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Abstract 

This study defines the price of anarchy for general reliability-based transport network 

design problems, which is an indicator of inefficiency that reveals how much the design 

objective value exceeds its theoretical minimum value due to the risk averse and selfish 

routing behavior of travelers. This study examines a new problem, which is a 

reliability-based continuous network design problem under cost recovery. In this problem, 

the variations of system travel time and path travel times, the risk attitudes of the system 

manager and travelers, congestion toll charges, capacity expansions, and cost recovery 

constraint are explicitly considered. The design problem is formulated as a min-max 

problem with the reliability-based user equilibrium constraint. It is proved that the price 

of anarchy for this problem is bounded above, and the upper bound is independent of 

travel time functions, demands, and network topology. The upper bound is related to the 

travel time variations, the value of reliability, and the value of time.  

 

Keywords: Inefficiency, price of anarchy, transport network design problem, 

reliability-based user equilibrium 

 

1 Introduction 

The price of anarchy (PoA), which was first termed by Koutsoupias and 

Papadimitriou (1999), measures the inefficiency of the traffic assignment problem. It 

reveals how much the system performance measure would exceed its theoretical 

minimum value when travelers choose routes selfishly. The PoA for traffic assignment 

problems has received great research attention. Four major lines of research have arisen 

(Roughgarden and Tardos 2002; Chau and Sim 2003; Correa et al. 2004; Roughgarden 

2005; Xiao et al. 2007; Han and Yang 2008; Han et al. 2008; Guo et al. 2010; Huang et al. 

2011; Wang et al. 2014; Szeto and Wang 2015), which are based on four considerations: 

arc capacity constraints; demand and link travel time/cost functions; road pricing; and 

extensions of traditional user equilibrium principles and multiple user classes. The PoA 
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for traffic assignment problems is well understood by scholars. However, the PoA for 

other problems, e.g., network design problems (NDPs), has rarely been studied. 

The NDPs have broad definitions (Farahani et al. 2013). The most popular family of 

NDPs in the literature is the family of capacity expansion NDPs (Abdulaal and LeBlanc 

1979; Dantzig et al. 1979; LeBlanc and Boyce 1986; Ben-Ayed et al. 1988; Friesz et al. 

1993; Yang 1997; Yang and Bell 1998; Meng and Yang 2002; Chiou 2005; Szeto and Lo 

2005; Szeto et al. 2010; Szeto et al. 2014), which optimizes the system performance 

measures of the road networks by determining the optimal capacity expansions (i.e., the 

additional capacities added to existing roads and/or the capacities of new roads) and the 

flow pattern (i.e., the traffic flow distribution in the road network). Some of these NDPs 

are also known as user equilibrium network design problems (UE-NDPs) because they 

capture the selfish routing behavior of travelers, which means that the flow pattern must 

satisfy the user equilibrium (UE) constraints. These NDPs also have one common 

feature—they assume that the travel demands and link capacities are deterministic.  

In reality, there are uncertainties in the travel demands and road supplies due to 

day-to-day travel demand fluctuation, special events, bad weather, road accidents, road 

construction activities, etc. The demand and supply uncertainties lead to system travel 

time and path travel time variations, which cannot be ignored by the system manager and 

travelers. The reliability-based user equilibrium network design problems (RUE-NDPs) 

are developed based on the deterministic UE-NDPs by considering demand uncertainty 

and/or supply uncertainty. Chen et al. (2011) conducted a detailed review of the family of 

RUE-NDPs (Chootinan et al. 2005; Chen et al. 2007; Ng and Waller 2009; Sumalee et al. 

2009; Yin et al. 2009; Chow and Regan 2011; Szeto and Wang 2016). Most existing 

studies focus on the modeling, solution methods, and applications of the capacity 

expansion RUE-NDPs. However, the PoA for the capacity expansion RUE-NDPs, which 

is an important indicator for evaluating how much the design objective function value 

exceeds its theoretical minimum value when travelers chose routes selfishly, has rarely 

been studied. 

Szeto and Wang (2015) proposed the PoA for a capacity expansion RUE-NDP. Their 

study was the first attempt in the literature to examine the inefficiency of transport NDPs 

with capacity expansions. Szeto and Wang (2015) illustrated that the PoA for their 

proposed RUE-NDP reveals how much the system performance measure may exceed its 

corresponding theoretical minimum value due to the inefficient allocation of system 

resources (i.e., capacity expansions) and traffic flow, the latter of which is caused by the 

selfish routing behavior of travelers. They proved that the PoA has an upper bound, 

indicating that the inefficiency of the resource allocation of the network design is 

bounded above. The study of Szeto and Wang (2015) is far from complete. Firstly, they 

only considered one member of the capacity expansion RUE-NDP family. Their proposed 

PoA may not reflect the inefficiencies of resource allocations of the other RUE-NDPs that 

have different design objectives, decision variables, and constraints. Secondly, their study 

implicitly assumed that the RUE flow pattern is unique given the capacity expansions. 

Thirdly, most RUE-NDPs assume that the project cost does not exceed the available 

budget. However, the project cost can also be fully recovered by charging congestion 

tolls upon the travelers (Yang and Meng 2002; Lo and Szeto 2009). For RUE-NDPs that 
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consider toll charges, the PoAs proposed by Szeto and Wang (2015) are not suitable. 

Thus, a general definition of the PoA for capacity expansion RUE-NDPs is required. 

This study expresses the family of capacity expansion RUE-NDPs in a generalized 

model formulation and proposes a general definition of the PoA for the capacity 

expansion RUE-NDPs. This study then considers a specific problem, which is a capacity 

expansion RUE-NDP under cost-recovery that considers supply uncertainty and road tolls. 

The problem is formulated as a min-max problem. The min-level problem aims to 

minimize the largest total system travel cost budget (TSTCB) plus the project cost. The 

TSTCB is a variant of the total system travel time budget and consists of the monetary 

cost of mean total system travel time and an extra cost associated with system travel time 

reliability. The max-level problem aims to determine the worst-case flow pattern that 

gives the largest TSTCB plus the project cost. The self-routing behavior and risk attitudes 

of travelers are captured by the reliability-based user equilibrium (RUE) constraints. In 

addition, travelers are charged with congestion tolls, which are used to recover the project 

cost. To guarantee that the project is self-financing or even profitable, a cost recovery 

constraint is incorporated. Based on the proposed model, this study proposes a novel 

approach to derive the analytical formula for an upper bound of the PoA. 

The contributions of this study are as follows: 

 We propose a general definition of the PoA for capacity expansion RUE-NDPs to 

measure the inefficiency of the reliability-based transport NDPs with capacity 

expansion and cost recovery; 

 We propose a new NDP, namely capacity expansion RUE-NDP under cost 

recovery, in which the project cost is fully recovered by charging travelers with 

congestion tolls. It is formulated by a min-max approach; and 

 It derives an analytical bound of the PoA of the proposed capacity expansion 

RUE-NDP under cost recovery. 

The key findings regarding the upper bound of the PoA for the proposed RUE-NDP 

include the following: 

 The upper bound depends on the travel time variations, the value of travel time, 

the value of reliability for system travel time, and the value of reliability for path 

travel time; 

 The upper bound is independent of travel time functions, demands, and network 

topology; and 

 The upper bound equals one if there are no travel time variations or/and the 

system manager and travelers are both risk-neutral, indicating that the PoA also 

equals one. 

This paper is organized as follows. In Section 2, we express the family of capacity 

expansion RUE-NDPs in a generalized model formulation and propose a general 

definition of the PoA for the capacity expansion RUE-NDPs. In Section 3, we describe 

our new problem. In Section 4, we examine the PoA for the studied problem and evaluate 

its upper bound. In Section 5, we provide a concluding remark and discuss the future 

research directions. 
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2 PoA for the capacity expansion RUE-NDPs  

Consider a road network with topology ( , )G N A , in which N  is a finite set of 

nodes and A  is a finite set of directed links. The nodes represent existing or candidate 

intersections. The directed links represent roads whose existing capacities are to be 

expanded or whose capacities are to be determined. The network has multiple 

origin-destination (O-D) pairs that define where the travelers are from and where they 

head to. Each O-D pair is associated with its travel demand, which is the number of 

travelers between the origin and the destination per hour. 

For the clarity of the presentation, the main notations are defined and introduced in 

Table 1. 

 

Table 1. Notations 

 The set of real numbers 

  The set of positive real numbers 

RS  The set of O-D pairs in the road network 

P  
The set of all possible paths connecting different O-D pairs in the road 

network; its size is denoted by m    

rsP  The set of all possible paths connecting O-D pair rs , rs RS   

rsd  
The positive travel demand or mean travel demand between O-D pair 

rs RS  

d  
The vector of travel demands/mean travel demands between all O-D pairs 

 rs rs RS
d


 

a

p  
The link-path incidence indicator, which equals one if link a A  is on 

path p P , and equals zero otherwise 

pf  The non-negative flow or mean flow on path p P  

f  The vector of path flows or mean path flows  p p P
f


 

f  

The set of feasible path flow patterns that satisfy the path-flow demand 

conservation constraints and non-negativity constraints: 

, ;  0,
rs

f p rs p

p P

f d rs RS f p P


  
        

  
f  

av  The non-negative flow or mean flow on link a A  

( )v f  

The vector of link flows or mean link flows in the road network  a a A
v


 

with 
a

a p p

p P

v f 


 , a A  ,  p fp P
f


f =    

ay   
The design variable, which is the capacity of a new link a A  or the link 

capacity expansion of an existing link a A   

au   The upper bound of ay , a A  

y  
The set of feasible link capacities or link capacity expansions: 

 0 ,y a ay u a A     y  
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y  
The vector of the capacities of new links or link capacity expansions of 

existing links  a a A
y


 

( , )a a at v y   
The mean link travel time function of link a A  in terms of its link flow 

and link capacity (expansion)  

t  The vector of mean link travel time functions  a a A
t


 

   
The covariance matrix, which contains all the link travel time variances and 

link travel time covariances 

 

2.1 Generalized model formulation of capacity expansion RUE-NDPs 

The capacity expansion RUE-NDPs have various input information known as the 

design instances. A design instance is described by the general form  , , ,G d t , in 

which d  and t  are defined in Table 1, and   stands for any additional and essential 

information related to the RUE-NDP.   can be a scalar, a vector, or a set of vectors. For 

example,   may include the project budget and the travel time variation related 

information.  

A capacity expansion RUE-NDP is formulated as a bi-level mathematical 

optimization problem with decision variables, constraints, and an objective function.   

The decision variables include the vector of capacity expansions (i.e., y ). The 

capacity expansions include the additional capacities added to existing roads and/or the 

capacities of new roads. Other decision variables include the path flow pattern f . Note 

that the link flow pattern ( )v f  is dependent on the path flow pattern f . Thus, the link 

flows are dependent variables. In an RUE-NDP, y  and/or f  may be random variables. 

The decision variables in the RUE-NDP are commonly the mean capacity expansions and 

mean link flows. In addition, in some NDPs (e.g., Szeto and Lo 2005, Lo and Szeto 2009), 

the travelers are charged with road tolls. The link tolls are commonly dependent variables 

whose values depend on the link flows. For convenience, we denote any auxiliary 

decision variables as a vector w  whose feasible set is described by a non-empty set 

0X .  

The constraints of a capacity expansion RUE-NDP include the feasibility constraints, 

i.e., the path flow-demand conservation constraints, the link-path flow conservation 

constraints, the non-negativity constraints of path flows and capacity expansions, and the 

feasibility constraints of the auxiliary decision variables. These constraints are implicitly 

captured by the non-empty sets 
f , 

y , 0X , and the definition of ( )v f . Specifically, 

the constraint set y  restricts which links can have capacity changed and which new 

links can be added, and hence any strategy would be embodied in this constraint set and 

in other additional constraints. Most importantly, the RUE-NDP incorporates a set of 

non-linear inequalities and equalities known as the RUE constraints. The constraints 

capture the self-routing behavior of travelers or the risk attitudes of travelers. Apart from 

the feasibility constraints and the RUE constraints, the RUE-NDP might also have other 

related constraints, such as the budget constraint, which guarantees that the project cost is 

not larger than the project budget. If travelers are charged with road tolls, the budget 

constraint can be replaced by the cost recovery constraint (Lo and Szeto 2009), which 
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guarantees that the project cost is not larger than the total toll revenue collected from the 

travelers.  

The system performance measures of the road network include the consumer surplus 

(Yang 1997), the reserve capacity (Yang and Bell 1998), the total vehicle miles (Friesz et 

al. 1993), the sum of total system travel time and construction cost (Chiou 2005), and the 

total system travel time/cost (Meng and Yang 2002). The objective function of an 

RUE-NDP includes the mean system performance measure (Chow and Regan 2011), the 

sum of the mean and (weighted) variance/standard deviation of the system performance 

measure (Ng and Waller 2009; Sumalee et al. 2009; Szeto and Wang 2016), and the 

worst-case value of the system performance measure (Yin et al. 2009). The objective 

function of the RUE-NDP is commonly a continuous function in terms of the decision 

variables, denoted as ( )Z  . In this study, we assume that the objective function value is 

dependent on the link flow pattern (or path flow pattern) and the capacity expansions, and 

is independent of the auxiliary decision variables. 

For most existing capacity expansion RUE-NDPs, the objective is to minimize the 

objective function. However, such a design objective is optimistic when there are 

multiple link flow patterns for a given y  (e.g., Liu et al., 2017). In fact, Wang and Szeto 

(2018) proved that the RUE link flow pattern is unique when two conditions hold: 1) the 

path travel costs are monotone in terms of path flows; 2) the link travel cost is a bijective 

function of link flow. If the RUE link flow pattern is non-unique, the actual RUE flow 

pattern after the implementation of the capacity expansions may be different from the 

design RUE flow pattern, yielding a worse system performance than what the system 

manager expected. To deal with this practical issue, we consider that the system manager 

(or a risk-averse system manager) aims to minimize the worst possible value of the 

objective function over y , i.e., minimizing the maximum value of the objective function 

over y .     

Based on the above, we express the capacity expansion RUE-NDPs as the following 

general non-linear constrained optimization problem: 

 min max  ( ( ), )Z
y f

v f y ,  (1) 

subject to the RUE constraints:  

 ( ( ), , ) 0,  1,2...,ig i m   v f y w ,  (2) 

 ( ( ), , ) 0,  1,2...,ig i m   v f y w ;  (3) 

the feasibility constraints: 

 
ff ,

yy ,  (4) 

 0Xw ;  (5) 

and other relevant sets of constraints (e.g., budget constraints or cost recovery 

constraints): 

 ( ( ), , ) 0,  1,2...,ih i n   v f y w ,  (6) 

where ig , ig , and ih  are all functions of ( )v f , y , and w . In constraints (2) and (6), 

m  is the total number of paths and n  is the total number of additional constraints.  
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If the objective function ( ( ), )Z v f y  is continuous, the set described by constraints 

(4), (5), and (6) is non-empty, and an RUE link flow pattern exists and satisfies the 

equilibrium constraints (2)-(3), then the optimization problem (1)-(6) has at least one 

optimal solution, denoted as ( ( ), , )v f y w . For any y , if the RUE link flow pattern is 

unique, the problem (1)-(6) is equivalent to 
,

min  ( ( ), )Z
f y

v f y  subject to (2)-(6). 

 

Remark. The generalized model formulation (1)-(6) can also be used to express the 

UE-NDPs, because the UE-NDPs are special cases of RUE-NDPs in which the travel 

time variations are zero and/or the travelers and the system manager are both risk-neutral.  

 

2.2 General definition of the PoA for capacity expansion RUE-NDPs 

Firstly, to show the rationality of defining the PoA for capacity expansion 

RUE-NDPs, we quote the statement of Roughgarden (2005): “The price of anarchy can 

be defined much more generally; indeed, the concept makes sense for every application 

possessing an objective function and a notion of equilibrium”.  

