .
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Proof. First of all, from direct computations we obtain that

(61)

\BbbE \=X\omega 
n \otimes \=X\omega 

n = \BbbE 
\bigl( 
\=X\omega 
n - 1 +

\~B
\omega ((n - 1)\Delta t)
\Delta t (X\omega 

n - 1) + \sigma \bfitxi n - 1

\bigr) 
\otimes 
\bigl( 
\=X\omega 
n - 1 +

\~B
\omega ((n - 1)\Delta t)
\Delta t (X\omega 

n - 1) + \sigma \bfitxi n - 1

\bigr) 
= \BbbE \=X\omega 

n - 1 \otimes \=X\omega 
n - 1 + \sigma 2Id\Delta t+ 2S\BbbE \=X\omega 

n - 1 \otimes \~B
\omega ((n - 1)\Delta t)
\Delta t (X\omega 

n - 1)

+ \BbbE \~B
\omega ((n - 1)\Delta t)
\Delta t ( \=X\omega 

n - 1)\otimes \~B
\omega ((n - 1)\Delta t)
\Delta t (X\omega 

n - 1)

= \BbbE \=X\omega 
0 \otimes \=X\omega 

0 + \sigma 2Idn\Delta t+ 2

n\sum 
i=1

S\BbbE \=X\omega 
i - 1 \otimes \~B

\omega ((i - 1)\Delta t)
\Delta t ( \=X\omega 

i - 1)

+

n\sum 
i=1

\BbbE \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)\otimes \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1),

where we have used the facts that \bfitxi n - 1 is independent with \=X\omega 
n - 1 and \BbbE \bfitxi n - 1\otimes \bfitxi n - 1 =

\Delta tId.
The first two terms on the right-hand side of (61) are easy to handle since each

entry in
\BbbE \=\bfX \omega 

0 \otimes \=\bfX \omega 
0

n\Delta t is O( 1
n\Delta t ) and \sigma 2\bfI dn\Delta t

n\Delta t = \sigma 2Id. For the fourth term on the right-
hand side of (61), using the property that Si is measure-preserving (see Theorem 3.4
and Assumption 3.3), we can get

1

n\Delta t

n\sum 
i=1

\BbbE \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)\otimes \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)

=
1

n\Delta t

n\sum 
i=1

\BbbE Si - 1( \~B\Delta t \otimes \~B\Delta t) =
1

n\Delta t
n\BbbE \~B\Delta t \otimes \~B\Delta t = O(\Delta t).(62)

We will focus on the third term on the right-hand side of (61), which corresponds
to the strength of the convection-enhanced diffusion and is the most difficult term to
deal with. Substituting the formulation of the discrete-type corrector problem (44)
into it, we obtain
(63)

n\sum 
i=1

\BbbE \=X\omega 
i - 1 \otimes \~B

\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)

=  - 
n\sum 

i=1

\BbbE \=X\omega 
i - 1 \otimes 

\bigl( 
\BbbE [\bfitpsi \omega (i\Delta t)

\Delta t (X\omega 
i )| \eta i - 1] - \bfitpsi \omega ((i - 1)\Delta t)

\Delta t (X\omega 
i - 1)

\bigr) 
=  - 

n\sum 
i=1

\BbbE \BbbE 
\Bigl[ 
\=X\omega 
i - 1 \otimes 

\bigl( 
\bfitpsi 

\omega (i\Delta t)
\Delta t (X\omega 

i ) - \bfitpsi 
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)
\bigr) \bigm| \bigm| \eta i - 1

\Bigr] 
=  - 

n\sum 
i=1

\BbbE ( \=X\omega 
i - 1  - \=X\omega 

i )\otimes \bfitpsi 
\omega (i\Delta t)
\Delta t (X\omega 

i ) + \BbbE \=X\omega 
0 \otimes \bfitpsi \omega (0)

\Delta t (X\omega 
0 ) - \BbbE \=X\omega 

n \otimes \bfitpsi \omega (n\Delta t)
\Delta t (X\omega 

n)

=

n\sum 
i=1

\BbbE 
\bigl( 
\~B
\omega ((i - 1)\Delta t
\Delta t (X\omega 

i - 1) + \sigma \bfitxi i - 1

\bigr) 
\otimes \bfitpsi \omega (i\Delta t)

\Delta t (X\omega 
i )

+ \BbbE \=X\omega 
0 \otimes \bfitpsi \omega (0)

\Delta t (X\omega 
0 ) - \BbbE \=X\omega 

n \otimes \bfitpsi \omega (n\Delta t)
\Delta t (X\omega 

n).

