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Abstract—Tensor canonical polyadic decomposition (CPD)
with nonnegative factor matrices, which extracts useful latent
information from multidimensional data, has found wide-spread
applications in various big data analytic tasks. Currently, the
implementation of most existing algorithms needs the knowledge
of tensor rank. However, this information is practically unknown
and difficult to acquire. To address this issue, a probabilistic
approach is taken in this paper. Different from previous works,
this paper firstly introduces a sparsity-promoting nonnegative
Gaussian-gamma prior, based on which a novel probabilistic
model for CPD problem with nonnegative and continuous factors
is established. This probabilistic model further enables the
derivation of an efficient inference algorithm that accurately
learns the nonnegative factors from the tensor data, along with an
integrated feature of automatic rank determination. Numerical
results using synthetic data and real-world applications are
presented to show the remarkable performance of the proposed
algorithm.

Index Terms—Tensor decomposition, nonnegative factors, vari-
ational inference, automatic rank determination

I. INTRODUCTION

Modern society generates large amounts of data, many of
which have multiple attributes, and tensors provide a natural
representation for them. Because these data often consist of
latent components, tensor canonical polyadic decomposition
(CPD) [1], which is defined as a linear combination of rank-
1 tensors, has been very popular and successful in achiev-
ing state-of-the-art performance for various big data mining
tasks including social group clustering [2]-[4], text mining
[5], [6], drug discovery [7], environmental and biomedical
analysis [8], [9], and channel estimation in the next generation
communications [10], [11]. Compared to the standard matrix
decomposition which provides a “flat-world view”, tensor
CPD retains the information along all the data dimensions by
virtue of its multi-linear structure, and is capable of producing
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unique and physically meaningful latent components both
theoretically [1], [12] and empirically [2]-[11]. That is why
tensor CPD has witnessed increasing popularity and adoption
in applications mentioned above and beyond.

Despite the inherent uniqueness of the basic CPD, incor-
porating side information into the CPD model could further
improve its identifiability and interpretability [13]. This has
triggered flourishing recent studies on developing constrained
tensor CPD algorithms for various applications [14], [15],
[24], wherein tensor CPD with nonnegative factors plays an
important role [16], [17]. Due to the nonnegative constraint
imposed on each element of the factor matrices, the combi-
nation of latent rank-1 components only allows addition but
not subtraction. This leads to a parts-based representation of
the data, in the sense that each extracted latent component is
a part of the data, thus further enhancing the interpretability
of various data analytic results [13]-[17].

However, imposing nonnegative constraints on the CPD
model is not easy, since it further complicates the originally
non-convex CPD problem [1]. To tackle this, the most popular
solution is the nonnegative alternating least-squares (NALS)
method [16]. NALS algorithm iteratively optimizes one factor
matrix at a time while holding other factor matrices fixed,
and in each iteration, the optimization with respect to a single
factor matrix is a nonnegative least-squares problem [16], for
which recent parallel algorithms [18], [19] have been pro-
posed. In addition to the NALS framework, recent derivative-
based approaches [20], [21], which update all the nonnegative
factor matrices in each iteration via first-order optimization
methods, were also developed to achieve scalability.

While deriving tensor CPD algorithms with nonnegative
factors is possible from a nonlinear programming perspective,
their implementations require the knowledge of tensor rank.
The tensor rank is defined as the smallest number of rank-
one tensors that could be linearly combined to generate the
original tensor [1]. Its physical meaning is the number of
latent components inside the data. For example, in social group
analysis [2], the tensor rank corresponds to the number of
clusters of people; in the biomedical data analysis [9], the
tensor rank represents how many different types of chemical
species are in the given sample. This knowledge might be
obtained from problem-specific domain information in some
cases, but most of the time it is unknown and has to be
estimated.

Unfortunately, determining the tensor rank is known to be
non-deterministic polynomial-time hard (NP-hard) [1]. A com-
mon approach is to run multiple algorithms assuming different
tensor ranks, and choose the best one in data interpretation.



Although this manual tuning procedure is widely adopted
in tensor data mining research, heavy computational burden
is inevitable. To learn the tensor rank automatically, recent
advances in probabilistic inference [S5], [6], [22]-[26], [31]
integrate the tensor rank learning into its hyper-parameter
inference steps, and the Bayesian theory provides a natural
recipe for automatic rank determination. However, existing
probabilistic CPD models [23]-[26], [31] only considered
factor matrices with no constraints or with orthogonal con-
straints. Despite recent works [5], [6], [22] have considered
the tensor CPD with nonnegative constraints, their algorithms
are tailored to handle count-valued data and factor matrices,
which frequently occurs in text mining and link prediction.
However, continuous data and factor matrices are prevalent in
many applications such as biomedical data analysis [8], [9]
and Gaussian noise corrupted image/video/speech processing
[23], [24], [36]. Even some datasets are originally count-
valued, any pre-processing procedure such as normalization
and centralization would destroy the discrete nature [2]-[4].
Therefore, it is essential to design a probabilistic tensor CPD
model that is tailored to continuous data and incorporating
nonnegative constraints on its continuous factor matrices.

Designing a probabilistic model is an art. It needs to trade
off the expressive power of the model and the tractability of the
inference algorithm. A good model should be flexible enough
to incorporate information of the problem while simple enough
to enable efficient inference algorithm, and this forms the
core in modern research of probabilistic inference [22]—[33],
[38]-[40], [49]-[51]. In previous probabilistic CPD models
[23]-[26], the Gaussian-gamma prior distribution is used as
the primary building block due to its appealing sparsity-
promoting and exponentially conjugacy property, which has
enabled the automatic relevance determination in relevance
vector machine [27], [28] and low-rank matrix decomposition
[29], [30]. However, it is with an unbounded support and
thus cannot model non-negativeness. In this paper, we inspect
its nonnegative variant, i.e., the nonnegative Gaussian-gamma
prior distribution, and show that it inherits all the desired
properties of the Gaussian-gamma prior distribution. Using the
nonnegative Gaussian-gamma prior, a novel probabilistic CPD
model with explicit nonnegative constraints on its continuous
factor matrices is proposed. Then, under the framework of
variational inference [32], [33], an efficient inference algo-
rithm with no high-dimensional multiple integration is de-
veloped. The resultant algorithm, which includes the NALS
algorithm as a special case, is convergence guaranteed and
is very flexible in incorporating the most recent advances in
optimization [18], [41] for scalability improvement.