Secondly, we identify the theoretical minimum objective function value when all the 

travelers willingly choose paths to minimize the objective function value. The minimum 

objective function value is obtained by minimizing ( ( ), )Z v f y  subject to the feasibility 

constraints (4), (5) and (6). The problem is referred to as a capacity expansion 

Reliability-based System Optimum NDP (RSO-NDP) and it is expressed as the following 

general non-linear minimization problem: 

 min ( ( ), )
f y

Z
 f ,y

v f y .  (7) 

The solution which yields the minimum objective function value is called the system 

optimal solution, and we denote it as 
* * * *( ( ), , )v f y w . To differentiate the system optimal 

solution and the optimal solution to the RUE-NDP (i.e., ( ( ), , )v f y w ), we call the latter 

the equilibrium solution.  

Conceptually, the PoA is the worst-possible ratio between the objective function 

value of an equilibrium solution and that of a system optimal solution. A formal 

mathematical definition is given as follows.     

i. Given an instance  , , ,G d t  admitting a system optimal solution 
* * * *( ( ), , )v f y w  

and an equilibrium solution ( ( ), , )v f y w , the PoA of  , , ,G d t  is     

   * * *, , , ( ( ), ) ( ( ), )G Z Z  d t v f y v f y .  (8) 

ii. Denote the set of design instances that have some common features as I , e.g., the 

set of instances whose travel time functions are all Bureau of Public Road type link 

performance functions. The PoA of I  is  

  
 

 
, , ,

sup , , ,
G I

I G


  



d t

d t .              (9) 

Remark. The mathematical definition of the PoA may take different forms. For example, 

the pioneer study (Roughgarden 2005) included the two terms  , , ,G d t  and I  in the 
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definition of the PoA for the classical traffic assignment problem (see Definition 2.3.1 (a) 

and (b) in his study), whereas some studies omitted them. In this study, we take the study 

of Roughgarden (2005) as the reference and include the two terms in the definition of the 

PoA for capacity expansion RUE-NDPs.   

The PoA reflects the inefficiency of equilibrium solutions to the RUE-NDPs. The 

inefficiency refers to two aspects, which are both caused by the selfish-routing behavior 

of travelers: 1) the traffic flow distribution is not the best; and 2) the allocation of 

resources (capacity expansion) is not the best. In practice, the PoA is an economic 

evaluation index, based on which the system manager can quickly determine the relative 

reduction of system performance induced by the selfish-routing behavior of travelers 

brings to the transport network design. The PoA is a ratio and it is intuitively larger than 

one. A smaller PoA value indicates that the efficiency loss is less, and vice versa. 

The  , , ,G d t  in (8) reflects the exact inefficiency of an equilibrium solution to 

the RUE-NDP with instance  , , ,G d t . The  I  in (9), on the other hand, reveals 

the worst-case inefficiency of equilibrium solutions to the RUE-NDP with instances that 

share some common feature.  

The PoA for the capacity expansion RUE-NDPs proposed in this study differs from 

the PoAs proposed by Szeto and Wang (2015). The PoAs proposed by Szeto and Wang 

(2015) are defined for the RUE-NDP that must satisfy the following conditions: 1) the 

lower level reliability-based user equilibrium flow patterns must be unique; 2) the 

decision variables are merely link capacity additions; 3) the design objective functions 

are total system travel time and total system travel time budget; 4) the RUE-NDP only 

considers supply uncertainty; and 5) the reliability-based user equilibrium problem adopts 

the travel time budget approach (Shao et al. 2006). The PoA proposed in our study, on the 

other hand, is defined for RUE-NDPs that satisfy less restrictive conditions. Firstly, the 

RUE-NDPs may have additional decision variables such as the road tolls. It allows the 

system manager to evaluate the impacts of the additional decision variables on the 

inefficiency of resource allocation. Secondly, apart from the classic system performance 

measure, which is the cost of system travel time, the objective functions may also include 

the cost of travel time reliability, environmental cost, construction cost, etc. It allows the 

system manager to evaluate the inefficiency of resource allocation with respect to 

different additional considerations such as travel time uncertainty, environmental impacts, 

and project cost, etc. Thirdly, the RUE-NDPs may incorporate additional constraints (e.g., 

the cost recovery constraint), which allows the system manager to evaluate the 

inefficiency of resource allocation when there are additional constraints to consider. 

Fourthly, the RUE-NDP may consider demand uncertainty/supply uncertainty or both, 

allowing the system manager to evaluate the inefficiency of resource allocation when the 

demand and/or supply are random variables. Finally, the lower level RUE problem of the 

RUE-NDPs may be formulated by other approaches. It allows the system manager to 

consider different types of RUE problems such as the mean-excess travel time (Chen and 

Zhou 2010) RUE problem, the stochastic dominance RUE problem (Wu and Nie 2011), 

and the non-expected route choice problem (Ji et al. 2017), etc. 

To further illustrate the PoA in detail, we consider a specific problem proposed in the 

following, which is a capacity expansion RUE-NDP under cost recovery. The problem 
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determines the capacities of the new roads in a road network under supply uncertainty 

and is formulated as a min-max problem. The travelers are charged with congestion tolls 

after the road network is built and put into usage. The construction cost of the road 

network is fully recovered from toll charges.  

 

3 Reliability-based capacity expansion NDP under cost recovery: Min-max 

formulation 

3.1 Objective function 

Consider that the system manager designs which roads are expanded and/or built.  

Moreover, the manager considers the effect of supply uncertainty in the network design: 

the actual link capacities may degrade from their design values (Szeto and Wang, 2015, 

2016; Zhao et al., 2018) and the actual link free flow travel times may deviate from their 

pre-assumed values derived from maximum allowed speeds (Szeto and Wang, 2015, 2016). 

The demands and the link flows are deterministic. The travel time on a link a A  

(denoted by 
aT ) is thus modeled as a random variable.  

From the system manager’s perspective, his/her primary design objective is to 

minimize the total system travel time (TSTT). The TSTT equals the sum of the travel 

times experienced by all travelers. Thus, the TSTT is a compound random variable. We 

denote it as  TSTT , and it equals  = a a

a A

TSTT T v


 .   

The expectation and standard deviation of the compound random variable  TSTT  

can be obtained by the following operations: 

   = a a a a

a A a A

E TSTT E T v E T v
 

       
  , 

   
1 2

2 2

,

  = ,a a a a a a a a

a A a A a A a A a a

TSTT T v T v v v Cov T T    

     

            
    . 

Commonly, the mean link travel time  aE T  of link a A  is predicted by its link 

travel time function ( , )a a at v y . We assume that ( , )a a at v y  is a bijective function with 

respect to its link flow given the link (additional) capacity. The link travel time function 

is monotone increasing and differentiable with respect to av  , and monotone decreasing 

and differentiable with respect to ay . We also assume that the link travel time variance 

 
2

aT  and the travel time covariances  ,a aCov T T  , a A , a a   are finite. The 

explicit functional forms of the travel time variances depend on the link travel time 

functions and the assumed distributions of link free flow travel times and random link 

capacities.  

Szeto and Wang (2015, 2016) proposed the concept of total system travel time budget, 

which simultaneously captures the mean and variation of TSTT, and is defined as:  

Total system travel time budget = mean total system travel time + safety margin . 

However, the system performance measure with a time unit is less preferable in practice 

because the investment parties are more concerned with the project cost rather than the 

TSTT itself. The system manager should consider the concerns of these parties. However, 
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the TSTT cannot be directly combined with the project cost. Similarly, the total system 

travel time budget is also not a suitable indicator because it cannot be directly combined 

with the project cost. Thus, a similar concept to the total system travel time budget— the 

TSTCB—is proposed: 

Total system travel cost budget = monetary value of mean total system travel time + 

                                                     monetary value of system travel time reliability.
    

The monetary value of mean TSTT can be obtained by multiplying the mean TSTT 

by a positive coefficient representing the value of time (VOT) for mean travel time: 

 monetary value of mean VOT m TST ean T = TSTT ,  

in which the VOT is obtained by calibration using the survey data. The VOTs of road 

networks in different areas (e.g., cities, country regions, or countries) are different. 

Relevant studies on the VOT include the studies of Small and Yan (2001), Brownstone 

and Small (2003), and Tilahun and Levinson (2009).    

The VOR converts a measure of travel time reliability into the monetary value of 

travel time reliability. The monetary value of travel time reliability can be obtained by 

 monetary value of travel time reliability VOR measure of travel time reliabi= lity . 

The measures of travel time reliability include the difference between the 90th and 

50th percentile travel time, the standard deviation of travel time, the difference between 

the actual late arrival and the usual travel time, and the difference between the early/late 

arrival time and the preferred arrival time. Given different measures of travel time 

reliability, the VORs are different. In this study, the standard deviation of TSTT is 

adopted as the measure of travel time reliability and used in the TSTCB.  

Mathematically, the TSTCB is defined as follows: 

     t s

2t s 2

,
,

,a a a a a a a aR R
a A a A a A a A a a

TSTCB R E T v R T v v v Cov T T  

     

      , 

in which 
tR  is the VOT for mean TSTT and 

sR  is the VOR for total system travel 

time.  

There are no references for 
sR . The report by Concas and Kolpakov (2009) only 

summarized the VORs for path travel time obtained by different studies. Nevertheless, 

the statistical methods used to calibrate the VOR for path travel time in that studies can 

also be used to calibrate 
sR . Similar to the fact that the VOR for path travel time is 

dependent on the risk aversion of the travelers, 
sR  is related to the risk-aversion of the 

system manager. A larger 
sR  indicates that the system manager is more risk averse, and 

vice versa. The 
sR  equals zero if the system manager is risk neutral or/and considers 

that there is no monetary value in the reliability of TSTT. 

As discussed before, apart from optimizing the system performance measure, the 

project cost is also an important consideration for the system manager. To formulate it, 

the annual cost of a link a A , denoted as ( )a aI y , is introduced: 

           ( ) ,  0 ,  a a a a aI y y a A      ,    

where the constant 
a  represents the annual cost per unit of (additional) capacity of link 

a. The annual cost per unit of (additional) capacity of a link a A  (i.e., a ) captures two 
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factors: the annualized construction cost per unit of (additional) capacity and the annual 

maintenance cost per unit of (additional) capacity. The definition of ( )a aI y  is based on 

two assumptions: 1) There is a constant return to scale in road construction, and 2) the 

maintenance/operation cost per unit of (additional) capacity is constant. The project cost 

equals the annual overall costs associated with the construction and maintenance of the 

road network, and we call it the investment cost (IC), which is 

            ( ) ( )a a

a A

IC I y


y .  

From the system manager’s perspective, the design objective is to minimize the sum 

of the TSTCB and IC, i.e., 

           t s,,
min ( ( ), ) ( )

y f
R R

TSTCB IC
 


y f

v f y y . (10) 

Note that if IC is not considered, then the above optimization model belongs to the family 

of mean-standard deviation models (e.g., Lo et al., 2006; Khani and Boyles, 2015; Wu, 

2015). 

 

3.2 RUE constraints with link marginal mean cost tolls  

The travelers’ selfish-routing and risk-adverse behaviors are captured by the RUE 

constraints. The RUE constraints are developed from Wardrop’s first principle (Wardrop 

1952), which states that a traveler always chooses a path that minimizes his/her own 

travel time. The travel time of a path equals the sum of the link travel times of all links on 

that path. Because the link travel times are all random variables, the path travel time, 

denoted as 
pQ , p P , is also a random variable and expressed as 

,  a

p a p

a A

Q T p P


   . 

The mean path travel time pE Q   , denoted as pq , is ,  a

p a p

a A

q t p P


   . 

When faced with travel time uncertainties, travelers often depart early and reserve 

extra time for their trips to avoid late arrivals. The risk-averse behavior of travelers is 

well known and many approaches extended from Wardrop’s principle have been 

proposed to capture it. Among them, the path travel time budget (TTB) approach (Lo et al. 

2006) is frequently adopted. The TTB approach assumes that each traveler selects a path 

with the minimum path TTB. The TTB is commonly defined as the sum of the mean path 

travel time and the weighted path travel time standard deviation.  

Similar to the total system travel time budget, the path TTB also has a time unit. A 

variant of the TTB is the path travel cost budget, which has a cost unit and is defined as 

follows. 

Path travel cost budget = monetary value of mean path travel time + 

                                        monetary value of path travel time reliability.
 

Similar to the TSTCB, the monetary values of mean path travel time and path travel 

time reliability can be obtained by the following operations: 

monetary value of mean path travel tim VOe  = T pq , and 
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 monetary value of path travel time reliability VOR measure of path travel time reliabil= ity ,

in which the measure of path travel time reliability is the path travel time standard 

deviation. Based on the above, the path travel cost budget pb , p P   is 

            
t u

p p pb R q R Q        ,  

in which 
t 0R   is the VOT for mean path travel time and 

u 0R   is the VOR for path 

travel time.  

The VOT for mean path travel time and the VOT for mean total system travel time 

are consistent with each other, which are both 
tR . As the measure of path travel time 

reliability is the path travel time standard deviation, the values for 
uR  can be found in 

the study of Concas and Kolpakov (2009). 

It is assumed that all travelers are charged with congestion tolls because congestion 

toll charging has been adopting to mitigate congestion and improve system performance 

in reality. For a road network without uncertainties, link marginal cost tolling is one of 

the well-known tolling strategies for driving a UE flow pattern towards a flow pattern 

that yields a better system performance (Yang and Meng, 2002), and it is defined as the 

product of the link flow and the first-order derivative of the link travel time function with 

respect to the link flow, assuming that the value of time is one. For a road under supply 

uncertainty, however, because of the travel time variations, it is unclear whether charging 

the corresponding link marginal cost tolls will lead to an improvement in TSTCB. It only 

improves the mean TSTT. Nevertheless, this study assumes that the system manager 

adopts the link marginal cost tolls called link marginal mean cost tolls in a road network 

under supply uncertainty. The link marginal mean cost toll on link a is denoted by a   

and defined by       
t ( , ) ,  a a a a a aR v dt v y dv a A     . 

For a traveler, the generalized path travel cost budget, denoted by pb , p P  , is 

( , )a

p p p a a a

a A

b b v y 


  . 

It is assumed that the travelers acquire the expectations and variabilities of path 

travel times, the VOT for path travel time, the VOR for path travel time standard 

deviation, and the link marginal mean cost tolls based on their experiences and factor this 

piece of information into their route choice considerations in the form of a generalized 

path travel cost budget. All travelers select routes to minimize their generalized path 

travel cost budgets. The long-term equilibrium is reached only if the generalized path 

travel cost budgets of all used routes are not higher than those of unused routes. The RUE 

flow path pattern ( )RUE RUE

p p Pf f  and the corresponding link flow pattern ( )RUE RUE
v f  

must satisfy the following RUE constraints: 

 ( ( ), ) 0,  ,  RUE RUE RUE RUE

p p rs rsf b w p P rs RS     v f y ,         (11) 

  ( ( ), ) 0,  ,  RUE RUE RUE

p rs rsb w p P rs RS     v f y ,           (12) 
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where rsw  is the minimum generalized path travel cost budget for O-D pair rs RS , 

and 
RUE

y  is an optimal capacity solution to be determined. Denote  rs rs RS
w


w  and it 

is the vector of auxiliary decision variables that must be non-negative, i.e.,   

 w 0 .  (13) 

Denote the standard deviation of the path travel cost as p , p P . Unlike the mean 

link travel times, the mathematical property of p  is not known until the explicit 

formulation of link travel time standard deviations and travel time covariances are known. 

