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ABSTRACT 21 

The end-Permian mass extinction (EPME; ca. 252 Ma) led to profound changes in 22 

lacustrine ecosystems. However, whether or not post-extinction recovery of lacustrine 23 

ecosystems was delayed has remained uncertain, due to the apparent rarity of Early and 24 

Middle Triassic deep perennial lakes. Here we report on mid–Middle Triassic lacustrine 25 

organic-rich shales with abundant fossils and tuff interlayers in the Ordos Basin of China, 26 

dated to ca. 242 Ma (around the Anisian-Ladinian boundary of the Middle Triassic). The 27 

organic-rich sediments record the earliest known appearance, after the mass extinction, of 28 

a deep perennial lake that developed at least 5 m.y. earlier than the globally distributed 29 

lacustrine shales and mudstones dated as Late Triassic. The fossil assemblage in the 30 

organic-rich sediments is diverse and includes plants, notostracans, ostracods, insects, 31 

fishes, and fish coprolites, and thus documents a Mesozoic-type, trophically multileveled 32 

lacustrine ecosystem. The results reveal the earliest known complex lacustrine ecosystem 33 

after the EPME and suggest that Triassic lacustrine ecosystems took at most 10 m.y. to 34 

recover fully, which is consistent with the termination of the “coal gap” that signifies 35 

substantial restoration of peat-forming forests. 36 

INTRODUCTION 37 

The end-Permian mass extinction (EPME; ca. 252 Ma) was the greatest biological 38 

and ecological crisis of the Phanerozoic Eon on Earth, and caused a transformation from 39 

Paleozoic to modern evolutionary fauna, which built new ecosystems that have persisted to 40 
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the present day (Benton and Newell, 2014; Wignall, 2015). Ecosystem recovery after the 41 

EPME was seemingly delayed because the subsequent Early Triassic interval was 42 

characterized by recurrent, rapid global warming and harsh marine and terrestrial 43 

conditions (Algeo et al., 2011; Retallack et al., 2011; Chen and Benton, 2012; Sun et al., 44 

2012). Marine ecosystems are thought to have recovered substantially by the middle to late 45 

Anisian, 8−10 m.y. after the EPME (Chen and Benton, 2012), and their restoration was still 46 

ongoing in the latest Triassic (Song et al., 2018). 47 

The timing and pattern of recovery of marine ecosystems are relatively well known 48 

worldwide, but the pattern of recovery of lacustrine ecosystems is still unclear due to the 49 

highly fragmentary freshwater fossil record (Benton and Newell, 2014; Hochuli et al., 50 

2016; Nowak et al., 2019; Vajda et al., 2020). Although occupying only a small area, lakes 51 

potentially play an important role in the global cycling of dissolved geochemical species 52 

(Cohen, 2003). Studies of post-extinction recovery of lacustrine environments can provide 53 

a better understanding of how such ecosystems have responded geologically to global 54 

warming (Mendonça et al., 2017). However, Lower Triassic and lower Middle Triassic 55 

continental records are fluvially dominated successions with only local lacustrine deposits 56 

that were shallow, ephemeral, and evaporitic in character (Gierlowski-Kordesch and Kelts, 57 

1994; Gall and Grauvogel-Stamm, 2005; Benton and Newell, 2014; Buatois et al., 2016). 58 

Until now, the oldest known Mesozoic complex lacustrine ecosystem was dated to the 59 

latest Middle Triassic–earliest Late Triassic in China and central Asia (ca. 237 Ma) 60 
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(Buatois et al., 2016; Zheng et al., 2018); older Mesozoic complex lacustrine ecosystems 61 

were unknown either because they had not yet evolved or because their sedimentary 62 

records had not been found. Here we extend the record of such systems back in time by 63 

describing mid-Triassic lacustrine organic-rich shales containing abundant tuff interlayers 64 

and fossils (ca. 242 Ma) from three outcrops in the Ordos Basin of northwestern China 65 

(Fig. 1). The fossil assemblage reveals a diverse Mesozoic-type, trophically multileveled 66 

ecosystem that represents the earliest-known such ecosystem after the EPME and suggests 67 

that such ecosystems took as long as 10 m.y. to recover fully. 68 

MATERIALS AND METHODS 69 

The Ordos Basin is a continental basin developed on the Paleozoic North China 70 

craton whose freshwater character without marine influence has been identified on 71 

paleontological and geochemical grounds (Qiu et al., 2015; Zheng et al., 2018; Du et al., 72 