The remainder of this paper is organized as follows. Sec-
tion II presents the formulation for the CPD problem with
nonnegative factors and the challenges ahead. In Section
II, a probabilistic CPD model with nonnegative factors is
established, based on which an efficient inference algorithm
is derived in Section IV. Numerical results with synthetic
data and real-world data are reported in Section V. Finally,
conclusions are drawn in Section VI.

Notation: Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are written

as calligraphic letters. E[ - | denotes the expectation of its
argument. Superscript 7' denotes transpose, and the operator
Tr (A) denotes the trace of a matrix A. || - || represents

the Frobenius norm of the argument. A (z|u, R) stands for
the probability density function of a Gaussian vector & with
mean v and covariance matrix R. The N x N diagonal
matrix with diagonal components a; through a is represented
as diag{ai,as,...,an}, while I, represents the M x M
identity matrix. The (i,7)*" element, the i*" row, and the ;"
column of a matrix A are represented by A, ;, A;. and A. ;,
respectively.

II. CPD WITH NONNEGATIVE FACTORS AND CHALLENGES
IN RANK ESTIMATION

Tensor CPD with nonnegative factors has found appli-
cations in many different fields [13]-[17]. For illustration,
fluorescence data analysis [34], [35] and e-mail data min-
ing applications [2]-[4] are presented in Appendix A. The
general problem, which decomposes a N dimensional tensor
Y € R1xJ2x.XJIN into a set of nonnegative factor matrices

{2MN_ s formulated as:
R
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where symbol o denotes vector outer product.

In problem (1), there are two significant challenges. Firstly,
nonnegative factor matrices {E(™ }N_, are complicatedly cou-
pled, resulting in a difficult non-convex optimization problem.
To tackle this challenge, alternating optimization is one of
the most commonly used techniques. In each iteration, after
fixing all but one factor matrices, problem (1) will become
a standard nonlinear least-square (LS) subproblem, for which
there are various off-the-shelf algorithms for solving it [42],
including interior point methods and augmented Lagrangian
methods. To scale the solution of each subproblem to handle
big tensor data, first-order methods, such as Nesterov-type
projected gradient descent [44, page 81 and 90], has been
proposed to replace the interior point methods in [18], [19].

Although pioneering works [18], [19] allow the learning
of nonnegative factors from big multidimensional data, they
still face the second critical challenge of problem (1): how to
automatically learn the tensor rank R from the data? With
the physical meaning of tensor rank being the number of
components/groups inside the data (see Appendix A), this
value is usually unknown in practice and its estimation has
been shown to be NP-hard [1]. For tensor CPD with no
constraints on at least one factor matrix [23]-[26], this problem
has been well solved via a probabilistic inference approach
by the employment of the Gaussian-gamma prior distribution.
In particular, without loss of generality, consider a machine
learning model with parameter w € RM*! The model
parameter w consists of S non-overlapped blocks, each of



which is denoted as w,; € R™:*1, The Gaussian-gamma prior
can be expressed as [27]-[30]:

S S
pwl{a}y) = [[ p(wslas) = [[ N (wsl0ns, x1, 05 Th,).
s=1 s=1
()
S
p({as}isy) = [ | samma(asas, bs), 3)
s=1

where «, is the precision parameter (i.e., the inverse of
variance, also called weight decay rate) that controls the
relevance of model block w, in data interpretation, and
{as,bs}f:1 are pre-determined hyper-parameters. There are
two important properties of Gaussian-gamma prior that leads
to its success and prevalence in a variety of applications [23]-
[30], [49]-[51]. Firstly, after integrating the gamma hyper-
prior, the marginal distribution of model parameter p(w) is
a student’s t distribution, which is strongly peaked at zero
and with heavy tails, thus promoting sparsity. Secondly, the
gamma hyper-prior (3) is conjugate' to the Gaussian prior
(2). This conjugacy permits the closed-form solution of the
variational inference [32], [33], which has recently come up
as a major tool in inferring complicated probabilistic models
with inexpensive computations.

However, the Gaussian-gamma prior in (2) and (3) cannot
be used in the CPD problem with nonnegative factors, since
the support of Gaussian probability density function (pdf) in
(2) is not restricted to the nonnegative region. This calls for
a different prior distribution modeling. An immediate idea
might be to replace the Gaussian distribution in Gaussian-
gamma prior by the truncated Gaussian distribution with a
nonnegative support. However, a closer inspection is needed
since there is no existing work discussing whether a gamma
distribution is conjugate to a truncated Gaussian distribution
with a nonnegative support (see Appendix B for related
discussions).

III. PROBABILISTIC MODELING FOR CPD WITH
NONNEGATIVE FACTORS

A. Properties of nonnegative Gaussian-gamma prior

The support of the Gaussian pdf in (2) is unbounded, and
thus cannot model non-negativeness. On the other hand, the
truncated Gaussian prior with a nonnegative support for each
model block wg can be written as:

s
pr(wl{as}ly) = [T ot (wslay)

U (ws > OMsxl)v

“4)

where the function U (ws > Op, 1) is a unit-step function
with value one when ws; > 0ps, x1, and with value zero

N (ws|0ns, 51, 5 ' Tag,)

S _
= H N(wslol\rsthas 1IMs)
s=1 fO

Mgx1

'In Bayesian theory, a probability density function (pdf) p(z) is said to be
conjugate to a conditional pdf p(y|z) if the resulting posterior pdf p(z|y) is
in the same distribution family as p(z).
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Figure 1: Univariate marginal probability density functions in (5) with
different parameters

otherwise. Together with the gamma distributions (3) for
modeling the precision parameters {a;}>_,, we have the
nonnegative Gaussian-gamma prior. Even though it is clear
that nonnegative Gaussian-gamma prior can model the non-
negativeness of model parameters due to the unit-step function
U (ws > 0ps,x1), whether it enjoys the advantages of the
vanilla Gaussian-gamma prior needs further inspection. In the
following, two properties of the nonnegative Gaussian-gamma
prior are presented.
Property 1. The gamma distribution in (3) is conjugate to the
nonnegative Gaussian distribution in (4).

