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Probabilistic Assessment of Transport Network Vulnerability with Equilibrium 

Flows 
 

Abstract 

 

This paper develops a probabilistic approach for assessing transport network vulnerability. A 

novel performance measure is proposed to evaluate the expected impact when multiple 

transport network components fail simultaneously at various degrees. The proposed measure 

captures both the likelihood and consequence of a combination of transport network component 

failures. The most critical combination of transport network component failures is obtained by 

solving a bi-level optimization problem. The upper-level problem is to solve for the 

combination of transport network components together with their corresponding disruption 

levels, which induces the maximum reduction in the performance measure. The lower-level 

problem is to capture the response of travelers to network changes due to network component 

failures and is formulated as a traffic assignment problem. The clonal selection algorithm 

(CSA), a biologically inspired approach, is adopted to tackle the proposed bi-level optimization 

problem. Numerical results indicate that neglecting partial capacity degradation and its 

probability of occurrence could misestimate the worst scenario, and different vulnerability 

assessment approaches could identify similar critical components but our approach can 

discover some components that are not found by other existing approaches. Moreover, it is 

shown that the CSA outperforms the well-known genetic algorithm (GA) in terms of solution 

quality in a large network.  

 

Keywords: Transport Network Vulnerability; Bi-level Optimization; Clonal Selection 

Algorithm; Genetic Algorithm 
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1 Introduction  

The prosperity of a society is closely related to the performance of the supporting transportation 

infrastructure, which is a long-term investment with significant impacts on sustainability 

(Fiksel, 2006). Nevertheless, transportation infrastructure is vulnerable to various kinds of 

disruptions (Chow et al., 2015), which induce direct economic loss and impede sustainable 

urban development. Disrupted transportation infrastructure requires a significant cost for 

repairs or reconstruction to rehabilitate it to its designed capacity to ensure an adequate level 

of service. In Europe, the transportation network was severely disrupted by extreme winter 

weather in January 2013. The UK Department for Transport (DfT, 2011) highlights that the 

severe winter weather experienced by the United Kingdom caused extensive disruptions to 

transport networks and brought travel misery to millions of people. The total cost of delayed 

journeys of both businesses and individuals was estimated to be around £280 million per day 

in England alone. We also cannot forget the devastating losses due to a major earthquake in 

the Sichuan region, China in 2008, and the losses brought upon by two major earthquakes in 

2011 in Japan and New Zealand. In particular, the 9.0-magnitude tsunami that struck off the 

Tohoku region, Japan in March 2011 caused 15,800 deaths, with 6,100 injured, 2,600 missings, 

and a $170 billion monetary loss (PwC, 2013). In addition to these extreme disasters, floods, 

landslides, and adverse weather conditions deteriorate free-flow speed and road capacity (Lam 

et al., 2013; Tsapakis et al., 2013; Pregnolato et al., 2017). It is expected that, in the era of 

climate change, the vulnerability of infrastructures tends to increase (Nagurney et al., 2010). 

Thus, vulnerability analysis that can assist the decision-maker in identifying vulnerable 

infrastructures and preparing for unpredictable disruptions and natural disasters needs more 

attention.  

  A vital issue in the vulnerability analysis of a transportation network is to identify the 

most critical network component(s) (Wang et al., 2016). A critical component is a link or a 
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node, the failure of which would bring the most severe deterioration to the system (Chen et al., 

2012). Once critical components are identified, the robustness of the overall network can then 

be enhanced by reinforcing these elements subject to budgetary constraints. A number of 

studies have contributed to the quantification of the criticality of transport network components 

in terms of transport network performance. For a thorough literature review, interested readers 

are welcome to consult the studies of Nagurney and Qiang (2009), Sullivan et al. (2009), Wang 

et al. (2014), Zhao et al. (2014), Mattsson and Jenelius (2015), and Gu et al. (2020). In this 

study, the representative works of the state-of-the-art approaches are listed in chronological 

order in Table 1 (a), which focuses on four aspects, namely, type of measure, degree of closure, 

number of disrupted components, and the traffic assignment models/principles used once the 

network is disrupted1.  

 One of the first studies that explicitly mention vulnerability is by Nicholson and Du 

(1997). They suggested that vulnerability analysis is governed by the equilibrium of demand 

and supply and network vulnerability is evaluated by the system surplus. For the demand side, 

a given demand function was adopted, while for the supply side, the user-equilibrium (UE) 

traffic assignment problem was solved. Murray-Tuite and Mahmassani (2004) proposed a 

disruption index to measure the importance of a link to a network. The disruption index is 

obtained by aggregating the vulnerability indices that measure the importance of a specific link 

to the connectivity of an origin-destination (OD) pair considering the availability of alternative 

paths, excess capacity, and travel time. They formulated a bilevel optimization model where 

the upper-level problem is to determine one or multiple links that maximize the disruption 

index and the lower-level problem is a system optimal (SO) (instead of UE) traffic assignment 

                                                 
1 If the vulnerability calculation involves a benchmark scenario (i.e., undisrupted network), sometimes two 

assignment scenarios can be involved, one for undisrupted and one for disrupted. 
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problem, assuming that a traffic management agency provides route guidance and travelers 

comply with the guidance. Both Jenelius et al. (2006) and Scott (2006), in line with Nicholson 

and Du (1997), embraced a UE assignment problem in their vulnerability analyses. Jenelius et 

al. (2006) used both weighted origin-destination travel cost and unsatisfied demand to define 

performance indices and evaluate the importance of a link. Meanwhile, Scott (2006) 

established a Network Robustness Index (NRI) that uses the increase in the total system travel 

time/cost of the removal of a link to measure its criticality. Since then, the NRI has been widely 

adopted. Sullivan et al. (2010) applied such an index for evaluating the impacts of partial 

capacity reductions, meaning that capacity drops to given levels, such as 99%, 95%, etc. Knoop 

et al. (2012) and Zhou and Wang (2018) applied the index to investigate the network-wide 

effect of short-term capacity variations. Rupi et al. (2014) extended the measure by using the 

weighted sum of the total cost and the average daily traffic.  