Here, from the first to the second row, we use the fact that \=X\omega 
i - 1 and\bfitpsi 

\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)
are measurable in the \sigma -algebra generated by \eta i - 1. From the second row to the third
row, we use the property of conditional expectation and Abel's summation formula.
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Let us first estimate the summation term on the right-hand side of (63). For each
index i, we have

\BbbE 
\bigl( 
\~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1) + \sigma \bfitxi i - 1

\bigr) 
\otimes \bfitpsi \omega (i\Delta t)

\Delta t (X\omega 
i )

= \BbbE \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)\otimes \bfitpsi 
\omega (i\Delta t)
\Delta t (X\omega 

i ) + \BbbE \sigma \bfitxi i - 1 \otimes \bfitpsi \omega (i\Delta t)
\Delta t (X\omega 

i ).(64)

Through simple calculations, we can show that the second term on the right-hand
side of (64) is zero. Specifically, we have

\BbbE \sigma \bfitxi i - 1 \otimes \bfitpsi \omega (i\Delta t)
\Delta t (X\omega 

i )

= \BbbE \sigma \bfitxi i - 1 \otimes \bfitpsi \omega (i\Delta t)
\Delta t

\bigl( 
X\omega 

i - 1 +B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1) + \sigma \bfitxi i - 1

\bigr) 
=

\int 
\scrX 

\int 
Rd

p0(0,y)\sigma y \otimes ME\chi \bfitpsi \Delta t

\bigl( 
\tau \sigma \bfy \tau \bfX \omega 

i - 1+\bfB \Delta t(\eta i - 1)\omega (i\Delta t)
\bigr) 
dyP0(d\chi )

=

\int 
Rd

p0(0,y)\sigma y \otimes 
\int 
\scrX 
ME\chi \bfitpsi \Delta t

\bigl( 
\tau \sigma \bfy \tau \bfX \omega 

i - 1+\bfB \Delta t(\eta i - 1)\omega (i\Delta t)
\bigr) 
P0(d\chi )dy

=

\int 
Rd

p0(0,y)\sigma y \otimes E\bfitpsi \Delta tdy = 0.(65)

Here, the expectation is taken over all the randomness in the system. In the third
row of (65), y is a realization of \bfitxi i - 1 and p0(0,y)dy is the measure associated with
the Brownian motion, while P0(d\chi ) is the measure associated with the randomness in
the velocity field and initial data. Fubini's theorem is used in the fourth row of (65)
to switch the order of integration. The fifth row of (65) is derived from Lemma 3.5;
see (33). And E\bfitpsi \Delta t = 0 since the solution of the discrete-type corrector problem is
mean-zero; see Theorem 3.8.

Then we compute the first term on the right-hand side of (64) as follows:

\BbbE \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)\otimes \bfitpsi 
\omega (i\Delta t)
\Delta t (X\omega 

i ) = \BbbE \~B\Delta t(\eta i - 1)\otimes \bfitpsi \Delta t(\eta i)

= \BbbE \BbbE 
\bigl( 
\~B\Delta t(\eta i - 1)\otimes \bfitpsi \Delta t(\eta i)

\bigm| \bigm| \eta i - 1

\bigr) 
= \BbbE \~B\Delta t(\eta i - 1)\otimes \BbbE 

\bigl( 
\bfitpsi \Delta t(\eta i)

\bigm| \bigm| \eta i - 1

\bigr) 
= \BbbE \~B\Delta t(\eta i - 1)\otimes S1\bfitpsi \Delta t(\eta i - 1) = \BbbE \~B\Delta t(\eta i - 1)\otimes 

\bigl( 
\bfitpsi \Delta t(\eta i - 1) - \~B\Delta t(\eta i - 1)

\bigr) 
= \BbbE \~B\Delta t(\eta i - 1)\otimes \bfitpsi \Delta t(\eta i - 1) - \BbbE \~B\Delta t(\eta i - 1)\otimes \~B\Delta t(\eta i - 1)

= \BbbE Si - 1( \~B\Delta t \otimes \bfitpsi \Delta t) - \BbbE Si - 1( \~B\Delta t \otimes \~B\Delta t).(66)

Using the property that each Si - 1 is measure-preserving (see Theorem 3.4), we have

1

n

n\sum 
i=1

\BbbE \~B
\omega ((i - 1)\Delta t)
\Delta t (X\omega 

i - 1)\otimes \bfitpsi 
\omega (i\Delta t)
\Delta t (X\omega 

i ) = \BbbE \~B\Delta t \otimes \bfitpsi \Delta t  - \BbbE \~B\Delta t \otimes \~B\Delta t.(67)

The term \BbbE \~B\Delta t \otimes \bfitpsi \Delta t in (67) is corresponding to the strengthen of the convection-
enhanced diffusion. The term \BbbE \~B\Delta t \otimes \~B\Delta t in (67) is of the order O(\Delta t)2 due to
Assumption 3.3 . This completes the estimate of the first term on the right-hand side
of (63).