Without the loss of generality, we assume that the mapping  p p P



ς  is monotone 

with respect to the path flow pattern f . Then, the path travel cost budgets are monotone 

with respect to the path flows. In addition, the mean link travel times are bijective 

functions of link flows. Following the proofs of Wang and Szeto (2018), the minimum 

path travel cost budgets, the monetary values of mean link travel times, and the RUE link 

flow pattern at equilibrium are unique. The RUE path flow pattern, on the other hand, is 

non-unique. 

The generalized path travel cost budget includes the link marginal mean cost tolls. 

One of the purposes of charging link marginal mean cost tolls upon the travelers is to 

recover the IC. To check whether the total toll revenue collected from travelers covers the 

IC or not, the concept of the degree of cost recovery is introduced and defined in the next 

section. 

  

3.3 Cost recovery constraint 

A notion, namely the degree of cost recovery, denoted by  , is defined as 

   T T( )   v f y  , 

where   is the vector of the annual costs per unit of (additional) capacity defined in 

Sub-section 3.1. 

The ratio defined in the above has been mentioned and adopted by Szeto and Lo 

(2008). The degree of cost recovery is an important indicator showing how profitable a 

toll scheme is. The project is profitable if   is larger than one. The project is 

cost-recovery if   is larger than or equal to one. The project is self-financing if   

exactly equals one. If   is smaller than one, the total revenue collected from travelers 

cannot cover the IC, which means that the toll scheme   is not satisfactory from an 

investment perspective. 

To guarantee that at an optimal design, the IC is fully covered by the total toll 

revenue collected from travelers, a cost recovery constraint is incorporated into the 

design problem. That is, the degree of cost recovery must be larger than or equal to one: 

   1  .  (14) 

3.4 Model formulation 

One possible way to depict the capacity expansion RUE-NDP under cost recovery is 

that it minimizes the objective function (i.e., (10)) subject to the RUE constraints (i.e., 

(11) and (12)), the cost recovery constraint (i.e., (14)), and the feasibility constraints of 
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the decision variables. However, for a given y , there might be multiple RUE link flow 

patterns that satisfy the RUE constraints. The objective (10) naturally selects the solution 

that has the minimum objective function value. In practice, the actual RUE flow pattern 

may deviate from the design (or optimistic) RUE flow pattern, leading to a worse system 

performance than what the system manager expected. To avoid such issue, the risk-averse 

system manager minimizes the objective function by selecting an optimal capacity 

expansion vector and the corresponding worst-case RUE path flow pattern (i.e., the RUE 

path flow that yields the largest objective function value). This is achieved by 

formulating the design problem as a min-max optimization problem. In summary, the 

capacity expansion RUE-NDP under cost recovery is formulated as 

 t s,
min max  ( ( ), ) ( )

y f
R R

TSTCB IC
 


y f

v f y y ,                 (15) 

subject to (11), (12), (13), and (14). 

The proposed problem is a bi-level optimization problem with equilibrium 

constraints. The bi-level optimization problem refers to the min-max problem (15). The 

first level (lower level) problem is to find the worst RUE path flow pattern and its 

corresponding minimum generalized path travel cost budget vector that yield the 

maximum objective function value for a given capacity expansion vector. The second 

level (upper level) problem is to minimize the maximum objective function value by 

selecting an optimal capacity expansion vector. The equilibrium constraints are presented 

by the system of non-linear equalities and inequalities (11)-(12). 

The objective function is continuous and differentiable in terms of link flows and link 

capacities. The feasible solution set is non-empty and compact. Therefore, an optimal 

solution to the bi-level optimization problem with equilibrium constraints, denoted as 

( ( ), )RUE RUE RUE
v f y , must exist. Similar to other network design problems, the upper level 

problem can be solved by many heuristics such as Genetic Algorithm. The lower level 

problem can be solved by all-or-nothing assignment. It is well-known that optimal 

solutions to a bi-level optimization problem may not be unique. However, the minima of 

the objective function must be unique.  

For the ease of presentation, we use Problem Q to refer to the proposed min-max 

capacity expansion RUE-NDP under cost recovery. We examine the PoA of Problem Q in 

the following section.  

 

4 Analysis on the PoA 

Problem Q is a member of the family of RUE-NDPs formulated in Sub-section 2.1. 

The PoA for Problem Q,  , , ,G d t , follows its definition in (8), where   is 

 t s u, , ,R R R , ( ( ), )Z v f y  is t s,
( ( ), ) ( )

R R
TSTCB ICv f y y , the equilibrium solution 

( ( ), )v f y  is ( ( ), )RUE RUE RUE
v f y . The system optimal solution, denoted by 

* * *( ( ), )v f y , is 

obtained by solving the following RSO-NDP: 

  t s,
min ( ( ), ) ( )

y f
R R

TSTCB IC
 


y f

v f y y
，

.  (16) 
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The solution 
* * *( ( ), )v f y  must exist because of the following reasons: 1) the TSTCB and 

the IC are continuous functions in terms of path flows and link capacities; 2) the solution 

set is non-empty and compact. Because the objective function in (16) is non-convex, the 

optimal solutions 
* * *( ( ), )v f y  are non-unique. Nevertheless, the minimum objective 

function value must be unique. 

We present a novel approach to deriving the analytical formulation of an upper 

bound of  , , ,G d t .  

 

4.1 Properties of the equilibrium and system optimal solutions 

Prior to the analysis of the properties, the following parameter is introduced. Denote 

max  as the maximum ratio between link travel time standard deviation and mean link 

travel time, i.e.,  max max a a
a A

t 


 . The parameter 
max  must exist because the link 

travel time standard deviations and the mean link travel times of all links are finite. The 

value of max  can be theoretically derived or calibrated from travel time data.  

Given 
RUE

y , we prove the following: 

Property 1. Given 
RUE

y , let ( )p p Pf 
 f =  and ( ) v f  be the path flow pattern and the 

corresponding link flow pattern that minimizes the sum of individual path travel cost 

budgets. The ratio between the sum of individual path travel cost budgets of an RUE flow 

pattern ( )RUE RUE

p p Pf f  and that of the flow pattern f  is bounded above: 

            u t

max1RUE RUE

p p p p

p P p P

f b f b R R
 

     ,   

where ( ( ), )RUE RUE RUE RUE

p pb b v f y  and ( ( ), )RUE

p pb b   v f y , p P  .   

 

Proof. See Appendix C. 

 

Property 2. Given RUE
y , let ( ) v f  be the corresponding link flow pattern of the path 

flow pattern f  that minimizes the TSTCB. The ratio between the TSTCB of an RUE 

link flow pattern ( )RUE RUE
v f  and that of the flow pattern ( ) v f  is bounded above: 

  t s t s

2
s t u t

max max, ,
( ( ), ) ( ( ), ) 1 1 .RUE RUE RUE RUE

R R R R
TSTCB TSTCB R R R R     v f y v f y

     

Proof. See Appendix D. 

 

Property 2 can be interpreted as follows: The inefficiency of the worst RUE flow 

pattern given 
RUE

y  with respect to the system performance measure is bounded above. 

Given 
*

y , we further prove the following: 
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Property 3. Given *
y , assume f  and ( )v f  are the worst RUE path flow and link flow 

patterns yielding the largest objective function value, respectively. The ratio between the 

TSTCB of ( )v f  and the TSTCB of 
* *( )v f  is bounded above: 

  t s t s

2
* * * * s t u t

max max, ,
( ( ), ) ( ( ), ) 1 1 .

R R R R
TSTCB TSTCB R R R R   v f y v f y  

 

Proof. This is a direct result of Property 2 if 1) RUE
y  is replaced by *

y ; 2) ( )RUE RUE
v f  

is replaced by ( )v f ; and 3) ( ) v f  is replaced by 
* *( )v f . 

 

Property 4. Given *
y , the ratio between the objective function value of ( )v f  defined in 

Property 1 and that of 
* *( )v f  is bounded above: 

         
   

  

t s t s

* * * * * *

, ,

2
s t u t

max max

( ( ), ) ( ) ( ( ), ) ( )

1 1 .

R R R R
TSTCB IC TSTCB IC

R R R R 

 

  

v f y y v f y y
    

 

Proof. The following is true: Given three positive numbers 
1g , 2g , and 

3g . If 
1g  is 

larger than or equal to 2g , then    1 3 2 3 1 2g g g g g g   . Replacing 
1g  with 

t s

*

,
( ( ), )

R R
TSTCB v f y , 2g

 
with t s

* * *

,
( ( ), )

R R
TSTCB v f y , 

3g
 
with 

*( )IC y , and using 

Property 3, the result is obtained. ■ 

 

4.2 Upper bound of the PoA and its properties 

 

Based on Property 4, we prove that an upper bound of the PoA exists as shown 

below.  

 

Proposition 1. Given an instance  , , ,G d t , the price of anarchy  , , ,G d t  is 

bounded above: 

                
2

s t u t

m a x m a x, , , 1 1G R R R R     d t .  (17) 

 

Proof. The solution 
*( ( ), )v f y  is a feasible solution, but it may not be the equilibrium 

solution because 
*

y  may not be 
RUE

y . Thus, the objective function value of 

( ( ), )RUE RUE RUE
v f y  is not larger than that of 

*( ( ), )v f y , i.e., 

t s t s

* *

, ,
( ( ), ) ( ) ( ( ), ) ( )RUE RUE RUE RUE

R R R R
TSTCB IC TSTCB IC  v f y y v f y y . 

Dividing both sides of the above inequality by the objective function value of 
* * *( ( ), )v f y , the following inequality is obtained:     
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t s t s

t s t s

* *

, ,

* * * * * * * *

, ,

( ( ), ) ( ) ( ( ), ) ( )

( ( ), ) ( ) ( ( ), ) ( )

RUE RUE RUE RUE

R R R R

R R R R

TSTCB IC TSTCB IC

TSTCB IC TSTCB IC

 


 

v f y y v f y y

v f y y v f y y
.  (18) 

The left side of (18) is precisely the price of anarchy  , , ,G d t . According to 

Property 4, the right side of inequality (18) is not larger than 

  
2

s t u t

max max1 1R R R R   . It means that the left side of inequality (18), which is 

 , , ,G d t , is also bounded above by   
2

s t u t

max max1 1R R R R   .■ 

 

The derived upper bound of the PoA is dependent on 
max , 

tR , 
uR , and 

sR , 

which are the maximum ratio between link travel time standard deviation and mean link 

travel time, the VOT, the VOR for path travel time, and the VOR for system travel time, 

respectively. The sensitivities of the upper bound of the PoA with respect to these 

parameters are addressed in the following. 

 

Property 5. The upper bound of the PoA is increasing with respect to 
max , 

uR , and 
sR . 

The upper bound of the PoA is decreasing with respect to 
tR . 

 

The following figures present the sensitivities of upper bounds of PoAs subject to 

parameters 
max , 

uR , 
sR , and 

tR . 

  

  

Figure 1. The upper bounds of PoAs given different parameter values 

 

Property 6. The upper bound of the PoA for the capacity expansion RUE-NDP under cost 

recovery is independent of network topology and travel demands. 
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Property 7. The upper bound of the PoA for the capacity expansion RUE-NDP under cost 

recovery is independent of travel time functions. 

 

The proofs of Properties 5, 6, and 7 are straightforward and omitted.  

In the following, we present an example to illustrate how to calculate the upper 

bound of PoA given a design instance.  

 

Example 1： 

 

To get an upper bound of the PoA for this design instance, we need the parameters 

sR , tR , uR , and max . 1 0.21/ 2.47 0.08    and 2 0.13 / 2.50 0.05   . Take 

max 0.08  . We also have 
t 6.0R  , 

s 2.3R  , and 
u 2.3R  . The upper bound of PoA 

is    
2

s t u t

max max1 1 1.10R R R R    . 

In this example, the upper bound of PoA is independent of the network topology, 

travel demands, and travel time functions, as indicated in Property 6 and Property 7.  

Based on Proposition 1 and Property 5, the following proposition can be directly 

concluded. 

 

Proposition 2. Denote I  as the set of instances in which each instance satisfies the 

following conditions: 1) the maximum ratio between link travel time standard deviation 

and mean link travel time does not exceed 
max ; 2) the VOR for path travel time does not 

exceed 
uR ; 3) the VOR for system travel time does not exceed 

sR ; and 4) the VOT is 

not less than 
tR . The price of anarchy of I  is bounded above: 

               
2

s t u t

m a x m a x1 1I R R R R     .  (19) 

     

Remark 1. The existence of an upper bound indicates that both  , , ,G d t  and  I  

for Problem Q are not trivial notions (i.e., the PoA is meaningless if it is unbounded). 
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Remark 2. The upper bound of the PoA equals one under either of the two conditions: 1) 

there is no supply uncertainty (i.e., max = 0); 2) there are no monetary values in the 

reliabilities of system travel time and path travel time (i.e.,
s u 0R R  ). The reason is 

that link marginal mean cost tolls are equivalent to link marginal cost tolls when there is 

no uncertainty, and charging the link marginal cost tolls drives the travelers to choose 

paths to minimize the TSTT. In Sub-section 2.2, it is discussed that the PoA for an 

instance set is intuitively larger than or equal to one. Together with the fact that the upper 

bound of the PoA is equal to one under either of the conditions, the PoA must equal one. 

Then, the upper bound of the PoA is equal to the PoA itself. 

 

4.3 Discussions on the upper bound of the PoA 

4.3.1 Application of the upper bound 

The upper bound of the PoA carries different implications from those of 

 , , ,G d t  and  I . As mentioned in Sub-section 2.2,  , , ,G d t  reflects the 

exact inefficiency of the equilibrium solution given an instance  , , ,G d t  and  I  

reflects the exact worst-case inefficiency of the equilibrium solutions given a group of 

instances. The  , , ,G d t  and  I  are valuable economic evaluation indexes. The 

upper bound of the PoA, on the other hand, is a quick estimate of  , , ,G d t  or  I . 

Furthermore, computing the upper bound of the PoA only requires the values of a few 

parameters, which is an advantage when available information is limited. For example, 

computing  , , ,G d t  requires the information of G , d , t , and  , where   

refers to the information related to link (additional) capacity and link free flow travel time 

variations. Acquiring this piece of information can be time and resource consuming. On 

the other hand, computing the upper bound of  , , ,G d t  only requires the 

information of 
max , 

tR , 
uR , and 

sR , which can be acquired more easily. The system 

manager or other analysts can quickly and easily estimate the inefficiency of the 

equilibrium solution and decide if necessary measures are needed to deal with the 

selfish-routing behavior of travelers. 

 

4.3.2 Comparison with existing studies 

We proceed to compare the properties of the upper bound of the PoA for Problem Q 

to those of the upper bound of the PoA for the RUE-NDP proposed by Szeto and Wang 

(2015). Property 6 is consistent with the result of Szeto and Wang (2015).  

Property 7, however, differs from the result of Szeto and Wang (2015), which 

indicates that the upper bound of the PoA is dependent on the highest degree of the mean 

link travel time functions. An implication of Property 7 is that the system manager does 

not need to acquire the information regarding travel time functions to calculate an upper 

bound of the PoA. Property 7 also implies that the derived upper bound is a bound of the 

PoAs for design instances in which the travel time functions can take any forms as long 

as they are differentiable and monotone increasing with respect to the link flows. The 

upper bound of the PoA proposed by Szeto and Wang (2015), on the other hand, can only 
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bound the PoAs for design instances in which the travel time functions must be 

polynomial functions.  

In the following, we explain why our proposed upper bound of the PoA has Property 

7 and the upper bound of the PoA proposed by Szeto and Wang (2015) does not have. 