Proof: See Appendix B. [ ]
Property 2. After integrating out the precision parameters
{as}S_,, the marginal pdf of model parameter w is

p* (w) = / P (wl{an} 5 )p({as) 5y )d{an) 5y

1. M, F(as + MS/Q) T —a.—M
— I | 21‘45 [ - Sy () wrw Qs s/2
(7r) (QbS)ﬂISF(aS)( bs s Ws)

x U(ws > O0pr,x1) - o)

It is a product of multivariate truncated student’s t distribu-
tions, each of which is with a nonnegative support.
Proof: See Appendix B. [ ]

The shape of the marginal distribution p™ (w) is determined
by the hyper-parameters {as, b, }5_;. Usually, their values are
chosen to be a very small value (e.g., ¢ = 107%), since as
as — 0 and by — 0, a Jeffrey’s non-informative prior p(a) o
a; ! [37] can be obtained. After letting the hyper-parameters
{as,bs}5_, in (5) go to zero, it is easy to obtain the following
property.
Property 3. If a; — 0 and by — 0, the marginal pdf of the
model parameter w becomes

s
1
pt(w) o [ 2" (
s=1

l[ws|[2

M
) U(ws > 0p,x1), (6)



which is highly peaked at zeros.

As an illustration for Property 2 and 3, univariate marginal
pdfs with different hyper-parameters {a,, b, }2_, are plotted in
Figure 1, from which it is clear that the nonnegative Gaussian-
gamma prior is sparsity-promoting. Further with the conjugacy
property revealed in Property 1, the nonnegative Gaussian-
gamma prior is a good candidate for probabilistic modeling
with nonnegative model parameters.

B. Probabilistic modeling of CPD with nonnegative factors

In the CPD problem with nonnegative factors in (1), the [*"
column group { }n 1» which consists of the I*" column
of all the factor matrlces can be treated as a model block,
since their outer product contributes a rank-1 tensor. Therefore,
with the principle of nonnegative Gaussian- gamma prior in the

previous subsection, the I*" column group {u l } _, can be

modeled using (4), but with w; replaced by {._. 1 tn=1 and a;
replaced by ;. Considering the independence among different

column groups in {E™}N_,, we have
(B )
1 N(E57104,0,77 1)

n=11=1 N(E;(,Tll)mlnxl’VflIL)dESTZL)

07, x1
XU (85 2 05,), )
L
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=1

where the precision 7; is modeled as a gamma distribution.
From discussions below Property 2, c? and d? can be chosen
to be a very small value (e.g., ¢ = 10~°) to approach a non-
informative prior of precision parameter ;.

On the other hand, the least-square objective function in the
nonnegative tensor CPD problem (1) motivates the use of a
Gaussian likelihood [27]-[30]:

p (y | E(l),E(Q), ] E(N) 6)

81y 12 2
cow (-5 19- 20,592V }), O

in which the parameter [ represents the inverse of noise power.
Since there is no information about it, a gamma distribution
p(Blag) = gamma(fle, €) with very small e is employed,
making p(5|az) approache Jeffrey’s non-informative prior.

The Gaussian likelihood function in (9) is with an un-
bounded support over the real space, and thus it is suitable
for applications such as fluorescence data analysis [34], [35]
and blind speech separation [36], in which the observed data
Y could be both positive and negative [34]-[36]. On the other
hand, if the data ) are all nonnegative and continuous (e.g.,
the email dataset [2]-[4] after pre-processing), a truncated
Gaussian likelihood can be used to model the data:

(y| =) = >,...,E<N>,5>

(10)
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Figure 2: Probabilistic model for tensor CPD with nonnegative factors

Finally, the complete probabilistic model is a three-layer Bayes
network and is illustrated in Figure 2.

Remark I: For applications in Appendix A (i.e., fluorescence
spectroscopy and social group clustering), the desired factor
matrices are with continuous and nonnegative elements, and
thus the prior distribution should have a nonnegative support.
On other other hand, in order to automatically identify the in-
herent component/cluster number, the prior distribution needs
to enjoy the sparsity promoting property. Therefore, the choice
of nonnegative Gaussian pdf together with a gamma hyper-
prior suits these applications.

IV. INFERENCE ALGORITHM FOR TENSOR CPD WITH
NONNEGATIVE FACTORS

The unknown parameter set ® includes the factor ma-
trices {E(WIN_, | the noise power 3! and the precision
parameter {7;}~ ;. The aim of Bayesian inference is to infer
the posterior distribution p(©[Y) = p(©,Y)/ [ p(©,))dO.
However, the proposed probabilistic model is too complicated
to enable an analytical solution since multiple integrations
are involved. To tackle this, variational inference [32], [33]
has recently been widely used for inferring parameters of
a complicated probabilistic model. The key idea is to ap-
proximate the true posterior distribution by a variational pdf
Q(®) that minimizes the Kullback-Leibler (KL) divergence

KL(Q(®) || p(©]¥)) = ~Eqe) iln HE, thus re-
casting the probabilistic inference problem into a functional

optimization problem. To facilitate the optimization, the vari-
ational pdf QQ(©) is usually restricted to the mean-field family
QO) = Hszl Q(®y,), where © is partitioned into mutually
disjoint non-empty subsets ©; (i.e., @ is a part of ©
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Figure 3: Illustration of a univariate Gaussian probability density
function with its mean much larger than the variance

with UK ©, = © and NX_, 0@, = (). Under the mean-
field assumption, each optimal variational pdf Q* (®y) that
minimizes the KL divergence is obtained by solving the
following problem with other {Q(®;)} ;- fixed [32]:

min

ain [ QO)(-Er, qe, 11p(0.7) + Q(©1))de).