Now, we estimate the second and third terms on the right-hand side of (63). The

term \BbbE \=X\omega 
0 \otimes \bfitpsi \omega (0)

\Delta t (X\omega 
0 ) does not depend on n and is bounded. For the third term,

we want to prove that

(68)
1

n\Delta t

\bigm| \bigm| \bigm| \bigm| \BbbE \=X\omega 
n \otimes \bfitpsi \omega (n\Delta t)

\Delta t (X\omega 
n)
\bigm| \bigm| \bigm| \bigm| \leq O

\biggl( 
1\surd 
n\Delta t

\biggr) 
,
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where | | \cdot | | is a matrix norm. By using Holder's inequality, we know that each entry

of the matrix \BbbE \=X\omega 
n \otimes \bfitpsi \omega (n\Delta t)

\Delta t (X\omega 
n) satisfies

(69)\bigm| \bigm| \BbbE ( \=X\omega 
n)l
\bigl( 
\bfitpsi 

\omega (n\Delta t)
\Delta t (X\omega 

n)
\bigr) 
j

\bigm| \bigm| \leq \bigl( \BbbE [( \=X\omega 
n)l]

2
\bigr) 1/2\bigl( \BbbE [(\bfitpsi \omega (n\Delta t)

\Delta t (X\omega 
n))j ]

2
\bigr) 1/2

, 1 \leq l, j \leq d.

Again, using the property that Sn is measure-preserving (see Theorem 3.4), we have

(70) \BbbE 
\bigl[ 
(\bfitpsi 

\omega (n\Delta t)
\Delta t (X\omega 

n))j
\bigr] 2

= \BbbE 
\bigl( 
\bfitpsi \Delta t,j(\eta n)

\bigr) 2
= \BbbE Sn(\bfitpsi \Delta t,j)

2 = \BbbE (\bfitpsi \Delta t,j)
2,

which is bounded since \bfitpsi \Delta t \in (L2
0(\scrX ))d according to Theorem 3.8. Thus, if we can

prove 1
n\BbbE [( \=X

\omega 
n)l]

2 is bounded, then
(71)

1

n\Delta t

\bigm| \bigm| \BbbE ( \=X\omega 
n)l(\bfitpsi 

\omega (n\Delta t)
\Delta t (X\omega 

n))j
\bigm| \bigm| \leq 1\surd 

n\Delta t

\biggl( 
1

n
\BbbE [( \=X\omega 

n)l]
2

\biggr) 1/2

(\BbbE [(\bfitpsi \omega (n\Delta t)
\Delta t (X\omega 

n))j ]
2)1/2

= O

\biggl( 
1\surd 
n\Delta t

\biggr) 
.

In order to prove that 1
n\BbbE [( \=X

\omega 
n)l]

2 is bounded, we apply the arithmetic mean--
geometric mean (AM-GM) inequality on the diagonal entries of the matrix \BbbE \=X\omega 

n \otimes 
\bfitpsi 

\omega (n\Delta t)
\Delta t (X\omega 

n) and obtain

\bigm| \bigm| \BbbE ( \=X\omega 
n)l(\bfitpsi 

\omega (n\Delta t)
\Delta t (X\omega 

n))l
\bigm| \bigm| \leq \epsilon \BbbE [( \=X\omega 

n)l]
2 + (4\epsilon ) - 1\BbbE [(\bfitpsi \omega (n\Delta t)

\Delta t (X\omega 
n))l]

2, 1 \leq l \leq d,

(72)

where 0 < \epsilon < 1. The choice of \epsilon will be specified later.
According to (69), we only need to estimate the terms \BbbE [( \=X\omega 

n)l]
2. We first substi-

tute the estimated result (72) into (63) and then substitute the estimated results of
(63) (including (65) and (67)) into (61). Combining all the estimate results for terms
on the right-hand side of (61), we obtain an estimate for \BbbE [( \=X\omega 

n)l]
2 as follows:

(73) \BbbE [( \=X\omega 
n)l]

2 \leq (Rn)l + \epsilon \BbbE [( \=X\omega 
n)l]

2,

where (Rn)l denotes all the remaining terms with (Rn)l = O(n). Notice that (Rn)l
also contains the term (4\epsilon ) - 1\BbbE [(\bfitpsi \omega (n\Delta t)

\Delta t (X\omega 
n))l]

2, which is O(1) due to (70) and the
choice of \epsilon . We choose 0 < \epsilon < 1 (e.g., \epsilon = 1/3), move the term \epsilon \BbbE [( \=X\omega 

n)l]
2 to the

left-hand side of (73), and divide both sides of the inequality by (1  - \epsilon )n. We can
obtain that 1

n\BbbE | | \=X
\omega 
n | | 2 is bounded. Therefore, we prove the claim in (68).