Szeto and Wang (2015) assumed specifically that the mean link travel time functions 

must be polynomial functions with respect to link flows. Our study only assumes that the 

mean link travel time functions are monotone increasing and differentiable functions with 

respect to link flows. Szeto and Wang (2015) used the mathematical properties of 

polynomial mean link travel time functions to derive an upper bound of the inefficiency 

of the RUE flow pattern, which is dependent on the highest degree of the mean link travel 

time functions. In our study, because the travelers are charged with link marginal mean 

cost tolls, we can derive an upper bound of the inefficiency of the worst RUE flow 

pattern given an optimal capacity expansion vector without knowing the explicit 

expressions of the mean link travel time functions. Thus, the upper bound of the PoA 

proposed by Szeto and Wang (2015) is dependent on the link travel time functions 

whereas ours is not.  

 

5 Conclusion 

The study proposed a general definition of the PoA for capacity expansion 

RUE-NDPs with the following features: 1) the objective function can include total system 

travel time, travel time reliability, construction cost, environmental cost, and other system 

performance measures; 2) auxiliary decision variables can be included as long as they do 

not affect the value of the objective function; 3) the lower level problem can be any type 

of RUE problems; and 4) additional constraints are incorporated. 

This study proposed a capacity expansion RUE-NDP under cost recovery that 

considers supply uncertainty. The link marginal mean cost tolls are charged upon the 

travelers, and a cost recovery constraint is incorporated to guarantee that the degree of 

cost recovery (proposed and defined in this study) is larger than or equal to one. The 

problem is formulated as a min-max problem 

A novel approach to deriving the analytical formula of an upper bound of the PoA is 

presented. The upper bound is independent of travel time functions, demands, and 

network topology. The upper bound is related to the travel time variations, the VORs for 

system travel time and path travel time, and the VOT. The upper bound is a quick 

estimate of the PoA value when limited information is available.   
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Appendix A. Lemma 1 and its proof 

Lemma 1. For any link flow pattern ( )a a Av 
 v , the following inequality holds: 

          

 t t( , ) ( , ) ( , )

( , ) ,

RUE RUE RUE RUE RUE

a a a a a a a a a a

a A

RUE RUE RUE

a a a a

a A

R t v y v y R t v y v

v y v









  

 




   (A.1) 

where 
RUE

av  and 
RUE

ay  denote the entries of ( )RUE RUE
v f  and 

RUE
y , respectively. 
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Proof. For an individual link a A , consider the following maximization problem: 

 t

0
min ( ) ( , ) ( , ) ( , )

a

RUE RUE RUE RUE RUE RUE

a a a a a a a a a a a a a a
x

Z x R t v y v dt v y dv t x y x


   . 

The first order derivative of ( )a aZ x  with respect to 
ax  is 

 t

( )

( , ) ( , ) ( , ) ( , ) .

a a a

RUE RUE RUE RUE RUE RUE RUE

a a a a a a a a a a a a a a a a

dZ x dx

R t v y v dt v y dv t x y x dt x y dv



  
 

Because of the properties of the link travel time function and the marginal link cost 

toll function, the following hold: ( ) 0a a adZ x dx   for 0 RUE

a ax v  ; ( ) 0a a adZ x dx   

for 
RUE

a ax v , and ( ) 0a a adZ x dx   for 
RUE

a ax v . The objective function ( )a aZ x  is 

strictly increasing on 0, RUE

av    and strictly decreasing on  ,RUE

av  . If 
RUE

av  equals 

zero, ( ) 0a a adZ x dx   at 0ax   and ( ) 0a a adZ x dx   for 0ax  . The function 

( )a aZ x  is strictly decreasing on  0, . The global maximum point 
*

ax  of the 

objective function exists and is unique, and satisfies the condition: 
*( ) 0a a adZ x dx  , i.e., 

* RUE

a ax v . 

Substituting the global maximum point 
*

ax  into the objective function ( )a aZ x , the 

maxima of the objective function is   

 * t

t

( ) ( , ) ( , ) ( , )

( , ) ( , ) .

RUE RUE RUE RUE RUE RUE RUE RUE

a a a a a a a a a a a a a a

RUE RUE RUE RUE RUE RUE RUE

a a a a a a a a a a

Z x R t v y v dt v y dv t v y v

R v v dt v y dv v y v

  

   
 

Thus, given a feasible link flow av , the following inequality holds: 

   

 

 

t

t t

( ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) .

RUE RUE RUE RUE RUE RUE

a a a a a a a a a a a a a a

RUE RUE RUE RUE RUE

a a a a a a a a a a

RUE RUE RUE

a a a a

Z v R t v y v dt v y dv t v y v

R t v y v y R t v y v

v y v





    

   

 

  (A.2) 

Condition (A.2) holds for any individual link in the road network. Summing up condition 

(A.2) over all links on a path, the result (A.1) in the lemma is obtained. ■ 

 

Appendix B. Upper bounds of TSTCB and sum of individual path travel cost 

budgets 

Based on the formula relating the path and link travel time standard deviation, the 

path travel time standard deviation is smaller than or equal to the sum of link travel time 

standard deviations of links on that path, i.e., a

p a p

a A

  


 . Similarly, 

 a a

a A

T vTS T 


 
 

 . According to the definition of max , we have 
max

a

p a p

a A

t  


  

and max a a

a A

T vT tTS 


 
   .  
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Because 
max a a

a A

T vT tTS 


 
   , it can easily be proved that the TSTCB has an 

upper bound, which is the mean TSTT multiplied by a number: 

  t s

t s

max,
( ( ), ) ( , )a a a aR R

a A

TSTCB R R t v y v


  v f y .  (B.1) 

Similar to the sum of individual path travel cost budgets, we have  

  t u

max( ( ), ) ( , )p p a a a a

p P a A

f b R R t v y v
 

   v f y .  (B.2) 

Note that 
t u( ( ), ) ( , )p p a a a a p p

p P a A p P

f b R t v y v R f 
  

     v f y . 

 

Appendix C. Proof of Property 1 

 

Proof. Assume ( ) ( )a a Av 
  v f  is the link flow pattern of the path flow pattern 

( )p p Pf 
 f =  that minimizes the sum of individual path travel cost budgets. Let 

RUE

p  

and 
p   be the path travel time standard deviations of 

RUE
f  and f , respectively. Let 

( , )RUE RUE RUE

a a a av y  , ( , )RUE

a a a av y   , ( , )RUE RUE RUE

a a a at t v y , ( , )RUE

a a a at t v y  ,    

R U E R U E a

p a p

a A

q t 


 , a

p a p

a A

q t 


  , RUE RUE RUE a

p p a p

a A

b b  


   , and a

p p a p

a A

b b  


    . 

Because 
RUE

f  is the RUE path flow pattern, the following inequality holds: 

  0RUE RUE

p p p

p P

f f b


   (for details, see the solution method in Sub-section 2.7 in the 

study of Szeto and Wang 2016), which is equivalent to RUE RUE RUE

p p p p

p P p P

b f b f
 

  . 

Subtracting 
p p

p P

b f


   from both sides of the above inequality, we obtain 

 RUE RUE RUE

p p p p p p p

p P p P p P

b f b f b b f
  

        , which can be rewritten as 

   

     t u ,

RUE RUE RUE a RUE RUE a

p p a p p p p a p pa A a A
p P p P p P p P

RUE RUE RUE a a

p p p p p p a p a p pa A a A
p P p P p P

b f f b f f

R q q f R f f

   

     

 
   

 
  

     

         

     

    
 

or 

          

 

t

u .

RUE RUE

p p p p

p P p P

RUE RUE a RUE a RUE

p p p a p p a p pa A a A
p P p P p P

RUE

p p p

p P

b f b f

R q q f f f

R f

   

 

 

 
  



 

 
      

 

  

 

    



  (C.1) 
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For the term in the square bracket on the right side of (C.1), we have: 

   t t=RUE RUE

p p p a a a

p P a A

R q q f R t t v
 

      ,   =RUE a RUE

a p p a aa A
p P a A

f v  


 

    , and 

  =RUE a RUE RUE RUE

a p p a aa A
p P a A

f v  


 

   . Thus, the term in the square bracket in (C.1) can be 

expressed in terms of link-based variables: 

 
     

 

t

t t .

RUE RUE a RUE a RUE

p p p a p p a p pa A a A
p P p P p P

RUE RUE RUE RUE

a a a a a a

a A a A

R q q f f f

R t R t v v

   

 

 
  

 

 
      

 

   

    

 
  (C.2) 

According to Lemma 1 in Appendix A, the first term on the right side of inequality 

(C.2) is smaller than or equal to RUE RUE

a a

a A

v


 . Thus, the right side of (C.2) is smaller than 

or equal to zero. Because the term in the square bracket in (C.1) is smaller than or equal 

to zero, the left side of (C.1) is smaller than or equal to the second term on the right side 

of (C.1): 

  u0 .RUE RUE RUE

p p p p p p p

p P p P p P

b f b f R f 
  

           (C.3) 

It is assumed that the mapping  p p P


 
ς  is monotone in terms of path flow f . 

Thus, the following holds: 

  u 0RUE RUE

p p p p

p P

R f f 


    , or equivalently, 

           u u uRUE RUE RUE RUE

p p p p p p p

p P p P p P

R f R f R f   
  

       .   

Eliminating the non-negative term 
u RUE

p p

p P

R f


  from the above inequality, the 

inequality still holds, i.e., 

             u uRUE RUE RUE

p p p p p

p P p P

R f R f  
 

    .  (C.4) 

Based on inequalities (C.3) and (C.4), the following is true: 

            uR U E R U E R U E R U E

p p p p p

p P p P p P

b f b f R f
  

         .  (C.5) 

Based on (B.2), the following inequality holds: 

 t u u

max t

1
p p p p p p

p P p P p P

f b R R f b R f
R

 
  

 
      

 
   , or equivalently,  

t
u

t u

max

1p p p p

p P p P

R
R f f b

R R


 

 
   

 
  . 

Based on the above, the following inequality holds: 
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   u u t u

max max

RUE RUE RUE RUE

p p p p

p P p P

R f R R R b f  
 

   .   

The right side of the above inequality is an upper bound of the right side of (C.5) and thus 

is an upper bound of the left side of (C.5), which gives 

  u t u

max max

RUE RUE RUE RUE

p p p p p p

p P p P p P

b f b f R R R b f 
  

      , 

which further gives 

     u t u u t

max max max1 1 1+RUE RUE

p p p p

p P p P

b f b f R R R R R  
 

      . 

This completes the proof. ■ 

 

Appendix D. Proof of Property 2 

 

Proof. Assume  ( ) a a A
v


  v f  is the link flow pattern of the path flow pattern 

 p p P
f


 f  that minimizes the TSTCB given RUE

y . Let ( ( ), )RUE

p pb b   v f y . 

By definition, the sum of individual path travel cost budgets is larger than or equal to 

the monetary value of mean TSTT, i.e.,  

            
t R U E R U E R U E R U E

a a p p

a A p P

R t v b f
 

  .   

Multiplying both sides of the above inequality by  s t

max1 R R , the inequality 

still holds. That is,  

   t s s t

max max1RUE RUE RUE RUE

a a p p

a A p P

R R t v R R b f 
 

    . 

The left side of above inequality is an upper bound of the TSTCB according to (B.1) 

in Appendix B. Thus, the right side of the above inequality is larger than or equal to 

t s,
( ( ), )RUE RUE RUE

R R
TSTCB v f y , i.e., 

      t s

s t

max,
( ( ), ) 1RUE RUE RUE RUE RUE

p pR R
p P

TSTCB R R b f


  v f y .  

 (D.1) 

Similarly, the following inequality holds: 

      t s

t u u t

max max ,
1 ( ( ), ).RUE

a a R R
a A

R R t v R R TSTCB 


      v f y   

The left side of the above inequality is an upper bound of the sum of individual path 

travel cost budgets according to (B.2) in Appendix B. Thus, the right side of the above 

inequality is larger than or equal to p p

p P

b f


  , which further gives 

          t s

u t

max,
( ( ), ) 1RUE

p pR R
p P

TSTCB b f R R


 
     

 
v f y .   (D.2) 

Dividing the left side of (D.1) by the left side of (D.2), and dividing the right side of 

(D.1) by the right side of (D.2), we obtain the following inequality: 
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      
t s

t s

, s t u t

max max

,

( ( ), )
1 1 .

( ( ), )

RUE RUE
RUE RUE RUE p p

p PR R

RUE

p pR R
p P

b f
TSTCB

R R R R
TSTCB b f

 




  
   





v f y

v f y
(D.3) 

In (D.3), p p

p P

b f


   is larger than p p

p P

b f


   defined in Property 1, because p p

p P

b f


   

is the minimum sum of individual path travel cost budgets given 
RUE

y . Thus, 
RUE RUE RUE RUE

p p p p p p p p

p P p P p P p P

b f b f b f b f
   

       . 

Together with Property 1, we obtain the following inequality:  

           u t

max1 .RUE RUE

p p p p

p P p P

b f b f R R
 

      (D.4) 

Inequalities (D.3) and (D.4) indicate that the left side of (D.3) is smaller than or 

equal to   
2

s t u t

max max1 1R R R R   . This completes the proof. ■ 
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Abstract 
This study defines the price of anarchy for general reliability-based transport network 
design problems, which is an indicator of inefficiency that reveals how much the design 
objective value exceeds its theoretical minimum value due to the risk averse and selfish 
routing behavior of travelers. This study examines a new problem, which is a 
reliability-based continuous network design problem under cost recovery. In this problem, 
the variations of system travel time and path travel times, the risk attitudes of the system 
manager and travelers, congestion toll charges, capacity expansions, and cost recovery 
constraint are explicitly considered. The design problem is formulated as a min-max 
problem with the reliability-based user equilibrium constraint. It is proved that the price 
of anarchy for this problem is bounded above, and the upper bound is independent of 
travel time functions, demands, and network topology. The upper bound is related to the 
travel time variations, the value of reliability, and the value of time.  
 
Keywords: Inefficiency, price of anarchy, transport network design problem, 
reliability-based user equilibrium 

 
1 Introduction 

The price of anarchy (PoA), which was first termed by Koutsoupias and 
Papadimitriou (1999), measures the inefficiency of the traffic assignment problem. It 
reveals how much the system performance measure would exceed its theoretical 
minimum value when travelers choose routes selfishly. The PoA for traffic assignment 
problems has received great research attention. Four major lines of research have arisen 
(Roughgarden and Tardos 2002; Chau and Sim 2003; Correa et al. 2004; Roughgarden 
2005; Xiao et al. 2007; Han and Yang 2008; Han et al. 2008; Guo et al. 2010; Huang et al. 
2011; Wang et al. 2014; Szeto and Wang 2015), which are based on four considerations: 
arc capacity constraints; demand and link travel time/cost functions; road pricing; and 
extensions of traditional user equilibrium principles and multiple user classes. The PoA 

Manuscript Click here to access/download;Manuscript;Wang and Szeto
v4.0.pdf
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for traffic assignment problems is well understood by scholars. However, the PoA for 
other problems, e.g., network design problems (NDPs), has rarely been studied. 

The NDPs have broad definitions (Farahani et al. 2013). The most popular family of 
NDPs in the literature is the family of capacity expansion NDPs (Abdulaal and LeBlanc 
1979; Dantzig et al. 1979; LeBlanc and Boyce 1986; Ben-Ayed et al. 1988; Friesz et al. 
1993; Yang 1997; Yang and Bell 1998; Meng and Yang 2002; Chiou 2005; Szeto and Lo 
2005; Szeto et al. 2010; Szeto et al. 2014), which optimizes the system performance 
measures of the road networks by determining the optimal capacity expansions (i.e., the 
additional capacities added to existing roads and/or the capacities of new roads) and the 
flow pattern (i.e., the traffic flow distribution in the road network). Some of these NDPs 
are also known as user equilibrium network design problems (UE-NDPs) because they 
capture the selfish routing behavior of travelers, which means that the flow pattern must 
satisfy the user equilibrium (UE) constraints. These NDPs also have one common 
feature—they assume that the travel demands and link capacities are deterministic.  