Y

For this convex problem, the Karush-Kuhn-Tucker (KKT)
condition gives the optimal solution as [32, page 132]:

P <Enj¢k Qe,) [Inp(O, y)])

Q" (O) = .
U e (En,.. o, mp(©,Y)]) dO%

12)

Nevertheless, even under the mean-field family assumption,
the unknown parameter Z(¥) is still difficult to be inferred
since its moments cannot be easily computed. In particular, in
the proposed probabilistic model, if no functional assumption
is made for variational pdf Q(E*)), after using (12), a mul-
tivariate truncated Gaussian distribution would be obtained,
of which the moments are known to be very difficult to be
computed due to the multiple integrations involved [46]. In this
case, the variational pdf @ (E(®)) could be further restricted
to be a Dirac delta function @ (E®)) = §(E® — E(),
where 2(*) is the point estimate of the parameter Z(*). After
substituting this functional form into problem (11), the optimal
point estimate E(*)* is obtained by [32, page 164]:

Z(k)* arg maXEH@j¢E(k) Q(®,) lnp(©,))]. (13)
This is indeed the framework of variational expectation max-
imization (EM), in which the factor matrices {E*)}N_  are
treated as global parameters and other variables are treated as
latent variables.

In (12) and (13), the log of the joint pdf Inp (@, ) needs
to be evaluated. If the Gaussian likelihood function (9) is
adopted, it is expressed as

N
Hn:l Jn lnﬂ

N
np (©,9) =3 I (UE™ > 0,,.1)) + -
n=1

3 N oy L
_ = _ =) =2) 0 =m(O)7)2 “n
2 ||y [[h' g -y 5 — ]]||F+nzl 2 l_zllnfw
N L
=(n)pe=(n)T —6 —6
- §Tr<:.( TEM ) + 3711076 — 1) Inwy; — 107%]
n=1 =1
+ (1076 —1)In3 — 10758 + const, (14)
where the term T' = diag{v1, 72, ..., 7z }. On the other hand,
if the truncated Gaussian likelihood (10) is used, the log of
the joint pdf In p! (©,))) takes the following form

Inp* (©,Y) =np' (©,Y)—Ind ({E(")}ﬁf:l, B) -+ const.
15)

where

w0/ g\l %
:'(n) N B b n=1 2
P ({‘—‘ }7L=17B) _/0 <2ﬂ‘)
<exp (S 19- 20,20, 2] 3 )@y do

In (15), the term In® ({E™}Y_| ), which arises from
the truncated Gaussian likelihood in (10), is very diffi-
cult to evaluate and differentiate, due to the multiple in-
tegrations involved. Fortunately, for most applications in
Bayesian nonnegative matrix/tensor decomposition [38]-[40],
the confidence of the low-rank matrix/tensor model is
relatively high, in the sense that the noise power 1/3
is small compared to average element in signal tensor
[EW, 2@ . EWO)]. Under this assumption, it is easy to see
In® ({EM}N_),8) ~ Inl = 0, since Gaussian pdf p(Y) =

n In

(ﬂ) T exp (<8 Y- [EW,E®,  EM]|2)dY de-
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cays very rapidly and thus most densities are over the region
Y > 0. As an illustration, a univariate Gaussian pdf with
its mean much larger than the variance is plotted in Figure
3, in which the probability density in the negative region
is negligible. This suggests that the the log of the joint pdf
Inp! (©,)) in (15) can be well approximated by Inp' (©,))
in (14), and therefore algorithm derivations are unified for
the two likelihoods. This also explains why the previous
Bayesian nonnegative matrix/tensor decompositions [38]—[40]
all employ the Gaussian likelihood function.

A. Derivation for variational pdfs

As discussed in the first paragraph of this section, the
mean-field approximation is employed to enable closed-form
expression for each variational pdf. For the precision parameter
71, by substituting (14) into (12) and only taking the terms
relevant to -y, the variational pdf (Q(~;) can be found to take



the same functional form as that of the gamma distribution,
i.e., Q(v) = gammal(y|c, d;) with
N

In
a=Yy S te (7
n=1
1 ()T m(n)
—_ T =
di =" SEqem) [EXTED] +e. (18)
n=1

Since the variational pdf Q(+;) is determined by parameters
c; and dj, its update is equivalent to the update of the two
parameters in (17) and (18).

Similarly, using (12) and (14), the variational pdf Q (/) can
be found to be a gamma distribution Q(3) = gamma(fle, f),
where

[T
2

1 (1) ==(2
fzéﬂneﬁﬁmeﬂ[ny_ﬂ:(xz(xuw

e= + €, 19)

=M]E] + e
(20)
On the other hand, by substituting (14) into (13), the point

estimate of 2(*) can be obtained via solving the following
problem:

maxEyy_ In (U(E““) > 0y,x1))
J

22t Q(O;)

1

[I]

~Ly-En,Ee,. ;
2D

After distributing the expectations, expanding the Frobenius
norm, and utilizing the fact that In(0) = —oo, problem (21)
can be equivalently shown to be:

min f(E®)

st. 2R > 0,xL, (22)

where
FE®)
1
= §Tr( =VE, o @) {5‘3

=(k (k k)T
_ 285( )EH@j¢E<k> °©,) [ )} k) )

T4+ 50T

(23)

T
In (23), the term B*) — ( =) ) , with the multiple
n=1 n;ﬁk
N

Khatri-Rao products o 1<>n7é A = AN) 6 AN-D ..o
AFHD 6 AB=Do. . 0 A Tt is easy to see that problem (22)
is a quadratic programming (QP) problem with nonnegative
constraints. Since each diagonal element v; in the diagonal
matrix I' is larger than zero, the Hessian matrix of the function
f(E®), with the expression being

H(k) — ]EH@.¢=(I€) Q(G‘)]) ﬂ%(k)%(k)T + 1-\:| (24)
AE

is positive definite. This implies that problem (22) is a convex
problem, and its solutions have been investigated for decades
[42, Chapter 2 and 4]. In particular, first-order methods have

]| —fTr(E( )FE(’“)T) .

recently received much attention due to their scalability in big
data applications. Within the class of first-order methods, a
simple gradient projection method is introduced as follows.