Finally, we combine the estimate results in (61), (62), (63), (67), and (71) and
obtain that

\BbbE \=X\omega 
n \otimes \=X\omega 

n

n\Delta t
= \sigma 2Id + 2S\BbbE \bfitpsi \Delta t \otimes \~B\Delta t/\Delta t+O(\Delta t) +O

\biggl( 
1\surd 
n\Delta t

\biggr) 
.(74)

According to Theorem 4.2 and Remark 4.1, we have the estimate\bigm| \bigm| \bigm| \bigm| 2S\BbbE \bfitpsi \Delta t \otimes \~B\Delta t/\Delta t - 2S\BbbE \bfitpsi \otimes b
\bigm| \bigm| \bigm| \bigm| 
L2(\scrX )

= O(\Delta t
2c1

2c1+c3 ) := \rho (\Delta t),(75)

where lim\Delta t\rightarrow 0 \rho (\Delta t) = 0. Thus, the statement in (60) is proved.
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Remark 4.2. Theorem 4.3 shows that when the time step \Delta t is given and fixed,
we have

lim
n\rightarrow \infty 

\BbbE \=X\omega 
n \otimes \=X\omega 

n

n\Delta t
= \sigma 2Id + 2S

\int 
\scrX 
\bfitpsi \otimes bdP0 + \rho (\Delta t),(76)

which reveals the connection of the definition of the effective diffusivity by solving
discrete-type and continuous-type corrector problems. Our result appears to be the
first one in the literature to establish this connection.

Notice that in Theorem 4.3, we assume \=X\omega 
n = X\omega 

n  - n \=B\Delta t are given, where we
use the Monte Carlo method to compute \=B\Delta t. In some cases, if we cannot calculate
the drift constant \=B\Delta t exactly, we can directly estimate the term \BbbE X\omega 

n \otimes X\omega 
n , which

is summarized in the following corollary.

Corollary 4.4. Let X\omega 
n, n = 0, 1, . . . , be the numerical solution of the stochastic

structure-preserving scheme (24), and let \Delta t be the time step that is fixed. Supposing
n(\Delta t)3 and 1\surd 

n\Delta t
are small enough, we have

\BbbE X\omega 
n \otimes X\omega 

n

n\Delta t
= \sigma 2Id + 2S

\int 
\scrX 
\bfitpsi \otimes bdP0 + \rho (\Delta t) +O

\biggl( 
1\surd 
n\Delta t

\biggr) 
+O

\bigl( 
n(\Delta t)3

\bigr) 
,(77)

where \rho (\Delta t) = O(\Delta t
2c1

2c1+c3 ) is a function satisfying lim\Delta t\rightarrow 0 \rho (\Delta t) = 0 and is inde-
pendent of the computational time T , and S represents the symmetrization operator.

Proof. Using the observation that

\BbbE X\omega 
n \otimes X\omega 

n

n\Delta t
=

\BbbE \=X\omega 
n \otimes \=X\omega 

n

n\Delta t
+

2S\BbbE \=X\omega 
n \otimes \=B\Delta t

\Delta t
+
n2 \=B\Delta t \otimes \=B\Delta t

n\Delta t
(78)

and Theorem 3.7, we can straightforwardly get the proof.

Remark 4.3. In our convergence analysis, we interpret the solution process gen-
erated by our numerical scheme as a Markov process. By exploring the ergodicity
of the solution process (i.e., Markov process), we give a sharp error estimate of the
proposed numerical scheme in computing effective diffusivity.

Remark 4.4. If b satisfies a H\"older-\gamma continuous condition in the time domain
with 0 < \gamma < 1, we will obtain a weaker convergence rate in Lemma 4.1, i.e., | | Snf  - 
Sn\Delta tf | | L2(\scrX ) \leq c2L(\Delta t)

\gamma with 0 < \gamma < 1. Under such a condition, we can still obtain
convergence analysis of the numerical methods for computing effective diffusivity, e.g.,

Theorem 4.3 with a smaller convergence rate in \rho (\Delta t) = O(\Delta t
2\gamma c1

2c1+c3 ).