 Nevertheless, the above time/cost-based indices suffer a shortcoming that they are not 

methodologically sound to address the problem of disconnected networks (e.g., isolating links). 

Qiang and Nagurney (2008) overcame this technical disadvantage and developed the Unified 

Network Performance Measure (UNPM), which can be interpreted as a demand-weighted 

generalization of the measure for evaluating the topological network efficiency introduced by 

Latora and Marchiori (2001) (named as the L-M measure herein). Their unified measure can 

be applied to assess the importance of either links or nodes or both and is applicable to both 

fixed and elastic demand network equilibrium problems. A number of applications to real-

world problems using this measure can be found in the studies of Nagurney and Qiang (2009) 

and Nagurney and Qiang (2012). Similar to Qiang and Nagurney (2008), Chen et al. (2012) 

were also motivated from the L-M measure and devised a network efficiency index analyzing 

the vulnerability of networks with demand uncertainty, wherein UE was extended to reliability-

based user equilibrium (RUE) to capture the effect of uncertainty on travelers’ route choice 
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behavior. Dehghani et al. (2014) extended the network efficiency index by considering the 

probability of each failure scenario, but the equilibrated travel behavior has not been taken into 

account. Jansuwan and Chen (2015) applied the network efficiency index to examine the effect 

of travelers’ perception in determining the importance of network components. It is worth 

noting that both the UNPM and network efficiency index reduce to the L-M measure under 

certain conditions.  

 Other than the prevailing NRI and UNPM measures, more measures have been introduced. 

Taylor et al. (2006) measured the network degradation based on accessibility and adopted three 

standard accessibility measures, including generalized travel cost, the Hansen integral 

accessibility index, and the ARIA index. On the other hand, Chen et al. (2007) proposed a 

utility-based index for measuring network connectivity and Bell et al. (2017) identified the 

potential flow bottlenecks of transport networks by finding cuts with the least capacity without 

knowing demand information. 

Table 1 Studies of road transport network vulnerabilities 

(a) Chronological summary of the vulnerability studies 

 

References Measures 
Degree of 

closure* 

No. of 

disrupted 

components 

Traffic assignment 

models/principles 

used 

1 
Nicholson and Du 

(1997) 
System surplus/net utility Partial  Single  

User equilibrium 

(UE) 

2 
Murray-Tuite and 

Mahmassani (2004) 
Disruption index Full Multiple  

System optimal 

 (SO) 

3 Jenelius et al. (2006) 

Weighted origin-

destination travel cost; 

unsatisfied demand 

Full  Multiple  UE 

4 Scott et al. (2006) 
Network Robustness Index 

(NRI) 
Full  Single  UE 

5 Taylor et al. (2006) Accessibility index Full Single Shortest path 

6 Chen et al. (2007) Utility-based index Full  Multiple  UE 
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7 
Nagurney and Qiang 

(2007a, b, c),  

Unified Network 

Performance Measure 

(UNPM) 

Full  Single  UE 

8 
Qiang and Nagurney 

(2008) 
UNPM Full Single UE 

9 Sullivan et al. (2010) NRI Partial  Single UE 

10 
Nagurney and Qiang 

(2012) 
UNPM Both Single UE; SO 

11 Chen et al. (2012) Network efficiency index Full  Single  
Reliability-based 

UE 

12 Knoop et al. (2012) NRI Full  Single  
Dynamic UE/Non-

equilibrium** 

13 Rupi et al. (2014) 
Weighted sum of NRI and  

average daily traffic  
Full  Single  UE 

14 Dehghani et al. (2014)  Network efficiency index Full Multiple Shortest path 

15 
Jansuwan and Chen 

(2015) 
Network efficiency index Full  Single  SUE 

16 Wang et al. (2016) Total travel cost Full Multiple UE 

17 Bagloee et al. (2017) Total travel cost Full  Multiple  UE; SO 

18 Bell et al. (2017)  

The second smallest 

eigenvalue of the graph 

Laplacian 

Full  Multiple  
No traffic 

assignment model 

19 Xu et al. (2018) 

The remaining network 

throughput after 

disruptions 

Full  Multiple  Shortest path 

20 
Zhou and Wang 

(2018) 
NRI Partial  Single  Non-equilibrium 

* Full closure refers to either the removal of the network component or setting the component’s capacity to be extremely low. 
  Partial closure refers to that a component’s capacity is characterized by different reduced levels 
**A dynamic equilibrium traffic assignment model is used for non-incident situations. For a disrupted network, a dynamic non-
equilibrium traffic simulator is used. 
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(b) Classification 

Categories References 

Topology-based  Accessibility index 5 
Capacity-based index 18, 19 

System-based 

NRI 4, 9, 12, 13, 20 
Network efficiency index 11, 14, 15 

Total travel cost 3, 16, 17 
UNPM 7, 8, 10 

Utility-based index 1, 6 
Disruption index 2 

 

 Table 1 (b) further classifies the vulnerability analysis into two categories, namely, 

topology-based and system-based, according to the reviews of Mattsson and Jenelius (2015) 

and Gu et al. (2020). The topology-based analysis relies upon the graph theory such as shortest 

path (e.g., Taylor et al., 2006; Xu et al., 2018) and maximum flow (e.g., Bell et al., 2017) 

theories to calculate the index, while the system-based analysis usually requires a traffic 

assignment model (e.g., UE, SUE or DUE model, see the last column in Table 1 (a)) to capture 

the travelers’ response to the network disruption to calculate the index. Thus, the system-based 

analysis is more suitable to be applied in a congested network as the impact of travel flow on 

transportation supply is considered (Gu et al., 2020).  