In each iteration of the gradient projection method, the
update equation is of the form [42, page 224]:

E(}C,t+l) — [E(k,t) _ atvf(E(k,t))} (25)
+

where the gradient v f(E(**) is computed as
Vf(E(k*t)) — E(k’t)EH@j#E(m Q®,) [ﬂg(k)%(k)T + 1"}

_ (k) (k)T
Y ]EH@].¢E(I<) Q(®;) ['B% } :

In (26), the symbol [-]; denotes projecting each element of
E® to [0,00) (i.e., [x]1 = zif 2 > 0and [2]; = 0 otherwise)
and oy > 0 is the step size. During the inference, due to
the sparsity-promoting property of the nonnegative Gaussian-
gamma prior, some of the precision parameters will go to very
large numbers while some of them will tend to be zero. This
will result in a very large condition number of the Hessian
matrix H*), In this case, applying the diminishing rule? to
the step size «; still enjoys a good convergence performance
[42, page 228] and thus is set as the default step-size rule in
the proposed algorithm.

(26)

B. Summary of the inference algorithm
From equations (17)-(26), it can be seen that we need
to compute various expectations. In particular, for expecta-
tions Eqzm)[E =], Eg(y)[] and Eqs)[B]. their compu-
tations are very straightforward, i.e., EQ(EW)[E(”)] =50,
Eq(y)n] = & and Egg)[8] = . However, when updating
=) using (22) and (23), there is one complicated expectation
]Enejﬁ(k) Q(®)) [%(k)‘B(k)T]. Fortunately, it can be shown
N

k k _ =(n)T=(n
that El‘lejﬁm Q(®;) [%( )8 )T] = n:f:)n#k EMTE( ),
where the multiple Hadamard products o A =

n=1,n#k

AN ANV ..o A o AF-D o ...0 AW, Since
the computation of one variational pdf needs the statistics of
other variational pdfs, alternating update is needed, resulting
in the iterative algorithm summarized in Algorithm 1.

C. Discussions and insights

To gain further insight from the proposed inference algo-
rithm, discussions of its convergence property, automatic rank
determination, relationship to the NALS algorithm, computa-
tional complexity, and scalability improvement are presented
in the following.

1) Convergence property: The proposed algorithm is de-
rived under the framework of mean-field variational infer-
ence, where a variational pdf Q(®) = [], Q(®y) is sought
that minimizes the KL divergence KL (Q(®)||p(®]))). Even
though this problem is known to be non-convex due to the non-
convexity of the mean-field family set, it is convex with respect

’In the diminishing rule [42, page 227], the step size oy needs to satisfy
ap — 0and Y72 ) o = oo.



Algorithm 1 Probabilistic Tensor CPD with Nonnegative
Factors

Initializations: Choose L > R and initial values {Z(0)}N_ |
€.

Iterations: For the s'” iteration (s > 0),

Update the parameter of Q(Z(F))(s+1)

Set initial value Z(0) = Z(k:s),

Iterations: For the t'” iteration (¢ > 0), compute
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+
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and oy is chosen by the diminishing rule [42, page 227].
Until Convergence
Set &(kbs+1) — glkttD),

Update the parameter of Q(~y;)5*!
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Until Convergence

to a single variational pdf Q(®y,) after fixing other variational
pdfs {Q(®;),j # k} [32, page 138]. Therefore, the iterative
algorithm, in which a single variational pdf is optimized in
each iteration with other variational pdfs fixed, is essentially
a coordinate descent algorithm in the functional space of
variational pdfs. Since the subproblem in each iteration is
not only convex but also has a unique solution, the limit
point generated by the coordinate descent steps over the
functional space of variational pdfs is guaranteed to be at least
a stationary point of the KL divergence [32, page 163].

2) Automatic rank determination: During the inference, the
expectations of some precision parameters {7}, i.e., {5} will
go to a very large value. It indicates that the corresplonding
columns in the factor matrices are close to zero vectors,
thus playing no role in data interpretation. As a result, after
convergence, those columns can be pruned out and the number
of remaining columns in each factor matrix gives the estimate
of tensor rank.

In practice, to reduce the computational complexity, the
pruning would be executed during the iteration. In particular,
in each iteration, after the precision estimates {3-} exceed a

l

certain threshold (e.g., 10%), the associated columns are safely
pruned out. After every pruning, it is equivalent to starting
minimization of the KL divergence of a new (but smaller)
probabilistic model, with the current variational distributions
acting as the initialization of the new minimization. Therefore,
the pruning steps will not affect the convergence, and are
widely used in recent related works [23]-[30], [49]-[51].

Usually, the hyper-parameters {c?, d} of the prior gamma
distribution gammal(~y;|c), d?) are set to be a very small num-
ber ¢ = 10~ to approach a non-informative prior. Otherwise,
their values might affect the behavior of tensor rank estimate.
For example, if we prefer a high value of the tensor rank, the
initial value d can be set to be very large while the initial
value c? can be set to be small, so that the update of (% can be
steered towards a small value in order to promote a high tensor
rank. However, how to set the hyper-parameters to accurately
control the degree of low-rank is challenging, and deserves
future investigation.

3) Relationship to NALS algorithm: The mean-field varia-
tional inference for tensor CPD problem could be interpreted
as alternating optimizations over the Riemannian space (in
which the Euclidean space is a special case). This insight
has been revealed in previous works [25], [45], and can also
be found in the proposed algorithm above. For example, for
the precision parameters and the noise power parameter, the
variational pdfs are with no constraint on the functional form,
and thus the corresponding alternating optimization is over
the Riemannian space due to the exponentially conjugacy
property of the proposed probabilistic model [25], [45]. On the
other hand, for unknown factor matrices, since the variational
pdfs to be optimized are with a delta functional form, the
corresponding alternating optimization is over the Euclidean
space, thus is similar the conventional NALS step. However,
there is a significant difference. In the proposed algorithm,
there is a shrinkage term I' appeared in the Hessian matrix in
(24), and T" will be updated together with other parameters
in the algorithm. This intricate interaction is due to the
employed Bayesian framework, and cannot be revealed by
NALS framework. Consequently, the proposed algorithm is
a generalization of the NALS algorithm, with the additional
novel feature in automatic rank determination achieved via
optimization in Riemannian space.