5. Numerical results. The aim of this section is twofold. First, we will verify
the convergence results obtained in section 4.2. Second, we will use the proposed
method to compute effective diffusivity in random flows, where incompressible random
flows in two- and three-dimensional spaces will be studied. Without loss of generality,

we compute the quantity
\BbbE [(\bfX \omega 

n,1)
2]

2n\Delta t , which is used to approximate DE
11 in the effective

diffusivity matrix DE . Notice that X\omega 
n,1 is the first component of the solution vector

X\omega 
n . One can obtain DE

11 by choosing v = (1, 0)T in (17) of Proposition 2.5.

5.1. Numerical methods for generating random flows. To start with, we
discuss how to generate random flows that will be used in our numerical experiments.
Assume the vector field b(t,x, \omega ) has a spectral measure,

exp( - r(k)| t| )\Gamma (k)
\biggl( 
I - k\otimes k

| k| \bftwo 

\biggr) 
,(79)
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where k = (k1, k2)
T or k = (k1, k2, k3)

T , r(k) > c0 for some positive constant c0, and
\Gamma (k) is integrable and decays fast for large k. Under such settings, the velocity field
b(t,x, \omega ) satisfies the \rho mixing condition and is stationary and divergence-free [30, 7].
In order to mimic the energy spectrum of real flows, we assume \Gamma (k) \propto 1/| k| 2\alpha +d - 2

with ultraviolet cutoff | k| \leq K < \infty and r(k) \propto | k| 2\beta . The spectral gap condition 4
requires \beta \leq 0 and the integrability of \Gamma (k) requires \alpha < 1. Here, for simplicity, we
choose \beta = 0.

Given the spectral measure (79), we use the randomization method [19, 22] to
generate realizations of the velocity field. Specifically, we approximate it as

b(t,x) =
1\surd 
M

M\sum 
m=1

\bigl[ 
um cos(km \cdot x) + vm sin(km \cdot x)

\bigr] 
.(80)

Notice that we have suppressed the dependence of the velocity on \omega for notational
simplicity here. In fact, the parameters km, um, and vm contain randomness. The
spectrum points km were chosen independently according to the spectral measure
\Gamma (k). Due to the isotropicity, we first generate a point uniformly distributed on the
unit sphere or unit circle which represents the direction of the km. Then we generate
the length r of km, which satisfies a density function \rho (r) \propto 1/r2\alpha  - 1, 0 < r \leq K.

For random flows in two-dimensional space, we have

um = \xi m(t)
k\bot 
m

| k\bot 
m| 
, vm = \eta m(t)

k\bot 
m

| k\bot 
m| 
, km = (k1m, k

2
m), m = 1, . . . ,M,(81)

where k\bot 
m = ( - k2m, k1m), \xi m(t) and \eta m(t) are independent one-dimensional Ornstein--

Uhlenbeck (OU) processes with covariance function

Cov(\xi m(t1), \xi m(t2)) = Cov(\eta m(t1), \eta m(t2)) = exp( - \theta | t1  - t2| ).

Here \theta > 0 is a parameter to control the roughness of the OU process. To obtain the
OU path for \xi m(t), we generate a series of \{ \xi m(n\Delta t)\} that satisfies

\xi m(n\Delta t) = e - \theta \Delta t\xi m((n - 1)\Delta t) +
\sqrt{} 

1 - e - 2\theta \Delta t\zeta m,n, n = 1, 2, 3, . . . ,(82)

where \xi m(0), \zeta m,n, m,n = 1, 2, 3, . . . , are i.i.d. N(0, 1) distributed random variables.
One can easily verify that Cov(\xi m(i\Delta t), \xi m(j\Delta t)) = exp( - \theta | i - j| \Delta t). The OU path
for \eta m(t) can be generated by using the same approach.

For the random flows in three-dimensional space, we have

um = \bfitxi m(t)\times km

| km| 
, vm = \bfiteta m(t)\times km

| km| 
, km = (k1m, k

2
m, k

3
m),(83)

where the samples \bfitxi m(t) and \bfiteta m(t) are independent three-dimensional random vec-
tors, whose components are independent stationary OU processes having the covari-
ance function Cov(\bfitxi m(t1), \bfitxi m(t2)) = Cov(\bfiteta m(t1),\bfiteta m(t2)) = exp( - \theta | t1 - t2| )I3. Each
component of \bfitxi m(t) and \bfiteta m(t) can be generated by using the method (82). One can
easily verify that the random velocity fields generated by (80) with the setting (81) in
two-dimensional space and (83) in three-dimensional space automatically satisfy the
divergence-free condition.
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5.2. Verification of the convergence analysis. In this subsection, we study
the convergence rate of our method in computing incompressible random flow in two-
dimensional (2D) and three-dimensional (3D) spaces.