2019). The Triassic continental strata in the Ordos Basin include, from bottom to top, the 73 

Liujiagou Formation, Heshanggou Formation, Ermaying Formation, Tongchuan 74 

Formation, and Yanchang Formation (Deng et al., 2018; Zheng et al., 2018). 75 

A well-known section, the 1980-m-thick Qishuihe outcrop (35°14′50.29″N, 76 

109°0′45.10″E) was investigated to locate the earliest appearance of a Triassic coal seam. 77 

The organic-rich shale was documented in three sections: the 31.2-m-thick Bawangzhuang 78 

outcrop (35°14′2.83″N, 109°2′28.86″E), the 31.4-m-thick Mazhuang outcrop 79 

(35°19′19.54″N, 109°14′39.37″E), and the 38.9-m-thick Yishicun outcrop 80 
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(35°11′34.21″N, 108°51′6.04″E). We analyzed the U-Pb isotopic ages of tuffaceous layers 81 

(tuff, tuffaceous sandstone, volcanic ash) in these three outcrops to constrain the age of the 82 

organic-rich shale and its associated biota (Figs. DR1D–DR1F in the GSA Data 83 

Repository1). Four samples were collected for dating, including one tuff sample (BW-1) 84 

from the Bawangzhuang outcrop, one tuffaceous sandstone sample (MZ-1) from the 85 

Mazhuang outcrop, and two volcanic ash samples (YQ-1 and YQ-2) from the Yishicun 86 

outcrop. U-Pb isotopic data from zircons were obtained at the Department of Earth 87 

Sciences, The University of Hong Kong, using a Nu Instruments multi-collector (MC) 88 

inductively coupled plasma mass spectrometer (ICP-MS) with a Resonetics RESOlution 89 

M-50-HR excimer laser ablation system. More laboratory details are given in the Data 90 

Repository. 91 

RESULTS AND DISCUSSION 92 

Sedimentology and Paleontology 93 

The Ordos Basin is the second-largest sedimentary basin in China (Fig. 1; Qiu et 94 

al., 2015). The upper part of the Tongchuan Formation and Yanchang Formation are 95 

particularly rich in organic matter (Du et al., 2019). The lower part of the Tongchuan 96 

Formation was long thought to be dominated by sandstone (Zheng et al., 2018). However, 97 

20−30-m-thick organic-rich shales with abundant tuff and less-fissile mudstone interlayers 98 

were recently found in the lower part of this formation in three outcrops (Bawangzhuang, 99 

Mazhuang, and Yishicun) in the southern Ordos Basin (Fig. 2; Fig. DR1). The shales have 100 
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yielded abundant fossils, including microalgae (Yang et al., 2016), macroalgae (Yang et 101 

al., 2016), notostracans (tadpole shrimps; Fig. 3J), ostracods (seed shrimps; Fig. 3I), 102 

insects (Figs. 3F and 3G), fishes (Fig. 3H; Fig. DR2), and fish coprolites (Figs. 3A–3E). 103 

These fossils show conclusively that the organic-rich shales are lacustrine, consistent with 104 

previous interpretations based on paleontological and geochemical evidence (Qiu et al., 105 

2015; Zheng et al., 2018; Du et al., 2019). Tuffs are extremely abundant in the studied 106 

sections, especially in the Bawangzhuang outcrop where there are >30 such layers (Fig. 107 

DR1). 108 

The insect assemblage is dominated by aquatic beetles (Figs. 3F and 3G), which 109 

typically have a particularly hard chitinous exoskeleton that gives them a high preservation 110 

potential within the sediment. Spirally coiled coprolites are also abundant in the 111 

organic-rich shale and display a well-defined heteropolar structure (Figs. 3A–3C). The 112 

chitinous mandibles of predatory dipteran larvae are found in phosphatized coprolites. 113 