4) Computational complexity: For each iteration, the com-
putational complexity is dominated by computing the gradient
of each factor matrix in (25), costing O(Hg=1 JnL). From
this expression, it is clear that the computational complexity
in each iteration is linear with respect to the tensor dimension
product Hgil Jn. Consequently, the complexity of the algo-
rithm is O(q(]_[n]\;1 JnL)) where ¢ is the iteration number at
convergence.

5) Speeding up the algorithm via acceleration schemes and
parallel computations: From the proposed inference algo-
rithm, it is clear that the bottleneck of the algorithm efficiency
is the update of factor matrices {E(™}_, via solving problem
(22). Fortunately, if the problem is well conditioned, in the
sense that the condition number of the Hessian matrix H ()
in (24) is smaller than a threshold (e.g., 100), acceleration
schemes, including variants of the Nesterov scheme [44, page



81 and page 90], [18], can be utilized to significantly reduce
the required number of iteration for solving problem (22),
thus speeding up the proposed algorithm. Besides reducing
the iteration number for convergence, ideas of leveraging
parallel computing architecture like message passing interface
(MPI) in [18], [19] and super-computer in [43] deserve future
investigation. For instance, it is easy to see that the non-
negatively constrained quadratic problem (22) is separable
across the rows of the factor matrix Z(™), making it possible
to optimize multiple rows of the factor matrices in parallel.
More sophisticated schemes on parallel computations could
be found in [18], [19], [43].

V. NUMERICAL RESULTS

In this section, numerical results using synthetic data are
firstly presented to assess the performance of the proposed
algorithm in terms of convergence property, factor matrix
recovery, tensor rank estimation and running time. Next, the
proposed algorithm is utilized to analyze two real-world data
sets (the amino acids fluorescence data and the ENRON
email corpus), for demonstration on blind source separation
and social group clustering. For all the simulated algorithms,
the initial factor matrix Z2*9) is set as the singular value
decomposition (SVD) approximation U. 1.1, (S1.1,1.1,) 2 where
[U,S,V] = SVD[Y®] and L = min{.J;, J, ..., Jy}. The
parameter ¢ is set to be 1076, The algorithms are deemed
to be converged when || [E(1st1) E@s+1) .. E(Ns+]
[Es) 2@ ... ENS)] [12,< 1075, All experiments were
conducted in Matlab R2015b with an Intel Core i7 CPU at 2.2
GHz.

A. Validation on Synthetic Data

A three dimensional tensor X = [M™M, M® M®O)] ¢
R100%100x100 yith rank R = 10 is considered as the noise-free
data tensor. Each element in factor matrix M (") is indepen-
dently drawn from a uniform distribution over [0, 1] and thus is
nonnegative. On the other hand, two observation data tensors
are considered: 1). the data X is corrupted by a noise tensor
W e RI00X100x100 5 o "y — X + W, with each element of
noise tensor WV being independently drawn from a zero-mean
Gaussian distribution with variance va, and this corresponds
to the Gaussian likelihood model (9); 2). the data V1 is
obtained by setting the negative elements of ) to zero, i.e.,
Vi inia = Virsinia Uiy ig,is = 0), and the truncated Gaus-
sian likelihood model (10) is employed to fit these data. The
SNR is defined as 10logy, (|| X [|% /Epow) [l W 1%])
10logy, (|| X || /(100302)). For the proposed algorithm,
the step size sequence is chosen as oy 1073/(t + 1)
[42], and the gradient projection update is terminated when
I|f(E®D) — f(EF=D)||p < 1072. Each result in this
subsection is obtained by averaging 100 Monte-Carlo runs.

Figure 4 presents the convergence performances of
the proposed algorithm under different SNRs and dif-
ferent test data, where the mean-square-error (MSE) ||
[E1s) &) Z635)] — X || is chosen as the assessment
criterion. From Figure 4 (a), it can be seen that for test
data ), the MSEs of the proposed algorithm, which assumes
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Figure 4: Convergence of the proposed algorithm for different test
data

no knowledge of tensor rank, decrease significantly in the
first few iterations and converge to the MSE of the NALS
algorithm [16] (with exact tensor rank) under SNR = 10 dB
and SNR = 20 dB. Similar convergence performances can be
observed for the test data ). This is of no surprise because
approximating (15) by (14) dose not make any changes on
the algorithm framework of variational inference, and thus the
excellent convergence performance of the proposed algorithm
is expected (as discussed in Section IV. C).

The MSE measures the performance of low-rank tensor
recovery. However, due to the uniqueness property of tensor
CPD [1], each factor matrix can be recovered up to an
unknown permutation and scaling ambiguity. To directly assess
the accuracies of factor matrices recovery , the best congruence
ratio (BCR), which involves computing the MSE between the
true factor matrix M *) and the estimated factor matrix E(’“),
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different test data

is widely used as the assessment criterion. It is defined as

3 MR — &R pEA®)|| L
2 B,

k 3
£ || MR ||

where the diagonal matrix A*) and the permutation matrix
P(¥) are found via the greedy least-squares column matching
algorithm [48]. From Figure 5, it is seen that both the pro-
posed algorithm (labeled as PNCPD) and the NALS algorithm
(with exact tensor rank) achieve much better factor matrix
recovery than the ALS algorithm (with exact tensor rank) [1].
This shows the importance of incorporating the nonnegative
constraint into the algorithm design. Furthermore, the factor
matrix recovery performances of the proposed algorithm under
test data ) and V' are indistinguishable under SNR = 20

dB. This shows that when SNR is high, equation (14) gives
a quite good approximation to equation (15), thus leading to
remarkably accurate factor matrices recovery. Although the
BCR of the proposed algorithm is higher for the data ) than
that for the data ), it is with nearly the same performance as
that of the NALS algorithm (with exact tensor rank).