  As indicated by Table 1, most studies only looked at a single component failure in order 

to obtain their criticality ranking. As to the studies that considered multiple component failures, 

they did not consider the possibility of partial closure. Therefore, this study aims at addressing 

this research gap by developing an approach for identifying the most critical combination of 

network component disruptions, where various degradations of the network component’s 

capacity are considered. To identify the critical components, most of the existing studies use 

the brute-force simulation-based approach (e.g., Taylor et al., 2006; Scott et al., 2006; Taylor, 

2007; Chen et al., 2007; Qiang and Nagurney, 2008; Dehghani et al., 2014, etc.) or the 

optimization approach (e.g., Wang et al., 2016; Bagloee et al., 2017; Xu et al., 2018). In the 

brute-force approach, each link or node or a combination of links and nodes is iteratively 
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removed, and the corresponding consequence is estimated based on the measure adopted. 

However, the number of possible combinations can be substantial, so that it becomes time-

consuming to enumerate all possible combinations and to assess their outcomes for a real 

network. Meanwhile, the brute force method of removing links or nodes implicitly assumes 

that a network component completely fails after the degradation. However, when a disaster 

occurs, the affected network components may still be operational, but at a degraded capacity 

level. Thus, the removal method can be best suited for analyzing extreme destruction events; 

otherwise, it can overestimate the damage of some components. For the optimization approach, 

an integer programming model is formulated to determine whether a network component is 

critical or not. Existing optimization studies focus on either devising a formulation that can be 

solved by an off-the-shelf solver (e.g., Xu et al., 2018), or developing exact solution methods, 

such as Bender’s decomposition (e.g., Bagloee et al., 2017) and linearization (e.g., Wang et al., 

2016). Nevertheless, the preceding optimization models overlook the stochastic occurrence of 

disruption and partial closure, which will induce additional complexity that restrains the 

application of their methodologies to a large network.  

   To address the above issues, this paper develops a probabilistic approach for identifying 

the most critical combination of network component disruptions and analyzing network 

vulnerability under equilibrium traffic flows. Instead of measuring the changes due to the 

removal of one component, the study postulates a more realistic assumption that multiple 

network components could fail simultaneously, and both the degradation degrees and the 

occurrence of the failures are stochastic. The network vulnerability is measured by the 

maximum expected impact, which extends the unified network performance measure proposed 

by Qiang and Nagurney (2008) by incorporating the likelihood of the occurrence of the failures. 

To obtain this value and to determine its corresponding vulnerable infrastructure, a bi-level 

optimization model is developed. The upper-level problem is to identify the most critical 
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combinations of network components, while the lower-level problem is the user equilibrium 

traffic assignment problem that captures travelers’ responses to disruptions. This traffic 

assignment model is considered appropriate for the case of prolonged roadblocks due to natural 

disasters, because of the availability of the current advanced traveler information system and 

the scope for traffic to adjust and move towards a new equilibrium state (Chen et al., 2007). 

It is well-known that bi-level programs are inherently non-convex and challenging to 

solve (Meng et al., 2001; Meng and Yang, 2002; Ban et al., 2006). Concerning the solution 

method, metaheuristics are gaining popularity in handling bi-level transportation optimization 

problems, owing to their insensitivity to the mathematical property of the problems. A number 

of metaheuristics or their hybrids have been extensively applied for tackling bi-level 

transportation optimization problems, including the Genetic Algorithm (GA) (e.g., 

Unnikrishnan and Lin, 2012), Ant Colony Optimization (e.g., Vitins and Axhausen, 2009), 

Chemical Reaction Optimization (e.g., Szeto et al., 2014), and Artificial Bee Colony (e.g., 

Jiang et al., 2013; Szeto and Jiang, 2012, 2014). This study adopts an evolutionary algorithm 

named the Clonal Selection Algorithm (CSA) to solve the proposed bi-level optimization 

problem. The CSA is inspired by Burnet’s clonal selection theory, which exploits the diversity 

and learning properties of the acquired immune system of vertebrates (Brownlee, 2007). It has 

been reported that the algorithm is capable of solving several benchmark problems in machine 

learning and optimization (Castro and Zuben, 2000, 2002) and the algorithm performs better 

than other heuristics such as GA in some cases (Ulutas and Kulturel-Konak, 2011). In the field 

of transportation research, to the best of our knowledge, only Miandoabchi et al. (2012a, 2012b, 

2013) applied the algorithm to solve their studied bi-level transportation network design 

problems, which motivates us to investigate its capability for solving the proposed bi-level 

optimization problem.  

 To sum up, the main contributions of this paper include the following: 
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1. Proposing a performance measure to assess network vulnerability, in which the 

consequence and likelihood of multiple network component failures are considered 

simultaneously. Compared with existing measures, the innovation of the proposed measure 

is that it considers both the concurrent failures of a set of network components and the 

probability of such a scenario as well as the various degrees of the components’ disruptions. 

This is more realistic for non-extreme disruptions compared with the consideration in 

existing studies that a set of network components completely fails after the degradation;  

2. Developing a bi-level optimization model to identify the most critical combination of 

network component disruptions based on the proposed measure, while travelers’ response 

to the network failure is captured via the lower-level traffic assignment model;  

3. Proposing the Clonal Selection Algorithm to solve the bi-level optimization model and 

demonstrating the performance of this algorithm. To our best knowledge, the performance 

of such an algorithm has not been examined in the network vulnerability literature.  

This remainder of this paper is organized as follows: Section 2 presents the model 

formulation. Section 3 introduces the CSA solution approach. Numerical examples are 

presented and discussed in Section 4. Finally, Section 5 provides concluding remarks and future 

extensions.  

2 Formulation  

We consider a general network ( ),G V A , where V  and A , respectively, denote the set of 

nodes and the set of links. Based on this notation, we present the lower-level traffic assignment 

model followed by the upper-level formulation. Further notations are explained when used. 