In reality, there are uncertainties in the travel demands and road supplies due to 
day-to-day travel demand fluctuation, special events, bad weather, road accidents, road 
construction activities, etc. The demand and supply uncertainties lead to system travel 
time and path travel time variations, which cannot be ignored by the system manager and 
travelers. The reliability-based user equilibrium network design problems (RUE-NDPs) 
are developed based on the deterministic UE-NDPs by considering demand uncertainty 
and/or supply uncertainty. Chen et al. (2011) conducted a detailed review of the family of 
RUE-NDPs (Chootinan et al. 2005; Chen et al. 2007; Ng and Waller 2009; Sumalee et al. 
2009; Yin et al. 2009; Chow and Regan 2011; Szeto and Wang 2016). Most existing 
studies focus on the modeling, solution methods, and applications of the capacity 
expansion RUE-NDPs. However, the PoA for the capacity expansion RUE-NDPs, which 
is an important indicator for evaluating how much the design objective function value 
exceeds its theoretical minimum value when travelers chose routes selfishly, has rarely 
been studied. 

Szeto and Wang (2015) proposed the PoA for a capacity expansion RUE-NDP. Their 
study was the first attempt in the literature to examine the inefficiency of transport NDPs 
with capacity expansions. Szeto and Wang (2015) illustrated that the PoA for their 
proposed RUE-NDP reveals how much the system performance measure may exceed its 
corresponding theoretical minimum value due to the inefficient allocation of system 
resources (i.e., capacity expansions) and traffic flow, the latter of which is caused by the 
selfish routing behavior of travelers. They proved that the PoA has an upper bound, 
indicating that the inefficiency of the resource allocation of the network design is 
bounded above. The study of Szeto and Wang (2015) is far from complete. Firstly, they 
only considered one member of the capacity expansion RUE-NDP family. Their proposed 
PoA may not reflect the inefficiencies of resource allocations of the other RUE-NDPs that 
have different design objectives, decision variables, and constraints. Secondly, their study 
implicitly assumed that the RUE flow pattern is unique given the capacity expansions. 
Thirdly, most RUE-NDPs assume that the project cost does not exceed the available 
budget. However, the project cost can also be fully recovered by charging congestion 
tolls upon the travelers (Yang and Meng 2002; Lo and Szeto 2009). For RUE-NDPs that 
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consider toll charges, the PoAs proposed by Szeto and Wang (2015) are not suitable. 
Thus, a general definition of the PoA for capacity expansion RUE-NDPs is required. 

This study expresses the family of capacity expansion RUE-NDPs in a generalized 
model formulation and proposes a general definition of the PoA for the capacity 
expansion RUE-NDPs. This study then considers a specific problem, which is a capacity 
expansion RUE-NDP under cost-recovery that considers supply uncertainty and road tolls. 
The problem is formulated as a min-max problem. The min-level problem aims to 
minimize the largest total system travel cost budget (TSTCB) plus the project cost. The 
TSTCB is a variant of the total system travel time budget and consists of the monetary 
cost of mean total system travel time and an extra cost associated with system travel time 
reliability. The max-level problem aims to determine the worst-case flow pattern that 
gives the largest TSTCB plus the project cost. The self-routing behavior and risk attitudes 
of travelers are captured by the reliability-based user equilibrium (RUE) constraints. In 
addition, travelers are charged with congestion tolls, which are used to recover the project 
cost. To guarantee that the project is self-financing or even profitable, a cost recovery 
constraint is incorporated. Based on the proposed model, this study proposes a novel 
approach to derive the analytical formula for an upper bound of the PoA. 

The contributions of this study are as follows: 
• We propose a general definition of the PoA for capacity expansion RUE-NDPs to 

measure the inefficiency of the reliability-based transport NDPs with capacity 
expansion and cost recovery; 

• We propose a new NDP, namely capacity expansion RUE-NDP under cost 
recovery, in which the project cost is fully recovered by charging travelers with 
congestion tolls. It is formulated by a min-max approach; and 

• It derives an analytical bound of the PoA of the proposed capacity expansion 
RUE-NDP under cost recovery. 

The key findings regarding the upper bound of the PoA for the proposed RUE-NDP 
include the following: 

• The upper bound depends on the travel time variations, the value of travel time, 
the value of reliability for system travel time, and the value of reliability for path 
travel time; 

• The upper bound is independent of travel time functions, demands, and network 
topology; and 

• The upper bound equals one if there are no travel time variations or/and the 
system manager and travelers are both risk-neutral, indicating that the PoA also 
equals one. 

This paper is organized as follows. In Section 2, we express the family of capacity 
expansion RUE-NDPs in a generalized model formulation and propose a general 
definition of the PoA for the capacity expansion RUE-NDPs. In Section 3, we describe 
our new problem. In Section 4, we examine the PoA for the studied problem and evaluate 
its upper bound. In Section 5, we provide a concluding remark and discuss the future 
research directions. 
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2 PoA for the capacity expansion RUE-NDPs  
Consider a road network with topology ( , )G N A , in which N  is a finite set of 

nodes and A  is a finite set of directed links. The nodes represent existing or candidate 
intersections. The directed links represent roads whose existing capacities are to be 
expanded or whose capacities are to be determined. The network has multiple 
origin-destination (O-D) pairs that define where the travelers are from and where they 
head to. Each O-D pair is associated with its travel demand, which is the number of 
travelers between the origin and the destination per hour. 

For the clarity of the presentation, the main notations are defined and introduced in 
Table 1. 
 
Table 1. Notations 
  The set of real numbers 

+  The set of positive real numbers 
RS  The set of O-D pairs in the road network 

P  
The set of all possible paths connecting different O-D pairs in the road 
network; its size is denoted by m +∈   

rsP  The set of all possible paths connecting O-D pair rs , rs RS∈   

rsd  The positive travel demand or mean travel demand between O-D pair 
rs RS∈  

d  
The vector of travel demands/mean travel demands between all O-D pairs 
( )rs rs RS
d

∈
 

a
pδ  The link-path incidence indicator, which equals one if link a A∈  is on 

path p P∈ , and equals zero otherwise 

pf  The non-negative flow or mean flow on path p P∈  

f  The vector of path flows or mean path flows ( )p p P
f

∈
 

fΩ  

The set of feasible path flow patterns that satisfy the path-flow demand 
conservation constraints and non-negativity constraints: 

, ;  0,
rs

f p rs p
p P

f d rs RS f p P
∈

  Ω = = ∀ ∈ ≥ ∀ ∈ 
  
∑f  

av  The non-negative flow or mean flow on link a A∈  

( )v f  
The vector of link flows or mean link flows in the road network ( )a a A

v
∈

 

with a
a p p

p P
v f δ

∈

= ∑ , a A∀ ∈ , ( )p fp P
f

∈
∈Ωf =    

ay   The design variable, which is the capacity of a new link a A∈  or the link 
capacity expansion of an existing link a A∈   

au   The upper bound of ay , a A∈  

yΩ  
The set of feasible link capacities or link capacity expansions: 

{ }0 ,y a ay u a AΩ = ≤ ≤ ∀ ∈y  
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y  The vector of the capacities of new links or link capacity expansions of 
existing links ( )a a A

y
∈

 

( , )a a at v y   The mean link travel time function of link a A∈  in terms of its link flow 
and link capacity (expansion)  

t  The vector of mean link travel time functions ( )a a A
t

∈
 

σ   The covariance matrix, which contains all the link travel time variances and 
link travel time covariances 

 
2.1 Generalized model formulation of capacity expansion RUE-NDPs 

The capacity expansion RUE-NDPs have various input information known as the 
design instances. A design instance is described by the general form ( ), , ,G θd t , in 
which d  and t  are defined in Table 1, and θ  stands for any additional and essential 
information related to the RUE-NDP. θ  can be a scalar, a vector, or a set of vectors. For 
example, θ  may include the project budget and the travel time variation related 
information.  

A capacity expansion RUE-NDP is formulated as a bi-level mathematical 
optimization problem with decision variables, constraints, and an objective function.   

The decision variables include the vector of capacity expansions (i.e., y ). The 
capacity expansions include the additional capacities added to existing roads and/or the 
capacities of new roads. Other decision variables include the path flow pattern f . Note 
that the link flow pattern ( )v f  is dependent on the path flow pattern f . Thus, the link 
flows are dependent variables. In an RUE-NDP, y  and/or f  may be random variables. 
The decision variables in the RUE-NDP are commonly the mean capacity expansions and 
mean link flows. In addition, in some NDPs (e.g., Szeto and Lo 2005, Lo and Szeto 2009), 
the travelers are charged with road tolls. The link tolls are commonly dependent variables 
whose values depend on the link flows. For convenience, we denote any auxiliary 
decision variables as a vector w  whose feasible set is described by a non-empty set 

0X .  
The constraints of a capacity expansion RUE-NDP include the feasibility constraints, 

i.e., the path flow-demand conservation constraints, the link-path flow conservation 
constraints, the non-negativity constraints of path flows and capacity expansions, and the 
feasibility constraints of the auxiliary decision variables. These constraints are implicitly 
captured by the non-empty sets fΩ , yΩ , 0X , and the definition of ( )v f . Specifically, 
the constraint set yΩ  restricts which links can have capacity changed and which new 
links can be added, and hence any strategy would be embodied in this constraint set and 
in other additional constraints. Most importantly, the RUE-NDP incorporates a set of 
non-linear inequalities and equalities known as the RUE constraints. The constraints 
capture the self-routing behavior of travelers or the risk attitudes of travelers. Apart from 
the feasibility constraints and the RUE constraints, the RUE-NDP might also have other 
related constraints, such as the budget constraint, which guarantees that the project cost is 
not larger than the project budget. If travelers are charged with road tolls, the budget 
constraint can be replaced by the cost recovery constraint (Lo and Szeto 2009), which 
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guarantees that the project cost is not larger than the total toll revenue collected from the 
travelers.  

The system performance measures of the road network include the consumer surplus 
(Yang 1997), the reserve capacity (Yang and Bell 1998), the total vehicle miles (Friesz et 
al. 1993), the sum of total system travel time and construction cost (Chiou 2005), and the 
total system travel time/cost (Meng and Yang 2002). The objective function of an 
RUE-NDP includes the mean system performance measure (Chow and Regan 2011), the 
sum of the mean and (weighted) variance/standard deviation of the system performance 
measure (Ng and Waller 2009; Sumalee et al. 2009; Szeto and Wang 2016), and the 
worst-case value of the system performance measure (Yin et al. 2009). The objective 
function of the RUE-NDP is commonly a continuous function in terms of the decision 
variables, denoted as ( )Z ⋅ . In this study, we assume that the objective function value is 
dependent on the link flow pattern (or path flow pattern) and the capacity expansions, and 
is independent of the auxiliary decision variables. 

For most existing capacity expansion RUE-NDPs, the objective is to minimize the 
objective function. However, such a design objective is optimistic when there are 
multiple link flow patterns for a given y  (e.g., Liu et al., 2017). In fact, Wang and Szeto 
(2018) proved that the RUE link flow pattern is unique when two conditions hold: 1) the 
path travel costs are monotone in terms of path flows; 2) the link travel cost is a bijective 
function of link flow. If the RUE link flow pattern is non-unique, the actual RUE flow 
pattern after the implementation of the capacity expansions may be different from the 
design RUE flow pattern, yielding a worse system performance than what the system 
manager expected. To deal with this practical issue, we consider that the system manager 
(or a risk-averse system manager) aims to minimize the worst possible value of the 
objective function over y , i.e., minimizing the maximum value of the objective function 
over y .     

Based on the above, we express the capacity expansion RUE-NDPs as the following 
general non-linear constrained optimization problem: 

 min max  ( ( ), )Z
y f

v f y ,  (1) 

subject to the RUE constraints:  
 ( ( ), , ) 0,  1, 2...,ig i m +≤ = ∈v f y w  ,  (2) 
 ( ( ), , ) 0,  1, 2...,ig i m += = ∈v f y w  ;  (3) 

the feasibility constraints: 
 f∈Ωf , y∈Ωy ,  (4) 
 0X∈w ;  (5) 

and other relevant sets of constraints (e.g., budget constraints or cost recovery 
constraints): 

 ( ( ), , ) 0,  1, 2...,ih i n +≤ = ∈v f y w  ,  (6) 

where ig , ig , and ih  are all functions of ( )v f , y , and w . In constraints (2) and (6), 

m  is the total number of paths and n  is the total number of additional constraints.  
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If the objective function ( ( ), )Z v f y  is continuous, the set described by constraints 
(4), (5), and (6) is non-empty, and an RUE link flow pattern exists and satisfies the 
equilibrium constraints (2)-(3), then the optimization problem (1)-(6) has at least one 
optimal solution, denoted as ( ( ), , )v f y w

   . For any y , if the RUE link flow pattern is 
unique, the problem (1)-(6) is equivalent to 

,
min  ( ( ), )Z

f y
v f y  subject to (2)-(6). 

 
Remark. The generalized model formulation (1)-(6) can also be used to express the 
UE-NDPs, because the UE-NDPs are special cases of RUE-NDPs in which the travel 
time variations are zero and/or the travelers and the system manager are both risk-neutral.  

 
2.2 General definition of the PoA for capacity expansion RUE-NDPs 

Firstly, to show the rationality of defining the PoA for capacity expansion 
RUE-NDPs, we quote the statement of Roughgarden (2005): “The price of anarchy can 
be defined much more generally; indeed, the concept makes sense for every application 
possessing an objective function and a notion of equilibrium”.  

Secondly, we identify the theoretical minimum objective function value when all the 
travelers willingly choose paths to minimize the objective function value. The minimum 
objective function value is obtained by minimizing ( ( ), )Z v f y  subject to the feasibility 
constraints (4), (5) and (6). The problem is referred to as a capacity expansion 
Reliability-based System Optimum NDP (RSO-NDP) and it is expressed as the following 
general non-linear minimization problem: 

 min ( ( ), )
f y

Z
∈Ω ∈Ωf ,y

v f y .  (7) 

The solution which yields the minimum objective function value is called the system 
optimal solution, and we denote it as * * * *( ( ), , )v f y w . To differentiate the system optimal 
solution and the optimal solution to the RUE-NDP (i.e., ( ( ), , )v f y w

   ), we call the latter 
the equilibrium solution.  

Conceptually, the PoA is the worst-possible ratio between the objective function 
value of an equilibrium solution and that of a system optimal solution. A formal 
mathematical definition is given as follows.     

i. Given an instance ( ), , ,G θd t  admitting a system optimal solution * * * *( ( ), , )v f y w  

and an equilibrium solution ( ( ), , )v f y w

   , the PoA of ( ), , ,G θd t  is     

 ( ) * * *, , , ( ( ), ) ( ( ), )G Z Zρ θ =d t v f y v f y

  .  (8) 

ii. Denote the set of design instances that have some common features as I , e.g., the 
set of instances whose travel time functions are all Bureau of Public Road type link 
performance functions. The PoA of I  is  

 ( )
( )

( )
, , ,
sup , , ,

G I
I G

θ
ρ ρ θ

∈
=

d t
d t .              (9) 

Remark. The mathematical definition of the PoA may take different forms. For example, 
the pioneer study (Roughgarden 2005) included the two terms ( ), , ,G θd t  and I  in the 
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definition of the PoA for the classical traffic assignment problem (see Definition 2.3.1 (a) 
and (b) in his study), whereas some studies omitted them. In this study, we take the study 
of Roughgarden (2005) as the reference and include the two terms in the definition of the 
PoA for capacity expansion RUE-NDPs.   

The PoA reflects the inefficiency of equilibrium solutions to the RUE-NDPs. The 
inefficiency refers to two aspects, which are both caused by the selfish-routing behavior 
of travelers: 1) the traffic flow distribution is not the best; and 2) the allocation of 
resources (capacity expansion) is not the best. In practice, the PoA is an economic 
evaluation index, based on which the system manager can quickly determine the relative 
reduction of system performance induced by the selfish-routing behavior of travelers 
brings to the transport network design. The PoA is a ratio and it is intuitively larger than 
one. A smaller PoA value indicates that the efficiency loss is less, and vice versa. 