On the other hand, the tensor rank estimates of the proposed
algorithm under different SNRs are presented in Figure 6,
with each vertical bar showing the mean and the error bars
showing the standard derivation of tensor rank estimates. The
blue horizontal dashed line indicates the true tensor rank. From
Figure 6, it is seen that the proposed algorithm recovers the
true tensor rank with 100% accuracy for a wide range of SNRs,
in particular when SNR is larger than 10 dB. Even though the
performance is not 100% accurate when SNR is 0 dB and 5
dB, the estimated tensor rank is still close to the true tensor
rank with a high probability for test data }). However, under
these two low SNRs, the rank estimation performances of
the proposed algorithm for the data )+ degrade significantly.
This is because equation (15) cannot be well approximated by
equation (14) under very low SNRs. Furthermore, the proposed
algorithm fails to give correct rank estimates when SNR is
lower than -5 dB for both two test data sets, since the noise
with very large power masks the low-rank structure of the
data.

To assess the tensor rank estimation accuracy when the
tensor is with a larger true rank, we apply the the pro-
posed algorithm to the tensor data ) with the true rank
R = {10,30,50} and SNR = 20 dB. The rank estimation
performance is presented in Table I. From Table I, it can be
seen that the proposed algorithm recovers the rank accurately
when the true rank is 10 and 30. However, when R = 50,
the proposed algorithm fails to accurately recover the tensor
rank. This could be explained by the fact that the Gaussian-
gamma prior would lead to the sparsest estimation result [52],
and thus fail to work well when the true rank is high. This
has also been observed in a recent matrix decomposition work
[53], in which a Gaussian-Wishart prior has been employed to
tackle the high-rank estimation challenge. However, employ-
ing the Gaussian-Wishart prior for tensor decompositions is
challenging as Wishart distribution is inherently defined for a
matrix [53]. Thus, high rank tensor decomposition, which is
both important and interesting, would be left as future work.

The simulation results presented so far are for well-
conditioned tensors, i.e., the columns in each of the factor
matrices are independently generated. In order to fully as-
sess the rank learning ability of the proposed algorithm, we
consider another noise-free three dimensional tensor X =
[M®, M@ MG c R100x100x100 with rank R = 10. The
factor matrix is set as M) = 0.11190x10 + 27*M @), and
each element in factor matrices {M (™ }3_, is independently
drawn from a uniform distribution over [0, 1]. According
to the definition of the tensor condition number [54], [55],
when s increases, the correlation among the columns in the
factor matrix M (1) increases, and the tensor condition number
becomes larger. In particular, when s goes to infinity, the
condition number of the tensor goes to infinity too. We
apply the proposed algorithm to X corrupted with noise:



Table I: Performance of tensor rank estimation versus different true tensor ranks for tensor data )V when SNR = 20 dB

True tensor rank

Mean of tensor
rank estimates

Standard derivation
of tensor rank estimates

Percentage of correct
tensor rank estimates

Yy =
independently drawn from a zero-mean Gaussian distribution
with variance 2. Table II shows the rank estimation accuracy
of the proposed algorithm when SNR = 20 dB. It can be
seen that the proposed algorithm can correctly estimate the
tensor rank when s < 5. But as the tensor conditional
number increases (i.e., the columns are more correlated in the
factor matrix M (1)), the tensor rank estimation performance
decreases significantly.

Next, we consider an extreme case
columns in all factor matrices are highly correlated: X =
[MMO M@ MO ¢ RW0OX100x100 with rank R = 10,
where each factor matrix M (") = 0.11100x 10+275M("), and
each element in factor matrices { M (™ }2_, is independently
drawn from a uniform distribution over [0, 1]. With the same
observation data model as ) as before and when SNR = 20
dB, the percentages of correct tensor rank estimate are shown
in Table III. It can be seen that it is difficult for the proposed
algorithm to accurately estimate the tensor rank even when
s=1.

Table II: Performance of tensor rank estimation when the columns in
one factor matrix are correlated and SNR = 20 dB

s 0 1 3 5 100
Percentage of
correct tensor
rank estimates

100% | 100% | 100% | 25% | 5%

Table III: Performance of tensor rank estimation when the columns
in all factor matrices are correlated and SNR = 20 dB

s 0 1 3 5 100
Percentage of
correct tensor
rank estimates

100% | 40% | 0% | 0% | 0%

Finally, as discussed in the Section IV. C, acceleration
schemes could be incorporated to speed up the proposed
algorithm. As discussed in Section IV. A, in the first few
iterations, since some precision parameters are learnt to be
very large while some of them are with very small values, the
average condition number of the Hessian matrix of problem
(22), ie., %Zi:l condition_number (H®), is very large.
After several iterations, the proposed algorithm has gradually
recovered the tensor rank, and then the remaining precision
parameters are with comparable values, leading to a well-
conditioned Hession matrix H®*) of problem (22). These
results can be observed in Figure 7. Inspired by the pioneering
work [18], the Nesterov scheme [44, page 90] is utilized for
the problem (22) when the condition number of the Hessian
matrix is smaller than 100. Consequently, even with the same
MSE and BCR performances, the accelerated algorithm is

10 10 0 100%
30 29.6 1.27 90%
50 28.15 18.29 25%
X + W, where each element of noise tensor W is
10°
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104 average condition number -
10% g :
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in which the
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Figure 7: The average condition number of the Hessian matrix (24)
and the tensor rank estimate versus number of iterations for test data
Y when SNR = 20 dB.

much faster than the default version of the proposed algorithm?
as presented in Table IV. Besides the Nesterov scheme, other
advances in first-order optimizations could be incorporated to
further improve the scalability of the algorithm. However, this
is not the main focus of this paper, and thus in the following,
we only examine the performances of the default version of
the proposed algorithm for real-world applications.

Table IV: Average running time in seconds of the proposed algo-
rithm for different test data. The accelerated algorithm is labeled as
PNCPD-A.

Data SNR = 10 dB SNR = 20 dB
PNCPD | PNCPD-A | PNCPD | PNCPD-A
Yy 113.61 63.66 62.52 52.08
A 99.48 58.02 59.61 49.86

B. Fluorescence Data Analysis

In this subsection, the proposed algorithm is utilized to
analyze the amino acids fluorescence data* [44]. This data
set consists of five laboratory-made samples. Each sample
contains different amounts of tyrosine, tryptophan and pheny-
lalanine dissolved in phosphate buffered water. The samples
were measured by fluorescence and were corrupted by Gaus-
sian noise with power 0.1, resulting in SNR = 0.16 dB.
The fluorescence excitation-emission measured (EEM) data
collected is with size 5 x 201 x 61, and should be representable

3The presented time for the accelerated scheme includes the time for
computing the condition numbers.
“http://www.models life.ku.dk
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Figure 8: The estimates of (a) emission spectra and (b) excitation
spectra using the proposed algorithms, with the clean data spectra
serving as the benchmark.

with a CPD model with rank 3, since there are three different
types of amino acid and each individual amino acid gives a
rank-one CPD component.