2.1 Lower-Level Problem   

In this study, the transportation network under consideration is subject to a range of uncertain 
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failure scenarios and is used by a predefined set of OD demands under the user equilibrium 

condition (Wardrop, 1952), which is formulated as follows: 

   
0

, ,
0

w w
pw w

p w w
p

t
x p w

t
π
π

> ⇒ = ∀ ∈ ∈= ⇒ ≥
  , (1) 

where w
px   is the flow of traffic assigned to path p between OD pair w, w  is the set of routes 

connecting OD pair w,   is the set of OD pairs, w
pt  is the travel time on route p between OD 

pair w, and wπ  is the minimum travel time between OD pair w. The equilibrium flows are 

subject to the following flow conservation and non-negativity constraints:  

   
w

w w
p

p

x d
∈

=∑


, w∀ ∈  and (2) 

  0, ,w w
px w p≥ ∀ ∈ ∈  , (3) 

where wd  is the travel demand associated with OD pair w . Beckmann et al. (1956) formulated 

the UE traffic assignment problem as the following minimization problem.  

   
0

min ( , )
av

a a
a A

c v C dv
∈
∑ ∫v

         (4) 

subject to  Eqs. (2) and (3), and 

   
w

w a
a p p

w p

v x δ
∈ ∈

= ∑ ∑
 

, a A∀ ∈ ,  (5) 

where av  represents the traffic flow on link a and ( )a a A
v

∈
=v ;  aC  is the capacity of link a, 

which is subject to the disruptions determined by the upper-level problem. Given av  and aC ,  

( , )a a ac v C  computes the travel time on link a. Following Lo and Tung (2003), we adopt the 

commonly used Bureau of Public Roads (BPR) link performance function in this study, which is  

     
4

,0( , ) 1 0.15 ,a
a a a a

a

vc v C t a A
C

  
 = + ∀ ∈    

,  (6) 
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where ,0at  denotes the free-flow travel time of link a. a
pδ  is a binary indicator defined as 

     
1 if link  is on route ,
0 otherwise.

a
p

a p
δ


= 


  (7) 

It is worth noting that the objective function is formulated in terms of link flow, while 

the constraints are formulated in terms of route flow. Hence, the definitional constraint (5) is 

necessary to interrelate the link and the route flows. Beckmann et al. (1956) showed that 

solving this mathematical programming formulation is equivalent to solving the user 

equilibrium traffic assignment problem. The equivalency can be established by verifying that 

the Karush-Kuhn-Tucker (KKT) necessary conditions for a minimum point of the problem (see 

Sheffi 1985, pp. 63 – 66) are exactly the conditions of user equilibrium. The sufficient 

conditions for the uniqueness of user equilibrium are as follows: the feasible region is convex 

and the objective function is strictly convex in the vicinity of the optimal link flow vector *v  

(and convex elsewhere). The convexity of the feasible region is guaranteed by the linearity of 

the constraints, while the convexity of the objective function is assured as long as the link cost 

function is strictly convex. One should note that the above analysis is only confined to link 

flow, and indeed the equilibrium solution is not unique with respect to route flow (Sheffi, 

1985). Many efficient solution algorithms are later developed and used to solve Beckmann et 

al.’s (1956) mathematical programming formulation and its extensions effectively. Examples 

of the algorithms can be found in the studies of Bar-Gera (2002) and Perederieieva et al. (2015). 

Nevertheless, it is worth noting that the above formulation only applies to a single modal traffic 

equilibrium where the link cost functions are separable (Nagurney, 1984). 

2.2 Upper-Level Problem   

Given the equilibrium flows, the objective of this study is to identify the most critical 

combination of network component failures that induces the most severe disruption to a 
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network. The severity of the disruption to a network is measured by a novel impact value 

developed based on the Unified Network Performance Measure (UNPM, Qiang and Nagurney 

2008). To start with, we briefly recall the UNPM, which is defined by  

   ( ) ( )
*

*

1 w

w
w

dε
π∈

= ∑v
v

, (8) 

in which   is the cardinality of the set of OD pairs   (i.e., the number of OD pairs in the 

network) and wπ  is the equilibrium travel time between OD pair w. The above equation states 

that the UNPM value depends on the equilibrated link flow vector *v  obtained by solving the 

lower-level traffic assignment problem.   

To elaborate our innovation, which consists of adopting a probabilistic approach to 

incorporating the likelihood together with the consequence of disruptions, we first define that 

the components whose capacity could degrade are vulnerable. In a transport network, both 

nodes and links can be degraded. Nevertheless, as stated by Nicholson and Du (1997), any 

node can be treated as a collection of nodes with connecting arcs and, thus, node degradations 

can be treated as link degradations. Therefore, without loss of generality, the vulnerable 

components in a transport network refer to the links of the network in this study. For vulnerable 

component a, let integer l  be its capacity reduction level between [ ]0, aω , where aω  is the total 

number of non-zero capacity reduction levels. The degradation of all vulnerable components 

can be described using a joint distribution where the marginal distribution of each component 

can be depicted by the following two equations: 

 { }| 0 1, 0,1,..., ,l l
a a a al a Aψ ψ ωΨ = ≤ ≤ = ∀ ∈  and (9) 

   '

' 0
| 0 1, 1, 0,1,..., ,

a
l l l

a a a a a
l

l a A
ω

φ φ φ ω
=

 
Φ = ≤ ≤ = = ∀ ∈ 

 
∑ . (10) 
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In Eq. (9), l
aψ  denotes the proportion of capacity degradation with respect to the original 

capacity of component a when the reduction level is l. To keep the notation simple, we define 

0 0aψ =  and 1a
a
ωψ =  for the normal and total failure scenarios of component a, respectively. Eq. 

(10) expresses the requirement of the probability mass function where l
aφ  denotes the 

probability of capacity degradation of component a at level l.  

The decision variable vector of the upper-level optimization problem is { ay , a A∀ ∈ } 

where ay  is the capacity reduction level of component a. After a disruption, the probability that 

ay  is equal to a certain realized capacity reduction level is given by  

   ( )Pr al
a a ay l φ= = , (11) 

where al  denotes the realized capacity reduction level of component a.   

When a disruption occurs, one or more components’ capacities can drop below their 

design capacities simultaneously and we define this as a failure scenario. One failure scenario 

corresponds to a set of realized network components’ capacity reduction levels in this scenario. 