The ( ), , ,Gρ θd t  in (8) reflects the exact inefficiency of an equilibrium solution to 

the RUE-NDP with instance ( ), , ,G θd t . The ( )Iρ  in (9), on the other hand, reveals 
the worst-case inefficiency of equilibrium solutions to the RUE-NDP with instances that 
share some common feature.  

The PoA for the capacity expansion RUE-NDPs proposed in this study differs from 
the PoAs proposed by Szeto and Wang (2015). The PoAs proposed by Szeto and Wang 
(2015) are defined for the RUE-NDP that must satisfy the following conditions: 1) the 
lower level reliability-based user equilibrium flow patterns must be unique; 2) the 
decision variables are merely link capacity additions; 3) the design objective functions 
are total system travel time and total system travel time budget; 4) the RUE-NDP only 
considers supply uncertainty; and 5) the reliability-based user equilibrium problem adopts 
the travel time budget approach (Shao et al. 2006). The PoA proposed in our study, on the 
other hand, is defined for RUE-NDPs that satisfy less restrictive conditions. Firstly, the 
RUE-NDPs may have additional decision variables such as the road tolls. It allows the 
system manager to evaluate the impacts of the additional decision variables on the 
inefficiency of resource allocation. Secondly, apart from the classic system performance 
measure, which is the cost of system travel time, the objective functions may also include 
the cost of travel time reliability, environmental cost, construction cost, etc. It allows the 
system manager to evaluate the inefficiency of resource allocation with respect to 
different additional considerations such as travel time uncertainty, environmental impacts, 
and project cost, etc. Thirdly, the RUE-NDPs may incorporate additional constraints (e.g., 
the cost recovery constraint), which allows the system manager to evaluate the 
inefficiency of resource allocation when there are additional constraints to consider. 
Fourthly, the RUE-NDP may consider demand uncertainty/supply uncertainty or both, 
allowing the system manager to evaluate the inefficiency of resource allocation when the 
demand and/or supply are random variables. Finally, the lower level RUE problem of the 
RUE-NDPs may be formulated by other approaches. It allows the system manager to 
consider different types of RUE problems such as the mean-excess travel time (Chen and 
Zhou 2010) RUE problem, the stochastic dominance RUE problem (Wu and Nie 2011), 
and the non-expected route choice problem (Ji et al. 2017), etc. 

To further illustrate the PoA in detail, we consider a specific problem proposed in the 
following, which is a capacity expansion RUE-NDP under cost recovery. The problem 
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determines the capacities of the new roads in a road network under supply uncertainty 
and is formulated as a min-max problem. The travelers are charged with congestion tolls 
after the road network is built and put into usage. The construction cost of the road 
network is fully recovered from toll charges.  
 
3 Reliability-based capacity expansion NDP under cost recovery: Min-max 

formulation 
3.1 Objective function 

Consider that the system manager designs which roads are expanded and/or built.  
Moreover, the manager considers the effect of supply uncertainty in the network design: 
the actual link capacities may degrade from their design values (Szeto and Wang, 2015, 
2016; Zhao et al., 2018) and the actual link free flow travel times may deviate from their 
pre-assumed values derived from maximum allowed speeds (Szeto and Wang, 2015, 2016). 
The demands and the link flows are deterministic. The travel time on a link a A∈  
(denoted by aT ) is thus modeled as a random variable.  

From the system manager’s perspective, his/her primary design objective is to 
minimize the total system travel time (TSTT). The TSTT equals the sum of the travel 
times experienced by all travelers. Thus, the TSTT is a compound random variable. We 
denote it as  TSTT , and it equals  = a a

a A
TSTT T v

∈
∑ .   

The expectation and standard deviation of the compound random variable  TSTT  
can be obtained by the following operations: 

 [ ]  = a a a a
a A a A

E TSTT E T v E T v
∈ ∈

   =    
∑ ∑ , 

 [ ] [ ]
1 2

2 2

,
  = ,a a a a a a a a

a A a A a A a A a a
TSTT T v T v v v Cov T Tσ σ σ ′ ′

′ ′∈ ∈ ∈ ∈ ≠

    = +       
∑ ∑ ∑ ∑ . 

Commonly, the mean link travel time [ ]aE T  of link a A∈  is predicted by its link 
travel time function ( , )a a at v y . We assume that ( , )a a at v y  is a bijective function with 
respect to its link flow given the link (additional) capacity. The link travel time function 
is monotone increasing and differentiable with respect to av  , and monotone decreasing 
and differentiable with respect to ay . We also assume that the link travel time variance 

[ ]2
aTσ  and the travel time covariances [ ],a aCov T T ′ , a A′∈ , a a′ ≠  are finite. The 

explicit functional forms of the travel time variances depend on the link travel time 
functions and the assumed distributions of link free flow travel times and random link 
capacities.  

Szeto and Wang (2015, 2016) proposed the concept of total system travel time budget, 
which simultaneously captures the mean and variation of TSTT, and is defined as:  

Total system travel time budget = mean total system travel time + safety margin . 
However, the system performance measure with a time unit is less preferable in practice 
because the investment parties are more concerned with the project cost rather than the 
TSTT itself. The system manager should consider the concerns of these parties. However, 
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the TSTT cannot be directly combined with the project cost. Similarly, the total system 
travel time budget is also not a suitable indicator because it cannot be directly combined 
with the project cost. Thus, a similar concept to the total system travel time budget— the 
TSTCB—is proposed: 

Total system travel cost budget = monetary value of mean total system travel time + 
                                                     monetary value of system travel time reliability.

    

The monetary value of mean TSTT can be obtained by multiplying the mean TSTT 
by a positive coefficient representing the value of time (VOT) for mean travel time: 

 monetary value of mean VOT m TST ean T = TSTT⋅ ,  
in which the VOT is obtained by calibration using the survey data. The VOTs of road 
networks in different areas (e.g., cities, country regions, or countries) are different. 
Relevant studies on the VOT include the studies of Small and Yan (2001), Brownstone 
and Small (2003), and Tilahun and Levinson (2009).    

The VOR converts a measure of travel time reliability into the monetary value of 
travel time reliability. The monetary value of travel time reliability can be obtained by 

( )monetary value of travel time reliability VOR measure of travel time reliabi= lity⋅ . 
The measures of travel time reliability include the difference between the 90th and 

50th percentile travel time, the standard deviation of travel time, the difference between 
the actual late arrival and the usual travel time, and the difference between the early/late 
arrival time and the preferred arrival time. Given different measures of travel time 
reliability, the VORs are different. In this study, the standard deviation of TSTT is 
adopted as the measure of travel time reliability and used in the TSTCB.  

Mathematically, the TSTCB is defined as follows: 

[ ] [ ] [ ]t s

2t s 2
,

,
,a a a a a a a aR R

a A a A a A a A a a
TSTCB R E T v R T v v v Cov T Tσ ′ ′

′ ′∈ ∈ ∈ ∈ ≠

= + +∑ ∑ ∑ ∑ , 

in which tR  is the VOT for mean TSTT and sR  is the VOR for total system travel 
time.  

There are no references for sR . The report by Concas and Kolpakov (2009) only 
summarized the VORs for path travel time obtained by different studies. Nevertheless, 
the statistical methods used to calibrate the VOR for path travel time in that studies can 
also be used to calibrate sR . Similar to the fact that the VOR for path travel time is 
dependent on the risk aversion of the travelers, sR  is related to the risk-aversion of the 
system manager. A larger sR  indicates that the system manager is more risk averse, and 
vice versa. The sR  equals zero if the system manager is risk neutral or/and considers 
that there is no monetary value in the reliability of TSTT. 

As discussed before, apart from optimizing the system performance measure, the 
project cost is also an important consideration for the system manager. To formulate it, 
the annual cost of a link a A∈ , denoted as ( )a aI y , is introduced: 

           ( ) ,  0,  a a a a aI y y a Aκ κ >= ⋅ ∀ ∈ ,    
where the constant aκ  represents the annual cost per unit of (additional) capacity of link 
a. The annual cost per unit of (additional) capacity of a link a A∈  (i.e., aκ ) captures two 
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factors: the annualized construction cost per unit of (additional) capacity and the annual 
maintenance cost per unit of (additional) capacity. The definition of ( )a aI y  is based on 
two assumptions: 1) There is a constant return to scale in road construction, and 2) the 
maintenance/operation cost per unit of (additional) capacity is constant. The project cost 
equals the annual overall costs associated with the construction and maintenance of the 
road network, and we call it the investment cost (IC), which is 

            ( ) ( )a a
a A

IC I y
∈

=∑y .  

From the system manager’s perspective, the design objective is to minimize the sum 
of the TSTCB and IC, i.e., 

           t s,,
min ( ( ), ) ( )

y f
R R

TSTCB IC
∈Ω ∈Ω

+
y f

v f y y . (10) 

Note that if IC is not considered, then the above optimization model belongs to the family 
of mean-standard deviation models (e.g., Lo et al., 2006; Khani and Boyles, 2015; Wu, 
2015). 

 
3.2 RUE constraints with link marginal mean cost tolls  

The travelers’ selfish-routing and risk-adverse behaviors are captured by the RUE 
constraints. The RUE constraints are developed from Wardrop’s first principle (Wardrop 
1952), which states that a traveler always chooses a path that minimizes his/her own 
travel time. The travel time of a path equals the sum of the link travel times of all links on 
that path. Because the link travel times are all random variables, the path travel time, 
denoted as pQ , p P∈ , is also a random variable and expressed as 

,  a
p a p

a A
Q T p Pδ

∈

= ∀ ∈∑ . 

The mean path travel time pE Q   , denoted as pq , is ,  a
p a p

a A
q t p Pδ

∈

= ∀ ∈∑ . 

When faced with travel time uncertainties, travelers often depart early and reserve 
extra time for their trips to avoid late arrivals. The risk-averse behavior of travelers is 
well known and many approaches extended from Wardrop’s principle have been 
proposed to capture it. Among them, the path travel time budget (TTB) approach (Lo et al. 
2006) is frequently adopted. The TTB approach assumes that each traveler selects a path 
with the minimum path TTB. The TTB is commonly defined as the sum of the mean path 
travel time and the weighted path travel time standard deviation.  

Similar to the total system travel time budget, the path TTB also has a time unit. A 
variant of the TTB is the path travel cost budget, which has a cost unit and is defined as 
follows. 

Path travel cost budget = monetary value of mean path travel time + 
                                        monetary value of path travel time reliability.

 

Similar to the TSTCB, the monetary values of mean path travel time and path travel 
time reliability can be obtained by the following operations: 

monetary value of mean path travel tim VOe  = T pq⋅ , and 
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( )monetary value of path travel time reliability VOR measure of path travel time reliabil= ity ,⋅
in which the measure of path travel time reliability is the path travel time standard 
deviation. Based on the above, the path travel cost budget pb , p P∀ ∈  is 

            t u
p p pb R q R Qσ  = ⋅ + ⋅   ,  

in which t 0R >  is the VOT for mean path travel time and u 0R ≥  is the VOR for path 
travel time.  

The VOT for mean path travel time and the VOT for mean total system travel time 
are consistent with each other, which are both tR . As the measure of path travel time 
reliability is the path travel time standard deviation, the values for uR  can be found in 
the study of Concas and Kolpakov (2009). 

It is assumed that all travelers are charged with congestion tolls because congestion 
toll charging has been adopting to mitigate congestion and improve system performance 
in reality. For a road network without uncertainties, link marginal cost tolling is one of 
the well-known tolling strategies for driving a UE flow pattern towards a flow pattern 
that yields a better system performance (Yang and Meng, 2002), and it is defined as the 
product of the link flow and the first-order derivative of the link travel time function with 
respect to the link flow, assuming that the value of time is one. For a road under supply 
uncertainty, however, because of the travel time variations, it is unclear whether charging 
the corresponding link marginal cost tolls will lead to an improvement in TSTCB. It only 
improves the mean TSTT. Nevertheless, this study assumes that the system manager 
adopts the link marginal cost tolls called link marginal mean cost tolls in a road network 
under supply uncertainty. The link marginal mean cost toll on link a is denoted by aτ   
and defined by       

t ( , ) ,  a a a a a aR v dt v y dv a Aτ = ⋅ ∀ ∈ . 
For a traveler, the generalized path travel cost budget, denoted by pb , p P∀ ∈ , is 

( , )a
p p p a a a

a A
b b v yδ τ

∈

= +∑ . 

It is assumed that the travelers acquire the expectations and variabilities of path 
travel times, the VOT for path travel time, the VOR for path travel time standard 
deviation, and the link marginal mean cost tolls based on their experiences and factor this 
piece of information into their route choice considerations in the form of a generalized 
path travel cost budget. All travelers select routes to minimize their generalized path 
travel cost budgets. The long-term equilibrium is reached only if the generalized path 
travel cost budgets of all used routes are not higher than those of unused routes. The RUE 
flow path pattern ( )RUE RUE

p p Pf ∈=f  and the corresponding link flow pattern ( )RUE RUEv f  
must satisfy the following RUE constraints: 

( )( ( ), ) 0,  ,  RUE RUE RUE RUE
p p rs rsf b w p P rs RS− = ∀ ∈ ∀ ∈v f y ,         (11) 

  ( ( ), ) 0,  ,  RUE RUE RUE
p rs rsb w p P rs RS− ≥ ∀ ∈ ∀ ∈v f y ,           (12) 
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where rsw  is the minimum generalized path travel cost budget for O-D pair rs RS∈ , 
and RUEy  is an optimal capacity solution to be determined. Denote ( )rs rs RS

w
∈

=w  and it 
is the vector of auxiliary decision variables that must be non-negative, i.e.,   

 ≥w 0 .  (13) 
Denote the standard deviation of the path travel cost as pς , p P∈ . Unlike the mean 

link travel times, the mathematical property of pς  is not known until the explicit 
formulation of link travel time standard deviations and travel time covariances are known. 
Without the loss of generality, we assume that the mapping ( )p p P

ς
∈

=ς  is monotone 

with respect to the path flow pattern f . Then, the path travel cost budgets are monotone 
with respect to the path flows. In addition, the mean link travel times are bijective 
functions of link flows. Following the proofs of Wang and Szeto (2018), the minimum 
path travel cost budgets, the monetary values of mean link travel times, and the RUE link 
flow pattern at equilibrium are unique. The RUE path flow pattern, on the other hand, is 
non-unique. 

The generalized path travel cost budget includes the link marginal mean cost tolls. 
One of the purposes of charging link marginal mean cost tolls upon the travelers is to 
recover the IC. To check whether the total toll revenue collected from travelers covers the 
IC or not, the concept of the degree of cost recovery is introduced and defined in the next 
section. 

  
3.3 Cost recovery constraint 

A notion, namely the degree of cost recovery, denoted by τη , is defined as 

( ) ( )T T( )τη = ⋅ ⋅v f yτ κ , 
where κ  is the vector of the annual costs per unit of (additional) capacity defined in 
Sub-section 3.1. 

The ratio defined in the above has been mentioned and adopted by Szeto and Lo 
(2008). The degree of cost recovery is an important indicator showing how profitable a 
toll scheme is. The project is profitable if τη  is larger than one. The project is 
cost-recovery if τη  is larger than or equal to one. The project is self-financing if τη  
exactly equals one. If τη  is smaller than one, the total revenue collected from travelers 
cannot cover the IC, which means that the toll scheme τ  is not satisfactory from an 
investment perspective. 