For the random flow in 2D space, we solve the SDE (1), where the velocity filed is
chosen as (80) with the setting (81). The velocity field was simulated withM = 1000.
The parameters in the spectral measure \Gamma (k) are K = 10 and \alpha = 0.75. The time-
mixing constant \theta = 10 in the covariance function. The molecular diffusivity \sigma = 0.1.
We use the Monte Carlo method to generate independent samples for the Brownian
motion w(t) and velocity field b(t,x). The sample number is denoted by Nmc.

We choose time step \Delta tref = 0.001 and Nmc = 100, 000 to solve the SDE (1) and
compute the reference solution, i.e., the ``exact"" effective diffusivity, where the final
computational time is T = 22 so that the calculated effective diffusivity converges to
a constant. It takes about 24 hours to compute the reference solution on a 64-core
server (Gridpoint System at HKU). The reference solution for the effective diffusivity
is DE

11 = 0.1736.
For the random flow in 3D space, we solve the SDE (1), where the velocity

field is chosen as (80) with the setting (83). The velocity field was simulated with
M = 100. The parameters in the spectral measure \Gamma (k) are K = 10 and \alpha = 0.75.
The time-mixing constant \theta = 10 in the covariance function. The molecular diffusivity
\sigma = 0.1. Again, we use the Monte Carlo method to generate dependent samples for
the Brownian motion w(t) and velocity field b(t,x).

We choose \Delta tref = 0.001 and Nmc = 180,000 to solve the SDE (1) and compute
the reference solution, i.e., the ``exact"" effective diffusivity, where the final compu-
tational time is T = 25 so that the calculated effective diffusivity converges to a
constant. It takes about 21 hours to compute the reference solution on a 64-core
server (Gridpoint System at HKU). The reference solution for the effective diffusivity
is DE

11 = 0.1137. We remark that in our numerical experiment, we choose M = 1000
for the 2D random flow and M = 100 for the 3D random flow so that the velocity
field numerically satisfies the ergodicity assumption.

In Figure 1(a), we plot the convergence results of the effective diffusivity for the

2D random flow using our method (i.e.,
\BbbE [(\bfX \omega 

n,1)
2]

2n\Delta t ) with respect to varying time steps
\Delta t at T = 22, where the number of the Monte Carlo samples Nmc = 50,000. In
addition, we show a fitted straight line with slope 1.17, i.e., the convergence rate is

about O(\Delta t)1.17. Similarly, we show the convergence results of
\BbbE [(\bfX \omega 

n,1)
2]

2n\Delta t for the 3D
random flow in Figure 1(b) with respect to varying time steps \Delta t at T = 25, where
the number of Monte Carlo samples Nmc = 50,000. We also show a fitted straight
line with slope 0.98, i.e., the convergence rate is about O(\Delta t)0.98. These numerical
results agree with our error analysis.

5.3. Comparison between the volume-preserving scheme and Euler
scheme. To demonstrate the benefit of our method in computing effective diffu-
sivity, we compare the performance of the volume-preserving scheme and the Euler--
Maruyama scheme (also called the Euler scheme).

For the random flow in 2D space, we solve the SDE (1), where the velocity field is
chosen as (80) with the setting (81). The time-mixing constant \theta = 1 in the covariance
function, and other parameters are the same as those used in section 5.2. We use
the volume-preserving scheme with \Delta tref = 0.003125 and Nmc = 100,000 to solve
the SDE (1) and compute the reference solution, i.e., the ``exact"" effective diffusivity,
where the final computational time is T = 54 so that the calculated effective diffusivity
converges to a constant. It takes about 24 hours to compute the reference solution on
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(a) 2D random flow, fitted slope \approx 1.17.
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(b) 3D random flow, fitted slope \approx 0.98.

Fig. 1. Error of DE
11 for random flows with different time steps.
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(a) 2D comparison: fitted slope for Euler
scheme is 0.62, fitted slope for volume preserv-
ing scheme is 0.86.
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Euler scheme
Fitted line
Volume preserving scheme 
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(b) 3D comparison: fitted slope for Euler
scheme is 0.44, fitted slope for volume preserv-
ing scheme is 0.91.

Fig. 2. Comparison between Euler scheme and volume-preserving scheme.

a 64-core server (Gridpoint System at HKU). The reference solution for the effective
diffusivity is DE

11 = 0.3610.
In Figure 2(a), we plot the convergence results of the effective diffusivity for

the 2D random flow using the volume-preserving scheme and the Euler scheme with
respect to varying time steps \Delta t at T = 54, where the number of Monte Carlo samples
Nmc = 50,000. The slopes of the fitted lines for the volume-preserving scheme and the
Euler scheme are 0.86 and 0.62, respectively. In addition, we can see that the volume-
preserving scheme reduces the numerical error by more than one order of magnitude
than that of the Euler scheme by using the same time-step \Delta t.