Hence, a failure scenario can be mathematically expressed as 

   { }1 1 2 2, ,..., ,A Ay l y l y l S= = = = ∀ ∈y y , (12) 

where S  denotes all the possible failure scenarios. Hence, the probability of the occurrence of 

such a failure scenario ( )R y  can be calculated by the chain rule of probability: 

 

( ) ( )
( ) ( )
( ) ( )

1 1 2 2

1 1 1 11 1 1 1 2 2

2 2 1 1 1 1

, ,...,

        Pr ,..., Pr ,..., ...

            Pr Pr , .

A A

A A A A A A A A

R R y l y l y l

y l y l y l y l y l y l

y l y l y l S

− − − − − −

= = = =

= = = = ⋅ = = = ⋅ ⋅

= = ⋅ = ∀ ∈

y

y

 (13) 

To calculate such a joint probability, the conditional probabilities involved can be estimated 

from empirical data, for example, via the conventional risk-modeling framework (Koks et al., 
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2019). The determination of such input data is an important issue, but it is beyond the scope of 

the present study. 

 As a special case, when the capacity degradation on each component is independent of 

the others, the probability of occurrence of a failure scenario ( )R y  reduces to the product of 

all the marginal probabilities: 

   ( ) ( )Pr ,a aa A
R y l S

∈
= Π = ∀ ∈y y . (14) 

Given a failure scenario defined by y , the capacity reductions of all vulnerable links 

can be retrieved from the set defined by Eq. (9) and, accordingly, the capacity for each link is 

then obtained by  

 ( ) ( ),0 1 ,ay
a a a aC y C a Aψ= − ∀ ∈ .  (15) 

The reduced capacity induces the changes in the travelers’ route choice so as the 

resultant flow pattern. Accordingly, *v   can be expressed as a function of capacity reduction 

levels, ( )*v y , and the UNPM defined in Eq. (8) can be written as ( )( )*ε v y . Define 

{ }0 0 0,ay a A= = ∀ ∈y  as the base scenario where all network components perform at their 

design capacities and ( )( )* 0ε v y  as the corresponding UNPM. Following Qiang and Nagurney 

(2008), the proposed impact value of a failure scenario y  is given by the following severity 

indicator: 

     ( ) ( )( ) ( )( )
( )( )

* 0 *
0

*
,I S

ε ε

ε

−
= ∀ ∈

v y v y
y y y

v y
. (16) 

The larger the value of ( )0I y y , the more disruptive to the network the failure scenario is. If 

( )0 0I =y y , it implies that the failure scenario causes no impact on the network, while 

( )0 1I =y y  means that the network is completely damaged and can no longer serve any traffic. 
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 Given ( )0I y y  and ( )R y , we can then derive the expected impact value associated with 

failure scenario y  as   

   ( ) ( ) ( )0 ,e I R S= ⋅ ∀ ∈y y y y y .  (17) 

Once all the scenarios are known and their impact values are computed, the ‘worst’ disrupted 

scenario of the network is determined by  

   ( )* arg max
S

e
∈

=
y

y y . (18) 

2.3 Bi-level Formulation  

Based on the preceding sub-problem formulations, we can develop the following bi-level 

program to solve for *y . 

Upper-level problem:  

   ( )max e
y

y   (19) 

 subject to    

   Eqs. (8), (13), (15), (16), and (17). 

Lower-level problem:   

   ( )( )
0

min ,
av

a a a
a A

c v C y dv
∈
∑ ∫v

 (20) 

 subject to  

   Eqs. (2), (3), and (5).  

 However, in the above formulation, the variable ay  appears in the superscript in Eq. 

(15). To amend this, we introduce an auxiliary binary variable l
az  to the upper-level problem 

and replace Eq. (15) with the following constraints: 

   ( )1 , , , 0,1,...,l
a a a a a ay l M z a A y S l ω− ≤ − ∀ ∈ ∈ ∈ =y , (21) 

   ( )1 , , , 0,1,...,l
a a a a a ay l M z a A y S l ω− ≥ − ∀ ∈ ∈ ∈ =y , (22) 

   { }0,1 , , 0,1,...,l
a a az a A l ω∈ ∀ ∈ = , (23) 



 

18 

 

   
0

1,
a

l
a

l
z a A

ω

=

= ∀ ∈∑ , and (24) 

   ,0
0

1 ,
a

l l
a a a a

l
C C z a A

ω

ψ
=

 
= − ∀ ∈ 

 
∑ .  (25) 

Conditions (21)-(23) ensure that if a ay l= , then 1l
az = ; otherwise 0l

az = . Eq. (25) ensures that 

exactly one of the reduction level is chosen. Eq. (25) reformulates Eq. (15) using the binary 

variable l
az .  

 The revised upper-level formulation is given below.  

Revised upper-level problem:  

   ( )
,

max e
z y

y   (26) 

 subject to    

   Eqs. (8), (13), (16), (17), (21)-(25), 

where { }, , 0,1,...,l
a az a A l ω= ∀ ∈ =z . 

3 Solution Method 

One exact method to solve the bi-level formulation is to enumerate all the possible failure 

scenarios, which, however, is computationally prohibitive for realistic network applications. 

Therefore, this study adopts a meta-heuristic approach, i.e., the Clonal Selection Algorithm 

(CSA) to solve the bi-level optimization problem. 

3.1 Overview of the Algorithm 

The procedure of the CSA used in this study is as follows: 

Step 1. Initialize the population. 

Step 1.1. Generate popn  solutions, where popn  is the predefined population size. 

Step 1.2. Compute the fitness value of each solution, which is ( )e y  defined in Eq. (17). 

Step 2: Repeat the following steps until a pre-defined termination criterion, e.g., a fixed number 

of iterations or a fixed number of the lower-level problems solved, is satisfied.  
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Step 2.1. Select clone popnβ    solutions from the population based on the fitness value, where 

cloneβ  is a parameter to determine the number of solutions to be cloned (replicated) and 

⋅    is the operator that truncates a real number to its closest integer. 