These mandibles are ~0.1 mm long, have dark-colored tips (Figs. 3D and 3E), and are 114 

broad, strong spines that are very weakly bent in lateral view, similar to those of chaoborid 115 

larvae (Richter and Baszio, 2001). The fish coprolites range from 55.6 mm to 77.7 mm in 116 

length, suggesting that the fish were large. However, the largest skeletal fragment found so 117 

far is estimated to derive from a fish no longer than 250 mm (Fig. DR2). By contrast, the 118 

coiled coprolites probably belonged to larger cartilaginous fish predators that have a spiral 119 
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valve. Importantly, because they occupy the higher trophic guilds in lake food chains, top 120 

predators such as large fish are important indicators of the presence of complex food webs. 121 

Our U-Pb isotopic ages of tuffaceous layers in three outcrops extend the oldest age 122 

of the Triassic organic-rich shale to 242 Ma (Fig. 2), near the Anisian-Ladinian boundary 123 

(Cohen et al., 2013), which is consistent with the thermal ionization mass spectrometry 124 

(TIMS) zircon U-Pb dating age (241.558 Ma) of the lower part of the Tongchuan 125 

Formation near Yishicun (Zhu et al., 2019; Chu et al., 2020). In addition, the result is also 126 

supported by the presence of the notostracan Xinjiangiops, which is restricted to the lower 127 

part of the Tongchuan Formation (Xie et al., 2015). The age of this Triassic organic-rich 128 

shale in the Ordos Basin has been widely thought to lie within the Late Triassic Epoch (Du 129 

et al., 2019; Sun et al., 2019). However, our findings reveal that Middle Triassic 130 

organic-rich shale is present in three discrete outcrops extending over a lateral distance of 131 

40 km. Its absence in the Qishuihe section is probably due to local facies variation, which is 132 

common in this area near the southern margin of the basin (Fig. 1). Combined with the 133 

results from the southwestern Ordos Basin (Deng et al., 2018), our findings suggest that 134 

this distinctive facies may have been widespread in the southern Ordos Basin during the 135 

early–middle Ladinian and provide new insight into the Triassic sedimentary history of the 136 

area. 137 

Recovery of Lacustrine Ecosystems after the EPME 138 
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This account details the oldest record of lacustrine organic-rich shales after the 139 

EPME. Despite the presence of suitable tectonic settings for deep perennial lakes (e.g., 140 

linear rift basins), Early Triassic and early Middle Triassic lacustrine deposits are shallow, 141 

ephemeral, and evaporitic, probably due to the high global temperatures and rates of 142 

evaporation relative to water input (Benton and Newell, 2014); continental records are 143 

fluvially dominated successions. This pattern of sedimentation was also characteristic of 144 

the Ordos Basin, with lowest Middle Triassic deposits (Ermaying Formation) being 145 

purple-colored fluvially dominated facies (Yang et al., 2016). Post-dating the 146 

purple-colored fluvially dominated successions, the organic-rich shale in the lower part of 147 

the Tongchuan Formation represents the first known appearance of a deep perennial lake 148 

after the EPME, which developed at least 5 m.y. earlier than the worldwide occurrence of 149 

deepwater, organic-rich lacustrine shales and mudstones of the Late Triassic (Smith, 1990; 150 

Gierlowski-Kordesch and Kelts, 1994). 151 

The results provide data on the earliest known Triassic complex lacustrine 152 

ecosystem. Primary producers included various micro- and macroalgae, together with 153 

some notostracans, ostracods, and insects that fed on algae as primary consumers. 154 

Second-level consumers included some predatory insects (such as chaoborid larvae), with 155 

higher-order trophic levels being represented by predatory fish. Such an ecosystem is a key 156 

character of Mesozoic lakes (Ponomarenko, 1996), which were different from 157 

pre-Mesozoic lakes in which dipteran larvae were absent and aquatic beetles were rare 158 
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(Cohen, 2003). We regard the occurrence of a Mesozoic-type, trophically multileveled 159 

lacustrine ecosystem as the hallmark of freshwater ecosystem recovery following the 160 

EPME. This transition from pre-Mesozoic to Mesozoic lacustrine ecosystems was partly 161 

driven by the radiation of aquatic insects (Zheng et al., 2018), which is thought to have 162 

been part of the so-called Mesozoic lacustrine revolution (Buatois et al., 2016). 163 