To guarantee that at an optimal design, the IC is fully covered by the total toll 
revenue collected from travelers, a cost recovery constraint is incorporated into the 
design problem. That is, the degree of cost recovery must be larger than or equal to one: 

   1τη ≥ .  (14) 
3.4 Model formulation 

One possible way to depict the capacity expansion RUE-NDP under cost recovery is 
that it minimizes the objective function (i.e., (10)) subject to the RUE constraints (i.e., 
(11) and (12)), the cost recovery constraint (i.e., (14)), and the feasibility constraints of 
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the decision variables. However, for a given y , there might be multiple RUE link flow 
patterns that satisfy the RUE constraints. The objective (10) naturally selects the solution 
that has the minimum objective function value. In practice, the actual RUE flow pattern 
may deviate from the design (or optimistic) RUE flow pattern, leading to a worse system 
performance than what the system manager expected. To avoid such issue, the risk-averse 
system manager minimizes the objective function by selecting an optimal capacity 
expansion vector and the corresponding worst-case RUE path flow pattern (i.e., the RUE 
path flow that yields the largest objective function value). This is achieved by 
formulating the design problem as a min-max optimization problem. In summary, the 
capacity expansion RUE-NDP under cost recovery is formulated as 

( )t s,
min max  ( ( ), ) ( )

y f
R R

TSTCB IC
∈Ω ∈Ω

+
y f

v f y y ,                 (15) 

subject to (11), (12), (13), and (14). 
The proposed problem is a bi-level optimization problem with equilibrium 

constraints. The bi-level optimization problem refers to the min-max problem (15). The 
first level (lower level) problem is to find the worst RUE path flow pattern and its 
corresponding minimum generalized path travel cost budget vector that yield the 
maximum objective function value for a given capacity expansion vector. The second 
level (upper level) problem is to minimize the maximum objective function value by 
selecting an optimal capacity expansion vector. The equilibrium constraints are presented 
by the system of non-linear equalities and inequalities (11)-(12). 

The objective function is continuous and differentiable in terms of link flows and link 
capacities. The feasible solution set is non-empty and compact. Therefore, an optimal 
solution to the bi-level optimization problem with equilibrium constraints, denoted as 
( ( ), )RUE RUE RUEv f y , must exist. Similar to other network design problems, the upper level 
problem can be solved by many heuristics such as Genetic Algorithm. The lower level 
problem can be solved by all-or-nothing assignment. It is well-known that optimal 
solutions to a bi-level optimization problem may not be unique. However, the minima of 
the objective function must be unique.  

For the ease of presentation, we use Problem Q to refer to the proposed min-max 
capacity expansion RUE-NDP under cost recovery. We examine the PoA of Problem Q in 
the following section.  

 
4 Analysis on the PoA 

Problem Q is a member of the family of RUE-NDPs formulated in Sub-section 2.1. 
The PoA for Problem Q, ( ), , ,Gρ θd t , follows its definition in (8), where θ  is 

( )t s u, , ,R R Rσ , ( ( ), )Z v f y  is t s,
( ( ), ) ( )

R R
TSTCB IC+v f y y , the equilibrium solution 

( ( ), )v f y

   is ( ( ), )RUE RUE RUEv f y . The system optimal solution, denoted by * * *( ( ), )v f y , is 
obtained by solving the following RSO-NDP: 

 ( )t s,
min ( ( ), ) ( )

y f
R R

TSTCB IC
∈Ω ∈Ω

+
y f

v f y y
，

.  (16) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

15 

 

The solution * * *( ( ), )v f y  must exist because of the following reasons: 1) the TSTCB and 
the IC are continuous functions in terms of path flows and link capacities; 2) the solution 
set is non-empty and compact. Because the objective function in (16) is non-convex, the 
optimal solutions * * *( ( ), )v f y  are non-unique. Nevertheless, the minimum objective 
function value must be unique. 

We present a novel approach to deriving the analytical formulation of an upper 
bound of ( ), , ,Gρ θd t .  

 
4.1 Properties of the equilibrium and system optimal solutions 

Prior to the analysis of the properties, the following parameter is introduced. Denote 
maxε  as the maximum ratio between link travel time standard deviation and mean link 

travel time, i.e., ( )max max a aa A
tε σ

∈
= . The parameter maxε  must exist because the link 

travel time standard deviations and the mean link travel times of all links are finite. The 
value of maxε  can be theoretically derived or calibrated from travel time data.  

Given RUEy , we prove the following: 
Property 1. Given RUEy , let ( )p p Pf ∈′′′ ′′′f =  and ( )′′′ ′′′v f  be the path flow pattern and the 
corresponding link flow pattern that minimizes the sum of individual path travel cost 
budgets. The ratio between the sum of individual path travel cost budgets of an RUE flow 
pattern ( )RUE RUE

p p Pf ∈=f  and that of the flow pattern ′′′f  is bounded above: 
            u t

max1RUE RUE
p p p p

p P p P
f b f b R Rε

∈ ∈

′′′ ′′′ ≤ +∑ ∑ ,   

where ( ( ), )RUE RUE RUE RUE
p pb b= v f y  and ( ( ), )RUE

p pb b′′′ ′′′ ′′′= v f y , p P∀ ∈ .   
 
Proof. See Appendix C. 
 
Property 2. Given RUEy , let ( )′′ ′′v f  be the corresponding link flow pattern of the path 
flow pattern ′′f  that minimizes the TSTCB. The ratio between the TSTCB of an RUE 
link flow pattern ( )RUE RUEv f  and that of the flow pattern ( )′′ ′′v f  is bounded above: 

( )( )t s t s

2s t u t
max max, ,

( ( ), ) ( ( ), ) 1 1 .RUE RUE RUE RUE
R R R R

TSTCB TSTCB R R R Rε ε′′ ′′ ≤ + +v f y v f y

     
Proof. See Appendix D. 
 

Property 2 can be interpreted as follows: The inefficiency of the worst RUE flow 
pattern given RUEy  with respect to the system performance measure is bounded above. 

Given *y , we further prove the following: 
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Property 3. Given *y , assume f  and ( )v f  are the worst RUE path flow and link flow 
patterns yielding the largest objective function value, respectively. The ratio between the 
TSTCB of ( )v f  and the TSTCB of * *( )v f  is bounded above: 

( )( )t s t s

2* * * * s t u t
max max, ,

( ( ), ) ( ( ), ) 1 1 .
R R R R

TSTCB TSTCB R R R Rε ε≤ + +v f y v f y  

 
Proof. This is a direct result of Property 2 if 1) RUEy  is replaced by *y ; 2) ( )RUE RUEv f  
is replaced by ( )v f ; and 3) ( )′′ ′′v f  is replaced by * *( )v f . 
 
Property 4. Given *y , the ratio between the objective function value of ( )v f  defined in 
Property 1 and that of * *( )v f  is bounded above: 

         
( ) ( )
( )( )

t s t s
* * * * * *

, ,

2s t u t
max max

( ( ), ) ( ) ( ( ), ) ( )

1 1 .

R R R R
TSTCB IC TSTCB IC

R R R Rε ε

+ +

≤ + +

v f y y v f y y
    

 
Proof. The following is true: Given three positive numbers 1g , 2g , and 3g . If 1g  is 
larger than or equal to 2g , then ( ) ( )1 3 2 3 1 2g g g g g g+ + ≤ . Replacing 1g  with 

t s
*

,
( ( ), )

R R
TSTCB v f y , 2g  with t s

* * *
,

( ( ), )
R R

TSTCB v f y , 3g  with *( )IC y , and using 
Property 3, the result is obtained. ■ 
 
4.2 Upper bound of the PoA and its properties 
 

Based on Property 4, we prove that an upper bound of the PoA exists as shown 
below.  
 
Proposition 1. Given an instance ( ), , ,G θd t , the price of anarchy ( ), , ,Gρ θd t  is 
bounded above: 

            ( ) ( )( )2s t u t
max max, , , 1 1G R R R Rρ θ ε ε≤ + +d t .  (17) 

 
Proof. The solution *( ( ), )v f y  is a feasible solution, but it may not be the equilibrium 
solution because *y  may not be RUEy . Thus, the objective function value of 
( ( ), )RUE RUE RUEv f y  is not larger than that of *( ( ), )v f y , i.e., 

t s t s
* *

, ,
( ( ), ) ( ) ( ( ), ) ( )RUE RUE RUE RUE

R R R R
TSTCB IC TSTCB IC+ ≤ +v f y y v f y y . 

Dividing both sides of the above inequality by the objective function value of 
* * *( ( ), )v f y , the following inequality is obtained:     
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t s t s

t s t s

* *
, ,

* * * * * * * *
, ,

( ( ), ) ( ) ( ( ), ) ( )

( ( ), ) ( ) ( ( ), ) ( )

RUE RUE RUE RUE
R R R R

R R R R

TSTCB IC TSTCB IC
TSTCB IC TSTCB IC

+ +
≤

+ +

v f y y v f y y
v f y y v f y y

.  (18) 

The left side of (18) is precisely the price of anarchy ( ), , ,Gρ θd t . According to 
Property 4, the right side of inequality (18) is not larger than 

( )( )2s t u t
max max1 1R R R Rε ε+ + . It means that the left side of inequality (18), which is 

( ), , ,Gρ θd t , is also bounded above by ( )( )2s t u t
max max1 1R R R Rε ε+ + .■ 

 
The derived upper bound of the PoA is dependent on maxε , tR , uR , and sR , 

which are the maximum ratio between link travel time standard deviation and mean link 
travel time, the VOT, the VOR for path travel time, and the VOR for system travel time, 
respectively. The sensitivities of the upper bound of the PoA with respect to these 
parameters are addressed in the following. 

 
Property 5. The upper bound of the PoA is increasing with respect to maxε , uR , and sR . 
The upper bound of the PoA is decreasing with respect to tR . 

 
The following figures present the sensitivities of upper bounds of PoAs subject to 

parameters maxε , uR , sR , and tR . 

  

  
Figure 1. The upper bounds of PoAs given different parameter values 

 
Property 6. The upper bound of the PoA for the capacity expansion RUE-NDP under cost 
recovery is independent of network topology and travel demands. 
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Property 7. The upper bound of the PoA for the capacity expansion RUE-NDP under cost 
recovery is independent of travel time functions. 

 
The proofs of Properties 5, 6, and 7 are straightforward and omitted.  
In the following, we present an example to illustrate how to calculate the upper 

bound of PoA given a design instance.  
 
Example 1： 

 
To get an upper bound of the PoA for this design instance, we need the parameters 

sR , tR , uR , and maxε . 1 0.21/ 2.47 0.08ε = =  and 2 0.13 / 2.50 0.05ε = = . Take 

max 0.08ε = . We also have t 6.0R = , s 2.3R = , and u 2.3R = . The upper bound of PoA 

is  ( )( )2s t u t
max max1 1 1.10R R R Rε ε+ + = . 

In this example, the upper bound of PoA is independent of the network topology, 
travel demands, and travel time functions, as indicated in Property 6 and Property 7.  

Based on Proposition 1 and Property 5, the following proposition can be directly 
concluded. 
 
Proposition 2. Denote I  as the set of instances in which each instance satisfies the 
following conditions: 1) the maximum ratio between link travel time standard deviation 
and mean link travel time does not exceed maxε ; 2) the VOR for path travel time does not 
exceed uR ; 3) the VOR for system travel time does not exceed sR ; and 4) the VOT is 
not less than tR . The price of anarchy of I  is bounded above: 

           ( ) ( )( )2s t u t
max max1 1I R R R Rρ ε ε≤ + + .  (19) 

     
Remark 1. The existence of an upper bound indicates that both ( ), , ,Gρ θd t  and ( )Iρ  
for Problem Q are not trivial notions (i.e., the PoA is meaningless if it is unbounded). 
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Remark 2. The upper bound of the PoA equals one under either of the two conditions: 1) 
there is no supply uncertainty (i.e., maxε = 0); 2) there are no monetary values in the 
reliabilities of system travel time and path travel time (i.e., s u 0R R= = ). The reason is 
that link marginal mean cost tolls are equivalent to link marginal cost tolls when there is 
no uncertainty, and charging the link marginal cost tolls drives the travelers to choose 
paths to minimize the TSTT. In Sub-section 2.2, it is discussed that the PoA for an 
instance set is intuitively larger than or equal to one. Together with the fact that the upper 
bound of the PoA is equal to one under either of the conditions, the PoA must equal one. 
Then, the upper bound of the PoA is equal to the PoA itself. 

 
4.3 Discussions on the upper bound of the PoA 
4.3.1 Application of the upper bound 

The upper bound of the PoA carries different implications from those of 
( ), , ,Gρ θd t  and ( )Iρ . As mentioned in Sub-section 2.2, ( ), , ,Gρ θd t  reflects the 

exact inefficiency of the equilibrium solution given an instance ( ), , ,G θd t  and ( )Iρ  
reflects the exact worst-case inefficiency of the equilibrium solutions given a group of 
instances. The ( ), , ,Gρ θd t  and ( )Iρ  are valuable economic evaluation indexes. The 

upper bound of the PoA, on the other hand, is a quick estimate of ( ), , ,Gρ θd t  or ( )Iρ . 
Furthermore, computing the upper bound of the PoA only requires the values of a few 
parameters, which is an advantage when available information is limited. For example, 
computing ( ), , ,Gρ θd t  requires the information of G , d , t , and θ , where θ  
refers to the information related to link (additional) capacity and link free flow travel time 
variations. Acquiring this piece of information can be time and resource consuming. On 
the other hand, computing the upper bound of ( ), , ,Gρ θd t  only requires the 

information of maxε , tR , uR , and sR , which can be acquired more easily. The system 
manager or other analysts can quickly and easily estimate the inefficiency of the 
equilibrium solution and decide if necessary measures are needed to deal with the 
selfish-routing behavior of travelers. 

 
4.3.2 Comparison with existing studies 

We proceed to compare the properties of the upper bound of the PoA for Problem Q 
to those of the upper bound of the PoA for the RUE-NDP proposed by Szeto and Wang 
(2015). Property 6 is consistent with the result of Szeto and Wang (2015).  

Property 7, however, differs from the result of Szeto and Wang (2015), which 
indicates that the upper bound of the PoA is dependent on the highest degree of the mean 
link travel time functions. An implication of Property 7 is that the system manager does 
not need to acquire the information regarding travel time functions to calculate an upper 
bound of the PoA. Property 7 also implies that the derived upper bound is a bound of the 
PoAs for design instances in which the travel time functions can take any forms as long 
as they are differentiable and monotone increasing with respect to the link flows. The 
upper bound of the PoA proposed by Szeto and Wang (2015), on the other hand, can only 
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bound the PoAs for design instances in which the travel time functions must be 
polynomial functions.  

In the following, we explain why our proposed upper bound of the PoA has Property 
7 and the upper bound of the PoA proposed by Szeto and Wang (2015) does not have. 
Szeto and Wang (2015) assumed specifically that the mean link travel time functions 
must be polynomial functions with respect to link flows. Our study only assumes that the 
mean link travel time functions are monotone increasing and differentiable functions with 
respect to link flows. Szeto and Wang (2015) used the mathematical properties of 
polynomial mean link travel time functions to derive an upper bound of the inefficiency 
of the RUE flow pattern, which is dependent on the highest degree of the mean link travel 
time functions. In our study, because the travelers are charged with link marginal mean 
cost tolls, we can derive an upper bound of the inefficiency of the worst RUE flow 
pattern given an optimal capacity expansion vector without knowing the explicit 
expressions of the mean link travel time functions. Thus, the upper bound of the PoA 
proposed by Szeto and Wang (2015) is dependent on the link travel time functions 
whereas ours is not.  
 
5 Conclusion 

The study proposed a general definition of the PoA for capacity expansion 
RUE-NDPs with the following features: 1) the objective function can include total system 
travel time, travel time reliability, construction cost, environmental cost, and other system 
performance measures; 2) auxiliary decision variables can be included as long as they do 
not affect the value of the objective function; 3) the lower level problem can be any type 
of RUE problems; and 4) additional constraints are incorporated. 