Step 2.2. Replicate (clone) each selected solution to form the clone population. 

Step 2.3. Hypermutate each solution in the clone population. 

Step 2.4. Generate receptor popnβ    candidate solutions, where receptorβ  is the proportion of the 

population that undergoes receptor editing, compute their fitness values, and add them 

to the clone population. 

Step 2.5. If the predefined termination criterion is satisfied, then stop and output the best 

solution; otherwise, proceed to Step 2.6. 

Step 2.6. Select the best popn  candidate solutions from the existing and clone populations 

to form the sorted population for the next iteration. 

Step 2.7. Return to Step 2.1. 

In Step 1.2, the fitness value of each candidate solution is obtained by calculating the 

upper-level objective function, ( )e y , which involves solving the lower-level traffic assignment 

problem. In Step 2.2, the total number of clones is fixed. The solution to be cloned is 

determined by a roulette wheel selection method based on its fitness value. Accordingly, 

solutions with higher fitness values are cloned more frequently. Step 2.3 is described in Section 

3.3. 

3.2 Solution Representation and Generation  

To apply the CSA to solve the bi-level optimization problem efficiently, the solution 

representation should be designed to cater to the solution structure of the problem. We encode 

the capacity reduction levels for reducing the length of the solution representation. Figure 1 
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illustrates the solution representation for one failure scenario. Each bit corresponds to one 

network component and consists of its realized capacity reduction level al  in this scenario. The 

number of bits is the number of network components that could fail (i.e., vulnerable 

components). The initial solution is generated by randomly selecting a potential capacity 

reduction level for each component.  

 

    
Fig. 1 Solution representation 

3.3 Hypermutation  

To carry out the hypermutation process in Step 2.3, two basic operators, denoted as Operator I 

and Operator II, are designed. They are described as follows.  

Operator I: Reassign the , 1, 2,...,al a A=  value of each bit in the candidate solution.  

Operator II: Randomly perform one of the following procedures for popnθ ⋅   times, where 

θ  is an input parameter between 0 and 1.  

a) Add a new disrupted component (i.e., randomly select an undisrupted component and 

change the corresponding al  from 0 to a random integer value between [ ]1, aω ); if all the 

vulnerable components are disrupted, no change will be made to the candidate solution. 

b) restore a currently disrupted component to its original capacity (i.e., randomly select a 

disrupted component and set the corresponding al  to be 0).  

c) swap the values of a randomly selected bit representing an undisrupted network 

component (i.e., 0al = ) and a randomly selected bit representing a disrupted network 

component (i.e., 0bl ≠ ).  

    ……     
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 By varying the probability of using these two operators, the hypermutation process can put 

different priorities associated with conducting the neighbor search and generating new 

solutions. One of the following is performed randomly: 

Mutation 1 Randomly increase or decrease the level of capacity reduction of each 

component by one. If ( )0 a a al l ω= = , then only increase (decrease) the capacity 

reduction level. 

Mutation 2: 10% probability to perform Operator I and 90% probability to perform 

Operator II with 0.2θ = . 

Mutation 3: 20% probability to perform Operator I and 80% probability to perform 

Operator II with 0.4θ = . 

Mutation 4: 30% probability to perform Operator I and 70% probability to perform 

Operator II with 0.6θ = . 

Mutation 5: 40% probability to perform Operator I and 60% probability to perform 

Operator II with 0.8θ = . 

Mutation 6: 50% probability to perform Operator I and 50% probability to perform 

Operator II with 1.0θ = . 

4 Numerical Examples  

4.1 Comparison between the proposed and deterministic approaches 

To demonstrate the property of the proposed probabilistic approach to determining the critical 

combination of network component failures, we conducted experiments to compare the results 

obtained from the probabilistic approach with two deterministic approaches. The first approach 

was developed by Qiang and Nagurney (2008) while the second one was by Wang et al. (2016), 

which uses total travel cost as the vulnerability measure. The former is a special case of our 

proposed measure with the same probability of occurrence to all scenarios, while the latter 
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considers multiple component failures without considering partial closures as well as the 

probability of failures.  

For illustration purposes, we adopted a four-node network shown in Figure 2. In this 

example network, there are two OD pairs: OD pair 1-3 and OD pair 1-4. Their demands were 

set as 13 10d =  and 14 20d = , respectively. The link data is given in Table 2(a). It is assumed 

that all links possess the same set of capacity reduction proportions and the probability 

distribution as shown in Table 2(b). Moreover, to simplify the calculation, it is assumed that 

the failure probability of each link is independent of others. The classic BPR function was 

adopted to calculate the link travel time. To obtain the optimal solution to the small network 

using the proposed probabilistic approach, a brute force method was adopted and all possible 

scenarios that preserve the connectivity of all OD pairs were examined. To apply the method 

by Wang et al. (2016), it is required specifying the number of vulnerable components. In our 

experiment, the number increased from one to three, and all the combinations of components 

that preserve the connectivity of each OD pair were examined. The results obtained from the 

two deterministic methods and the proposed probabilistic approach are presented in Table 3. 

 
   Fig. 2 Four-node network   

Table 2 Data for the network in Figure 2  

(a) Link data  

 Link a Link b Link c Link d Link e 

Free flow travel time 10 10 10 10 10 

Capacity 100 20 60 10 20 

(b) Link disruption probability matrix  
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 Probability l
nφ  

Capacity reduction 

proportions ( l
nψ ) Link a Link b Link c Link d Link e 

0.00 0.35 0.35 0.35 0.35 0.35 

0.30 0.30 0.30 0.30 0.30 0.30 

0.60 0.30 0.30 0.30 0.30 0.30 

1.00 0.05 0.05 0.05 0.05 0.05 

  Comparing Table 3(a) with Table 3(c), it is observed that the result of the proposed 

probabilistic approach differs from that of Qiang and Nagurney’s  (2008) in the following 

aspects: 1) More than one component disruption is involved in the most critical scenario 

identified; 2) The components with zero impact values in Table 3(a) could also contribute to 

the deterioration of the network performance in the most critical failure scenario, for example, 

link a. This is because once links d and e are disrupted, travelers going to their destinations 

will divert to alternative paths (a-b) and (a-c) to reach destination nodes 3 and 4, respectively. 