For the random flow in 3D space, we solve the SDE (1), where the velocity field
is chosen as (80) with the setting (83). The time-mixing constant \theta = 4 in the
covariance function and other parameters are the same as those used in section 5.2.
We use the volume-preserving scheme with \Delta tref = 0.003125 and Nmc = 100,000 to
solve the SDE (1) and compute the reference solution, where the final computational
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time is T = 40 so that the calculated effective diffusivity converges to a constant. It
takes about 32 hours to compute the reference solution on a 64-core server (Gridpoint
System at HKU). The reference solution for the effective diffusivity is DE

11 = 0.2266.
In Figure 2(b), we plot the convergence results of the effective diffusivity for

the 3D random flow using the volume-preserving scheme and the Euler scheme with
respect to varying time steps \Delta t at T = 40, where the number of Monte Carlo samples
Nmc = 50,000. The slopes of the fitted lines for the volume-preserving scheme and
the Euler scheme are 0.91 and 0.44, respectively. Again, we can see that the volume-
preserving scheme significantly reduces the numerical error by more than one order
of magnitude compared to that of the Euler scheme by using the same time step \Delta t.

We remark that the volume-preserving scheme is an implicit scheme which needs
to use Newton's iteration method to solve the corresponding nonlinear equations. In
our numerical experiments, we use the numerical solutions at time t = tn as an initial
guess for the solution at time t = tn+1. We find this approach is very efficient, i.e.,
three or four steps of iterations will give convergent results. Thus, the computational
cost for the volume-preserving scheme is about three or four times that of the Euler
scheme in the same setting. However, the volume-preserving scheme is superior to the
Euler scheme due to its faster convergence rate and smaller magnitude in numerical
error.

5.4. Verification of the exponential decay property. The time relaxation
property (4), which is equivalent to the exponential decay property (5), plays an
important role in the existence of the effective diffusivity; see Proposition 2.5. In
Theorem 3.6, we prove that the numerical solutions inherit the exponential decay
property. Based on this key fact, we can define the discrete-type corrector problem
and prove the convergence analysis of our method. In this subsection, we will verify
that the velocity field propagated by the random flow (80) has the exponential decay
property, where both the 2D and 3D cases will be tested.

In the experiment for 3D random flow, we choose the time step size \Delta t = 0.05.
The velocity field will be approximated byM = 100 terms in (80) with the setting (83).
The parameters in the spectral measure \Gamma (k) are K = 10 and \alpha = 0.75. The molec-
ular diffusivity \sigma = 0.1. We randomly generate 200 samples \{ ki

m, \bfitxi 
i
m(0),\bfiteta i

m(0),m =
1, . . . ,M\} , i = 1, . . . , 200, which will be used to generate initial states for the velocity
field (80), i.e.,

bi(0,x) =
1\surd 
M

M\sum 
m=1

\biggl[ 
\bfitxi im(0)\times ki

m

| ki
m| 

cos(ki
m \cdot x) + \bfiteta i

m(0)\times ki
m

| ki
m| 

sin(ki
m \cdot x)

\biggr] 
,

i = 1, . . . , 200.

Then, for each initial state bi(0,x), we generate 5000 different samples of the OU
paths \bfitxi i,pm (n\Delta t) and \bfiteta i,p

m (n\Delta t) and Brownian motion paths \bfitw i,p(n\Delta t), 1 \leq p \leq 5000.
Given the sample data, we calculate the corresponding solution paths \{ Xi,p

n \} 0\leq n<\infty 
and then calculate the value
(84)

bi,p(n\Delta t,Xi,p
n )

=
1\surd 
M

M\sum 
m=1

\biggl[ 
\bfitxi i,pm (n\Delta t)\times ki

m

| ki
m| 

cos(ki
m \cdot Xi,p

n ) + \bfiteta i
m(n\Delta t)\times ki

m

| ki
m| 

sin(ki
m \cdot Xi,p

n )

\biggr] 
,

i = 1, . . . , 200, 1 \leq p \leq 5000.

Finally, we compute \=bi
n = 1

5000

\sum 5000
p=1 bi,p(n\Delta t,Xi,p

n ) and the sample variance of \=bi
n
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(a) Calculated variance in the 2D flow over time.
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(b) Calculated variance in the 3D flow over time.

Fig. 3. Decay behaviors of the sample variance in 2D and 3D random flows.

with respect to i. This is an approximation to the value | | Snb| | L2(\scrX ), which should
satisfy the exponential-decay property according to our analysis. The experiment for
2D random flow is almost the same except the setting of the velocity field (83) is
replaced by (81) and we choose M = 1000.