This study proposed a capacity expansion RUE-NDP under cost recovery that 
considers supply uncertainty. The link marginal mean cost tolls are charged upon the 
travelers, and a cost recovery constraint is incorporated to guarantee that the degree of 
cost recovery (proposed and defined in this study) is larger than or equal to one. The 
problem is formulated as a min-max problem 

A novel approach to deriving the analytical formula of an upper bound of the PoA is 
presented. The upper bound is independent of travel time functions, demands, and 
network topology. The upper bound is related to the travel time variations, the VORs for 
system travel time and path travel time, and the VOT. The upper bound is a quick 
estimate of the PoA value when limited information is available.   
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Appendix A. Lemma 1 and its proof 
Lemma 1. For any link flow pattern ( )a a Av ∈′ ′=v , the following inequality holds: 

          
( )t t( , ) ( , ) ( , )

( , ) ,

RUE RUE RUE RUE RUE
a a a a a a a a a a

a A
RUE RUE RUE

a a a a
a A

R t v y v y R t v y v

v y v

τ

τ
∈

∈

′ ′+ −

≤ ⋅

∑

∑
   (A.1) 

where RUE
av  and RUE

ay  denote the entries of ( )RUE RUEv f  and RUEy , respectively. 
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Proof. For an individual link a A∈ , consider the following maximization problem: 

( )t

0
min ( ) ( , ) ( , ) ( , )

a

RUE RUE RUE RUE RUE RUE
a a a a a a a a a a a a a ax

Z x R t v y v dt v y dv t x y x
≥

= + − . 

The first order derivative of ( )a aZ x  with respect to ax  is 

( )t

( )

( , ) ( , ) ( , ) ( , ) .
a a a

RUE RUE RUE RUE RUE RUE RUE
a a a a a a a a a a a a a a a a

dZ x dx

R t v y v dt v y dv t x y x dt x y dv

=

+ − −
 

Because of the properties of the link travel time function and the marginal link cost 
toll function, the following hold: ( ) 0a a adZ x dx >  for 0 RUE

a ax v≤ < ; ( ) 0a a adZ x dx =  
for RUE

a ax v= , and ( ) 0a a adZ x dx <  for RUE
a ax v> . The objective function ( )a aZ x  is 

strictly increasing on 0, RUE
av    and strictly decreasing on ( ),RUE

av +∞ . If RUE
av  equals 

zero, ( ) 0a a adZ x dx =  at 0ax =  and ( ) 0a a adZ x dx <  for 0ax > . The function 
( )a aZ x  is strictly decreasing on [ )0,+∞ . The global maximum point *

ax  of the 

objective function exists and is unique, and satisfies the condition: *( ) 0a a adZ x dx = , i.e., 
* RUE
a ax v= . 

Substituting the global maximum point *
ax  into the objective function ( )a aZ x , the 

maxima of the objective function is   
( )* t

t

( ) ( , ) ( , ) ( , )

( , ) ( , ) .

RUE RUE RUE RUE RUE RUE RUE RUE
a a a a a a a a a a a a a a

RUE RUE RUE RUE RUE RUE RUE
a a a a a a a a a a

Z x R t v y v dt v y dv t v y v

R v v dt v y dv v y vτ

= + −

= ⋅ = ⋅
 

Thus, given a feasible link flow av′ , the following inequality holds: 

   

( )
( )

t

t t

( ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) .

RUE RUE RUE RUE RUE RUE
a a a a a a a a a a a a a a

RUE RUE RUE RUE RUE
a a a a a a a a a a

RUE RUE RUE
a a a a

Z v R t v y v dt v y dv t v y v

R t v y v y R t v y v

v y v

τ

τ

′ ′ ′= + −

′ ′= + −

≤ ⋅

  (A.2) 

Condition (A.2) holds for any individual link in the road network. Summing up condition 
(A.2) over all links on a path, the result (A.1) in the lemma is obtained. ■ 
 
Appendix B. Upper bounds of TSTCB and sum of individual path travel cost 
budgets 

Based on the formula relating the path and link travel time standard deviation, the 
path travel time standard deviation is smaller than or equal to the sum of link travel time 
standard deviations of links on that path, i.e., a

p a p
a A

ς σ δ
∈

≤∑ . Similarly, 

 a a
a A

T vTS Tσ σ
∈

 
  ≤∑ . According to the definition of maxε , we have max

a
p a p

a A
tς ε δ

∈

≤∑  

and 

max a a
a A

T vT tTS εσ
∈

≤ 
  ∑ .  
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Because 

max a a
a A

T vT tTS εσ
∈

≤ 
  ∑ , it can easily be proved that the TSTCB has an 

upper bound, which is the mean TSTT multiplied by a number: 
 ( )t s

t s
max,

( ( ), ) ( , )a a a aR R
a A

TSTCB R R t v y vε
∈

≤ + ⋅∑v f y .  (B.1) 

Similar to the sum of individual path travel cost budgets, we have  
 ( )t u

max( ( ), ) ( , )p p a a a a
p P a A

f b R R t v y vε
∈ ∈

≤ + ⋅∑ ∑v f y .  (B.2) 

Note that t u( ( ), ) ( , )p p a a a a p p
p P a A p P

f b R t v y v R f ς
∈ ∈ ∈

= ⋅ + ⋅∑ ∑ ∑v f y . 

 
Appendix C. Proof of Property 1 
 
Proof. Assume ( ) ( )a a Av ∈′′′ ′′′ ′′′=v f  is the link flow pattern of the path flow pattern 

( )p p Pf ∈′′′ ′′′f =  that minimizes the sum of individual path travel cost budgets. Let RUE
pς  

and pς ′′′  be the path travel time standard deviations of RUEf  and ′′′f , respectively. Let 

( , )RUE RUE RUE
a a a av yτ τ= , ( , )RUE

a a a av yτ τ′′′ ′′′= , ( , )RUE RUE RUE
a a a at t v y= , ( , )RUE

a a a at t v y′′′ ′′′= ,    
RUE RUE a
p a p

a A
q t δ

∈

=∑ , a
p a p

a A
q t δ

∈

′′′ ′′′= ∑ , RUE RUE RUE a
p p a p

a A
b b τ δ

∈

= +∑  , and a
p p a p

a A
b b τ δ

∈

′′′ ′′′ ′′′= +∑ . 

Because RUEf  is the RUE path flow pattern, the following inequality holds: 
( ) 0RUE RUE

p p p
p P

f f b
∈

′′′− ≥∑   (for details, see the solution method in Sub-section 2.7 in the 

study of Szeto and Wang 2016), which is equivalent to RUE RUE RUE
p p p p

p P p P
b f b f

∈ ∈

′′′≤∑ ∑  . 

Subtracting p p
p P

b f
∈

′′′ ′′′∑   from both sides of the above inequality, we obtain 

( )RUE RUE RUE
p p p p p p p

p P p P p P
b f b f b b f

∈ ∈ ∈

′′′ ′′′ ′′′ ′′′− ≤ −∑ ∑ ∑    , which can be rewritten as 

( ) ( )

( ) ( ) ( )t u ,

RUE RUE RUE a RUE RUE a
p p a p p p p a p pa A a A

p P p P p P p P

RUE RUE RUE a a
p p p p p p a p a p pa A a A

p P p P p P

b f f b f f

R q q f R f f

τ δ τ δ

ς ς τ δ τ δ

∈ ∈
∈ ∈ ∈ ∈

∈ ∈
∈ ∈ ∈

′′′ ′′′ ′′′+ − − ≤

′′′ ′′′ ′′′ ′′′ ′′′ ′′′− + − + −

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 

or 

     ( ) ( ) ( )

( )

t

u .

RUE RUE
p p p p

p P p P

RUE RUE a RUE a RUE
p p p a p p a p pa A a A

p P p P p P

RUE
p p p

p P

b f b f

R q q f f f

R f

τ δ τ δ

ς ς

∈ ∈

∈ ∈
∈ ∈ ∈

∈

′′′ ′′′−

 
′′′ ′′′ ′′′≤ − + − 

 
′′′ ′′′+ −

∑ ∑

∑ ∑ ∑ ∑ ∑

∑

  (C.1) 
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For the term in the square bracket on the right side of (C.1), we have: 

( ) ( )t t=RUE RUE
p p p a a a

p P a A
R q q f R t t v

∈ ∈

′′′ ′′′ ′′′ ′′′− −∑ ∑ , ( ) =RUE a RUE
a p p a aa A

p P a A
f vτ δ τ

∈
∈ ∈

′′′ ′′′∑ ∑ ∑ , and 

( ) =RUE a RUE RUE RUE
a p p a aa A

p P a A
f vτ δ τ

∈
∈ ∈
∑ ∑ ∑ . Thus, the term in the square bracket in (C.1) can be 

expressed in terms of link-based variables: 

 
( ) ( ) ( )

( )

t

t t .

RUE RUE a RUE a RUE
p p p a p p a p pa A a A

p P p P p P

RUE RUE RUE RUE
a a a a a a

a A a A

R q q f f f

R t R t v v

τ δ τ δ

τ τ

∈ ∈
∈ ∈ ∈

∈ ∈

 
′′′ ′′′ ′′′− + − = 

 
′′′ ′′′− + −

∑ ∑ ∑ ∑ ∑

∑ ∑
  (C.2) 

According to Lemma 1 in Appendix A, the first term on the right side of inequality 
(C.2) is smaller than or equal to RUE RUE

a a
a A

vτ
∈
∑ . Thus, the right side of (C.2) is smaller than 

or equal to zero. Because the term in the square bracket in (C.1) is smaller than or equal 
to zero, the left side of (C.1) is smaller than or equal to the second term on the right side 
of (C.1): 

 ( )u0 .RUE RUE RUE
p p p p p p p

p P p P p P
b f b f R fς ς

∈ ∈ ∈

′′′ ′′′ ′′′ ′′′− ≤ + −∑ ∑ ∑   (C.3) 

It is assumed that the mapping ( )p p P
ς

∀ ∈
=ς  is monotone in terms of path flow f . 

Thus, the following holds: 
( )( )u 0RUE RUE

p p p p
p P

R f fς ς
∈

′′′ ′′′− − ≤∑ , or equivalently, 

          ( )u u uRUE RUE RUE RUE
p p p p p p p

p P p P p P
R f R f R fς ς ς ς

∈ ∈ ∈

′′′ ′′′ ′′′+ − ≤∑ ∑ ∑ .   

Eliminating the non-negative term u RUE
p p

p P
R fς

∈

′′′∑  from the above inequality, the 

inequality still holds, i.e., 
            ( )u uRUE RUE RUE

p p p p p
p P p P

R f R fς ς ς
∈ ∈

′′′ ′′′− ≤∑ ∑ .  (C.4) 

Based on inequalities (C.3) and (C.4), the following is true: 
            uRUE RUE RUE RUE

p p p p p
p P p P p P

b f b f R fς
∈ ∈ ∈

′′′ ′′′− ≤∑ ∑ ∑ .  (C.5) 

Based on (B.2), the following inequality holds: 

( )t u u
max t

1
p p p p p p

p P p P p P
f b R R f b R f

R
ε ς

∈ ∈ ∈

 
≤ + ⋅ ⋅ − ⋅ 

 
∑ ∑ ∑ , or equivalently,  

t
u

t u
max

1p p p p
p P p P

RR f f b
R R

ς
ε∈ ∈

 
⋅ ≤ − + 

∑ ∑ . 

Based on the above, the following inequality holds: 
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 ( )( )u u t u
max max

RUE RUE RUE RUE
p p p p

p P p P
R f R R R b fς ε ε

∈ ∈

≤ +∑ ∑ .   

The right side of the above inequality is an upper bound of the right side of (C.5) and thus 
is an upper bound of the left side of (C.5), which gives 

( )( )u t u
max max

RUE RUE RUE RUE
p p p p p p

p P p P p P
b f b f R R R b fε ε

∈ ∈ ∈

′′′ ′′′− ≤ +∑ ∑ ∑ , 

which further gives 

( )( )( ) ( )u t u u t
max max max1 1 1+RUE RUE

p p p p
p P p P

b f b f R R R R Rε ε ε
∈ ∈

′′′ ′′′≤ − + =∑ ∑ . 

This completes the proof. ■ 
 
Appendix D. Proof of Property 2 
 
Proof. Assume ( )( ) a a A

v
∈

′′ ′′ ′′=v f  is the link flow pattern of the path flow pattern 

( )p p P
f

∈
′′ ′′=f  that minimizes the TSTCB given RUEy . Let ( ( ), )RUE

p pb b′′ ′′ ′′= v f y . 

By definition, the sum of individual path travel cost budgets is larger than or equal to 
the monetary value of mean TSTT, i.e.,  

            t RUE RUE RUE RUE
a a p p

a A p P
R t v b f

∈ ∈

≤∑ ∑ .   

Multiplying both sides of the above inequality by ( )s t
max1 R Rε+ , the inequality 

still holds. That is,  
( ) ( )t s s t

max max1RUE RUE RUE RUE
a a p p

a A p P
R R t v R R b fε ε

∈ ∈

+ ≤ +∑ ∑ . 

The left side of above inequality is an upper bound of the TSTCB according to (B.1) 
in Appendix B. Thus, the right side of the above inequality is larger than or equal to 

t s,
( ( ), )RUE RUE RUE

R R
TSTCB v f y , i.e., 

     ( )t s
s t

max,
( ( ), ) 1RUE RUE RUE RUE RUE

p pR R
p P

TSTCB R R b fε
∈

≤ + ∑v f y .  

 (D.1) 
Similarly, the following inequality holds: 

  ( ) ( ) t s
t u u t

max max ,
1 ( ( ), ).RUE

a a R R
a A

R R t v R R TSTCBε ε
∈

′′ ′′ ′′ ′′+ ≤ +∑ v f y   

The left side of the above inequality is an upper bound of the sum of individual path 
travel cost budgets according to (B.2) in Appendix B. Thus, the right side of the above 
inequality is larger than or equal to p p

p P
b f

∈

′′ ′′∑ , which further gives 

         ( )t s
u t

max,
( ( ), ) 1RUE

p pR R
p P

TSTCB b f R Rε
∈

 
′′ ′′ ′′ ′′≥ + 

 
∑v f y .   (D.2) 

Dividing the left side of (D.1) by the left side of (D.2), and dividing the right side of 
(D.1) by the right side of (D.2), we obtain the following inequality: 
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    ( )( )t s

t s

, s t u t
max max

,

( ( ), )
1 1 .

( ( ), )

RUE RUE
RUE RUE RUE p p

p PR R
RUE

p pR R
p P

b fTSTCB
R R R R

TSTCB b f
ε ε∈

∈

≤ + +
′′ ′′ ′′ ′′

∑
∑

v f y
v f y

(D.3) 

In (D.3), p p
p P

b f
∈

′′ ′′∑  is larger than p p
p P

b f
∈

′′′ ′′′∑  defined in Property 1, because p p
p P

b f
∈

′′′ ′′′∑  

is the minimum sum of individual path travel cost budgets given RUEy . Thus, 
RUE RUE RUE RUE
p p p p p p p p

p P p P p P p P
b f b f b f b f

∈ ∈ ∈ ∈

′′ ′′ ′′′ ′′′≤∑ ∑ ∑ ∑ . 

Together with Property 1, we obtain the following inequality:  
           u t

max1 .RUE RUE
p p p p

p P p P
b f b f R Rε

∈ ∈

′′ ′′ ≤ +∑ ∑  (D.4) 

Inequalities (D.3) and (D.4) indicate that the left side of (D.3) is smaller than or 

equal to ( )( )2s t u t
max max1 1R R R Rε ε+ + . This completes the proof. ■ 
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