Accordingly, if link a’s capacity deteriorates simultaneously with links d’s and e’s, travelers’ 

travel time increases; 3) Neglecting partial capacity degradation and its probability of 

occurrence could misestimate the worst scenario, in which not all the disrupted links are 

completely broken down. This is because the worst scenario, defined by the expected impact 

value, captures both the consequence and the probability of the occurrence of failures. A 

scenario that some links are completely broken down could induce a high consequence, but the 

probability of occurrence of such a scenario is low. For example, in Table 3 (c), the capacities 

of links d and e are only reduced by 0.6. If instead both links were completely broken down, 

the resultant scenario induces a higher impact value, but the associated occurrence probability 

is much lower. Comparing Table 3(b) with Table 3(c), it is noticed that the total travel cost of 

the critical scenario is substantially larger than that in Table 3(b). This is due to the feature that 



 

24 

 

the proposed approach captures partial failures of the network component, allowing more levels 

of capacity reduction without destroying the connectivity between OD pairs.  

Table 3 Comparison with the deterministic approaches  

(a)  Qiang and Nagurney’s (2008) approach     (b) Wang et al.’s (2016) approach 

Ranking Link Impact value*  Ranking Link combination Total cost 

1 d 0.0101  1 (d, e) 611.15 

2 e 0.0046  2 (c, d) 606.26 

3 a/b/c 0.0000  3 (b, e) 602.79 

(c) The result of the most critical scenario obtained from the proposed probabilistic approach 

Link a b c d e 

Capacity reduction proportion 1.00 0.00 0.00 0.60 0.60 

Impact value I 0.9501 

Scenario probability R 0.0006 

Expected impact e  0.0005 

Total cost  12018.75 

*The impact value is equivalent to the importance of a network component in the study of Qiang and Nagurney 
(2008) 

Interestingly, by comparing the three methods, it is found that the top two critical 

components identified by Qiang and Nagurney (2008) form the most critical failure scenario 

found by Wang et al. (2016). Their capacity degradations are also significant (i.e., by 60%) in 

the most critical failure scenario found in this study. This implies that different approaches may 

identify similar critical network components involved. Nevertheless, our approach can discover 

some components that are not found by other existing approaches. Moreover, as shown in Table 

4, the path flow distributions and travel times obtained by various approaches are completely 

different, implying that the impacts are also different. 

Table 4 Comparison of link flow and travel time obtained by different approaches  

  

Qiang and Nagurney 

(2008) 
Wang et al. (2016) 

Proposed Probabilistic 

Approach 

  
Removing link d Removing (d, e) Most critical scenario 

OD Path Flow Travel Time Flow Travel Time Flow Travel Time 

1-3 a-b 10.00 20.626 10.00 20.706 0.00 400.63 
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d 0.00 - 0.00 - 10.00 400.62 

1-4 a-c 0.00 20.001 20.00 20.204 0.00 400.62 

 
e 20.00 20.000 0.00 - 20.00 400.62 

4.2 Algorithmic Performance  

To test the performance of the proposed algorithm, the CSA was coded in C++ and compiled 

using Microsoft Visual Studio Community 2017. All the tests were run on a desktop with an 

Intel® Xeon (TM) E5-2697M CPU @2.3 GHz and 12.0 GB RAM. The parameters for the 

CSA were set as follows: 20popn = , 0.8cloneβ = , 0.2receptorβ = , and the CSA was set to stop 

after evaluating 10000 UE solutions. The experiments were carried out using Sioux-Falls and 

Anaheim networks. Their link and demand data were obtained from Transportation Networks 

for Research Core Team (2017). To solve the lower-level traffic assignment problem, the bi-

conjugate Frank–Wolfe method (CFW, Mitradjieva and Lindberg, 2013) was adopted, since it 

has been concluded by Perederieieva (2015) that, compared with other state-of-the-art methods, 

CFW can achieve a good trade-off between memory consumption and solution accuracy for 

large instances.  

4.2.1 Comparison of the performance between CSA and the brute-force method 

In this test, we randomly selected 10 links from the Sioux-fall network as vulnerable links and 

each link has the same failure probability distribution with 3 levels of capacity reduction 

proportion (i.e., reduction proportion equals 0.2 with a probability of 20%, equals 0.4 with a 

probability of 20%, and remains unchanged with a probability of 60%). The brute force method 

was applied to enumerate all the possible solutions in order to obtain the benchmark result for 

this network. In comparison, the CSA algorithm was run 20 times with different initial seeds 

for generating random numbers. Moreover, we varied the tolerance in determining the 

termination condition of the traffic assignment problem. The value was reduced from 1.0e-2 to 
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1.0e-6 and the results are presented in Table 5. 

Table 5 Comparison of the performance between CSA and the brute-force method 

 

Capacity reduction proportion of the 

vulnerable links 

Fitness 

(1.0e-5) 

Computation time 

(Seconds) 

Tolerance 1 7 9 17 32 44 55 58 71 75 

Brute 

force CSA* 

Brute 

force CSA** 

1.0e-2 0 0 0 0 0 0.4 0 0 0 0 1.78 1.78 717.4 121.1 

1.0e-3 0 0 0 0 0 0 0 0 0.4 0 2.56 2.56 1544.8 255.1 

1.0e-4 0 0 0 0 0 0 0 0 0.4 0 2.23 2.23 3299.7 546.2 

1.0e-5 0 0 0 0 0 0 0 0 0.4 0 2.13 2.13 8331.3 1372.2 

1.0e-6 0 0 0 0 0 0 0 0 0.4 0 2.12 2.12 33316.5 5262.2 

*All 20 runs of CSA successfully obtain the same fitness value 

** Average time of 20 runs 

  Table 5 shows that except when the tolerance is 1.0e-2, both experiments identify the 

same most critical scenario, in which the capacity of link 71 is reduced by 40%. This implies 

that when the tolerance is less than a threshold value, it does not affect the determination of the 

most critical scenario. However, the tolerance still has a minor effect on fitness values (i.e., 

objective function values) because the tolerance affects the convergence of the bi-conjugate 

Frank–Wolfe method for the lower-level problem and hence the flow values used to determine 

the corresponding objective function value. For the experiments, the CSA successfully attains 

the same fitness values as those from the brute force method at a considerably lower 

computation time. The results demonstrate that the proposed CSA algorithm could find the 

optimal solution to the problem considered with a significantly reduced computational burden.  