The restoration of a complex lacustrine ecosystem (at ca. 242 Ma) was coincident 164 

with the termination of the “coal gap”, which was an interval of ~10 m.y. when no coals 165 

were deposited worldwide (Retallack et al., 1996, 2011). In the Ordos Basin, the oldest 166 

known Triassic coal seam occurs in the uppermost part of the Ermaying Formation (Fig. 1; 167 

Fig. DR1C), the age of which is slightly greater than that of the organic-rich shale 168 

described herein (Yang et al., 2016). The appearance of Triassic coal seams is generally 169 

considered to represent the substantial recovery of peat-forming forests following the mass 170 

extinction (Retallack et al., 2011; Benton and Newell, 2014; but see McElwain and 171 

Punyasena, 2007; Vajda et al., 2020). Therefore, both lake and peat-forming forest 172 

ecosystems probably took as long as 10 m.y. to recover, much longer than the period of 173 

recovery of plant communities inferred from palynological data (Hermann et al., 2011; 174 

Vajda et al., 2020). 175 

The hot Early Triassic climate would have limited dissolved oxygen in lakes, 176 

potentially hindering ecosystem recovery. A subsequent major increase in marine carbon 177 

burial in the Anisian could, however, have caused CO2 drawdown and global cooling, 178 



Publisher: GSA 
Journal: GEOL: Geology 
DOI:10.1130/G47502.1 

Page 10 of 18 

improving lacustrine conditions (Chen and Benton, 2012; Sun et al., 2012; Grasby et al., 179 

2016, 2019). In addition, the abundant volcanic ash likely transferred nutrients into the 180 

water and probably significantly increased the efficiency of primary productivity in the 181 

Ordos Basin (Zeng et al., 2018). Therefore, both the climate cooling and high volcanic 182 

nutrient input most likely facilitated development of this complex lake community. The 183 

near-coeval recovery of both aquatic and non-aquatic terrestrial ecosystems may suggest 184 

that they were tightly linked through biological, physical, and chemical interactions. 185 
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FIGURE CAPTIONS 313 

Figure 1. Geographic map of study area. (A) Location of Ordos Basin in northwestern 314 

China (modified from Sun et al., 2019). Gray area represents North China plate. (B) 315 

Locations of four outcrops, enlarged from red inset in A. Numbers represent road numbers. 316 

[[In the figure, on scale bars, insert a space between the numeric value and units of 317 

measure; in lat/lon labels, move “N” and “E” to the end of the label]] 318 

 319 

Figure 2. Stratigraphic columns showing lithologies, fossiliferous horizons, sample points, 320 

and age results (see Fig. 1 for locations). Lower Ladinian organic-rich shale is absent from 321 

Qishuihe outcrop, but is well developed in other three outcrops. 322 

[[In the figure, there appear to be a couple of lithologic symbols used in the columns 323 

that are not shown in the legend (near the bottom of Qishuihe, green with single dots 324 

[sandstone]; near the top of Bawangzhuang, brown with double dots [siltstone]) – 325 

please check/fix; in height measurements, insert a space between the numeric value 326 

and units of measure]] 327 

 328 

Figure 3. Representative fossils from organic-rich shale and mudstone of the Tongchuan 329 

Formation (Ordos Basin, China). (A–C) Fish coprolites from Bawangzhuang outcrop. (D) 330 

https://doi.org/10.1111/1755-6724.14329
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Sliced photomicrograph showing chitinous mandibles of predatory dipteran larvae in fish 331 

coprolite. (E) Enlargement from blue inset in D. (F,G) Beetle (Insecta: Coleoptera) from 332 

Mazhuang outcrop. (H) Fish (Neopterygii) from Mazhuang outcrop. (I) Tungchuania sp. 333 

(Limnocytheridae) from Mazhuang outcrop. (J) Xinjiangiops sp. (Triopsidae) from 334 

Mazhuang outcrop. Scale bars: 20 mm (A–C), 10 mm (H–J), 5 mm (G), 2 mm (F), 0.2 mm 335 

(D), and 0.1 mm (E). 336 

 337 

1GSA Data Repository item 2020xxx, supplementary figures and data tables, is available 338 

online at http://www.geosociety.org/datarepository/2020/, or on request from 339 

editing@geosociety.org. 340 
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