In Figures 3(a) and 3(b), we plot the calculated sample variance of the first
component of \=bi

n for the 2D random flow and 3D random flow, respectively. We
observe exponential decay of the sample variance with respect to time. Moreover, we
find that larger \theta leads to a faster decay in the sample variance, since larger \theta results
in a faster decorrelation in the random flow. Our numerical results show that the
exponential decay property (see Theorem 3.6) holds for the random flows we have
studied here.

5.5. Investigation of the convection-enhanced diffusion phenomenon.
In the first experiment, we study the relation between the numerical effective dif-

fusivity
E[(\bfX \omega 

n,1)
2]

2n\Delta t and the parameter \theta , which controls the decorrelation rate in the
temporal dimension of the random flow. In this experiment, the setting of the velocity
field and the implementation of our method is the same as we had used in section 5.4.
We only choose different parameter \theta to compute the numerical effective diffusivity.

In Figure 4(a), we plot the numerical effective diffusivity of 2D random flow
obtained at different computational times, where the flow is generated with different
\theta . The result for 3D random flow is shown in Figure 4(b). We find that different \theta 
affects the mixing time of the system. When we increase the \theta , the system will quickly
enter a mixing stage.

In the second experiment, we choose different molecular diffusivity \sigma to compute
the corresponding numerical effective diffusivity, which allows us to study the exis-
tence of residual diffusivity for this random flow. The residual diffusivity, a special
yet remarkable convection-enhanced diffusion phenomenon, refers to the nonzero and
finite effective diffusivity in the limit of zero molecular diffusivity as a result of a fully
chaotic mixing of the streamlines.

In the experiment for 2D random flow, we choose the time step \Delta t = 0.05, the
velocity field is simulated with M = 1000, the time-mixing constant \theta = 0.1, and
the parameters in the spectral measure \Gamma (k) are K = 10 and \alpha = 0.75. For the 3D
random flow, we choose M = 100 and keep other parameters the same.
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(a) The quantity
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Fig. 4. The relation between numerical effective diffusivity and \theta .

Let \kappa = \sigma 2/2. In Figure 5(a), we show the relation between numerical effective
diffusivity of 2D random flow obtained at different computational times, where the
result is generated with different \sigma . The result for 3D random flow is shown in Figure

5(b). We find that as \kappa approaches zero, the quantity
\BbbE [( \=\bfX \omega 

n,1)
2]

2n\Delta t converges to a nonzero
(positive) constant, which indicates the existence of residual diffusivity in the random
flows here.
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(a) The quantity
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2n\Delta t
in the 2D flow over

time.
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Fig. 5. The relation between numerical effective diffusivity and \kappa = \sigma 2/2, where \sigma is molecular
diffusivity.

In Figures 6(a) and 6(b), we plot the convergence behaviors of DE
11(\kappa ) approach-

ing DE
11(0) for 2D and 3D random flows, respectively, when the systems enter a mix-

ing stage. The convergence behaviors when \kappa approaches zero are slightly different
though; both figures show that residual diffusivity exists in the random flows we
studied here.
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(a) Results for the 2D random flow, D0 \approx 
0.3584.
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(b) Results for the 3D random flow, D0 \approx 
0.5685.

Fig. 6. Convergence behaviors of DE
11(\kappa ) approaching DE

11(0).

6. Conclusion. In this paper, we studied the numerical homogenization of pas-
sive tracer models in random flows. Based on a splitting method, we proposed sto-
chastic structure-preserving schemes to compute the effective diffusivity of the ran-
dom flows. In addition, we provided rigorous convergence analysis for the numerical
schemes. Our error analysis is new in the sense that it is based on a probabilistic ap-
proach. Specifically, we interpreted the solution process generated by our numerical
schemes as a Markov process. By using the ergodic theory for the solution process,
we proved a sharp error estimate for our numerical schemes in computing the effective
diffusivity. Finally, we presented numerical results to verify the convergence rate of
the proposed method for incompressible random flows both in 2D and 3D spaces. In
addition, we observed the exponential decay property and investigated the residual
diffusivity phenomenon in the random flows we studied here.

There are two directions we plan to explore in our future work. First, we shall
extend the probabilistic approach to provide sharp convergence analysis in computing
effective diffusivity for quasi-periodic time-dependent flows. This type of problem is
more challenging since the corrector problem does not exist in the L2 space corre-
sponding to the invariant measure. We shall develop other techniques to address this
problem. In addition, we shall investigate the convection-enhanced diffusion phenom-
enon for general spatial-temporal stochastic flows [20, 22] and develop convergence
analysis for the corresponding numerical methods.
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