4.2.2 Comparison of the performance between CSA and GA 

The performance of the CSA was then compared with that of GA using the Anaheim network. 

We randomly generated 100 vulnerable links, and, for simplicity, all the links are assumed to 

be subject to 4 levels of capacity reductions. For a fair comparison, the GA used the same 

solution representation and initialization procedure as in the proposed CSA. In GA, two 
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operators, i.e., mutation and crossover operators are designed to search for new solutions. For 

the mutation operator, the hypermutation mechanism developed for the CSA was adopted. For 

the crossover operator, a one-point crossover operator was used. The crossover rate and 

mutation rate were set to be 0.8 and 0.2, respectively, and the population size was set to be the 

same as that of the CSA. In comparison, both two algorithms were run 20 times and stopped 

when a predefined number of lower-level problems, which is 20000, was solved. Such a 

termination criterion is adopted for a fair comparison between the two algorithms.  

The results presented in Table 6 state that on average, CSA obtained better solutions 

than GA, but took more computation time than GA did. Theoretically, to compare the 

complexity of the two algorithms, we can decompose the computation tasks into two parts. One 

is evaluating the newly generated solution by solving the lower-level traffic assignment 

problem, which induces the main computation burden. In every iteration of GA, two parents 

produce two offspring; hence, the total number of newly generated solutions equals the 

population size of the GA. In CSA, the number is determined by the size of cloned solutions, 

which can either be static or increase over iterations (Ulutas and Kulturel-Konak, 2011). Hence, 

depending on the cloning method, the number of solutions generated in CSA varies. The other 

parts of the computation task include several procedures in the algorithm, including (hyper) 

mutation (used by both GA and CSA), one-point crossover (used by GA), and sorting algorithm 

(used by both GA and CSA). For the (hyper) mutation designed in Section 3.3, the complexity 

of Operator 1 is linear with respect to the number of vulnerable components in the network, 

while that of Operator 2 is linear with respect to the size of the population. For the one-point 

crossover adopted in this study, its complexity is also linear with respect to the number of 

vulnerable components. For the sorting algorithm, its complexity depends on the data structure 

and algorithm used (Cormen et al., 2009). In our implementation, we have tried to ensure the 

fairness of the comparison via using the common function and code as much as possible.   
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Table 6 Comparison of results between CSA and GA 

 
CSA GA 

Average of Fitness (10-47) 4.22  1.04 

Average CPU Time (second) 3362  2773 

Best Fitness (10-46) 7.12 1.74 

5 Concluding Remarks 

This paper develops a probabilistic approach for analyzing network vulnerability. Instead of 

determining the criticality of a single network component, the paper proposes to evaluate 

network failure scenarios considering both the consequences and the probabilities of 

simultaneous failures of multiple network vulnerable components. A bi-level optimization 

model is formulated to obtain the most critical failure scenario. The Clonal Selection Algorithm 

is adopted to solve the bi-level optimization model. The numerical studies were conducted to 

compare the proposed probabilistic approach with the two deterministic approaches. The 

results show that neglecting partial capacity degradation and its probability of occurrence could 

underestimate the impact of the worst scenario and different vulnerability assessment 

approaches may identify similar critical components, but different equilibrium traffic flow.  In 

addition, our approach can discover some components that are not found by other existing 

deterministic approaches. Moreover, the results of computational experiments demonstrate the 

effect of convergence tolerance used in solving the user equilibrium assignment problem in 

determining the critical components and show that the proposed CSA algorithm outperforms 

GA in finding better solutions in a large instance on average. 

The study opens various future research directions for network vulnerability and 

sustainability analysis: 1) The lower-level problem is formulated as a static traffic assignment 

model. It could be interesting to adopt a dynamic traffic assignment model (e.g., Jiang et al., 

2016; Wang et al., 2018) in future studies to investigate how the network vulnerability 
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measures (e.g., total travel time) change with a higher temporal and spatial resolution (see, for 

example, Nagurney and Qiang, 2008); 2) The lower-level problem only considers a single 

transport mode, wherein the link travel time functions are assumed to be separable. When 

multimodal traffic equilibrium is considered, the assumption is required to be relaxed. 

Therefore, one of the future directions should be developing a generalized lower-level 

formulation, such as utilizing a variational inequality formulation, to handle asymmetric 

multimodal traffic network equilibrium problems; 3) The lower-level problem assumes 

deterministic travel time and ignores the stochasticity in travel time as well as travelers’ 

response to travel time uncertainty. In future studies, these issues can be addressed by utilizing 

a reliability-based assignment framework (e.g., Szeto et al., 2011a,b; Jiang and Szeto, 2016), 

leading to reliability-based network design models (e.g., Chootinan et al., 2005; Chen et al., 

2010, 2011; Yim et al., 2011); 4) In this study, we only compared the performance of CSA 

with GA. There are other recent metaheuristics with good success. Therefore, one possible 

future research direction is to compare the performance of CSA with other metaheuristics; 5) 

This study only considers the economic dimension of sustainability. However, other 

dimensions could be incorporated into the proposed framework to form a multiobjective bi-

level optimization model (e.g., Chen et al., 2010; Szeto et al., 2015; Jiang and Szeto, 2015; Xu 

et al., 2016). This extension is left for future studies.  
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