The proposed PNCPD algorithm was run to decompose the
EEM tensor data with initial rank L = 5. For the proposed
algorithm, the step size sequence is chosen as oy = 1072 /(¢ +
1) [42], and the gradient projection update is terminated when
the gradient norm is smaller than 1073, At convergence, the
proposed algorithm identified the correct tensor rank® R = 3.
Furthermore, the emission spectra and the excited spectra of
three amino acids, which are obtained from the decomposed
factor matrices [44], are shown in Figure 8, with the clean data
spectra® serving as the benchmark. From Figure 8, it can be
seen that the recovered spectra from the proposed algorithm
are very close to the clean data spectra, with the MSE of the

SNotice that even if the initial tensor rank L is set as 20, which is much
larger than the true tensor rank 3, the proposed algorithm can still recover the
true tensor rank. This shows that the proposed method is not sensitive to the
initial tensor rank value.

5The clean data spectra is obtained by decomposing the clean data [44]
using the NALS algorithm with correct tensor rank R = 3.

emission spectra estimation equals 1.51x 10~* per wavelength
and the MSE of the excitation spectra estimation equals 1.08 x
10~* per wavelength.

C. ENRON E-mail Data Mining

In this subsection, the ENRON Email corpus7 [3] was
analyzed. This data set is with size 184 x 184 x 44, and
contains e-mail communication records between 184 people
within 44 months, in which each entry denotes the number
of e-mail exchanged between two particular people within
a particular month. Before fitting the data to the proposed
algorithms, the same pre-processing as in [2], [3] is applied to
the non-zero data to compress the dynamic range. Then, the
proposed algorithm is utilized to fit the data into the proposed
nonnegative CPD model, with the initial rank set as L = 44,
the step size sequence being «; = 1/(t + 1) [42], and the
gradient projection update terminated when the gradient norm
is smaller than 103, As introduced in the Appendix A, the
estimated tensor rank has the physical meaning of the number
of underlying social groups, and each element in the first factor
matrix can be interpreted as the score that a particular person
belongs to a particular email sending group.

During the inference, the tensor rank estimate gradually
reduces to the value 4, indicating that there are four underlying
social groups. This is consistent with the results from [2],
[3], which are obtained via trail-and-error experiments. After
sorting the scores of each column in the first factor matrix,
the people with top 10 scores in each social group is shown
in Table II. From the information of each person presented
in Table II, the clustering results can be clearly interpreted.
For instance, the people in the first group are either in
legal department or lawyers, thus being clustered together.
The clustering results of the proposed algorithms are also
consistent with the results from [2], [3], which are obtained
via nonlinear programming methods assuming the knowledge
of tensor rank. Finally, interesting patterns can be observed
from the temporal cluster profiles, which are obtained from
the third factor matrix [2], [3], as illustrated in Figure 9. It
is clear that when the company has important events, such
as the change of CEO, crisis breaks and bankruptcy, distinct
peaks appear. Notice that in this example, all the data entries
are nonnegative and the proposed algorithm still works well.
This indicates that the tensor CPD with nonnegative factors is
a model that matches this social clustering task.

VI. CONCLUSIONS

In this paper, probabilistic tensor CPD with nonnegative
factors has been investigated under unknown tensor rank.
In particular, the nonnegative Gaussian-gamma prior, which
was shown to have both sparsity-promoting and exponentially
conjugacy properties, was introduced as the building block of
the proposed probabilistic model. Then, an efficient inference
algorithm was derived with an integrated feature of automatic
rank determination. Extensive numerical results of both syn-
thetic data and real-world data were presented to show the
remarkable performance of the proposed algorithm.

"The original source of the data is from [3], and we greatly appreciate Prof.
Vagelis Papalexakis for sharing the data with us.



Table V: Social groups with people in top 10 scores in each group for the ENRON e-mail data using the proposed algorithms

Legal

Government Affair Executive

"Tana Jones (tana.jones) Employee Financial Trading Group ENA Legal’,
’Sara Shackleton (sara.shackleton) Employee ENA Legal’,

"Mark Taylor (mark.taylor) Manager Financial Trading Group ENA Legal’,
*Stephanie Panus (stephanie.panus) Senior Legal ialist ENA Legal’,
"Marie Heard (marie.heard) Senior Legal Specialist ENA Legal’,

"Mark Haedicke (mark.haedicke) Managing Director ENA Legal’,

*Susan Bailey (susan.bailey) Legal Assistant ENA Legal’,

"Louise Kitchen (louise.kitchen) President Enron Online’,

’Kay Mann (kay.mann) Lawyer’,

’Debra Perlingiere (debra.perlingiere) Legal Specialist ENA Legal’

"Teff Dasovich (jeff.dasovich) Employee Government Relationship Executive’,
*James Steffes (james.steffes) VP Government Affairs’,

"Steven Kean (steven.kean) VP Chief of Staff’,

"Richard Shapiro (richard.shapiro) VP Regulatory Affairs’,

’David Delainey (david.delainey) CEO ENA and Enron Energy Services’,

"Richard Sanders (richard.sanders) VP Enron Wholesale Services’,

*Shelley Corman (shelley.corman) VP Regulatory Affairs’,

*Margaret Carson (margaret.carson) Employee Corporate and Environmental Policy’,
"Mark Haedicke (mark.haedicke) Managing Director ENA Legal’,

’Vince Kaminski (vince.kaminski) Manager Risk Head”

Trading / Top Executive

Pipeline

"Michael Grigsby (mike.grigsby) Director West Desk Gas Trading’,
"Kevin Presto (m..presto) VP East Power Trading’,

"Mike McConnell (mike.mcconnell) Executive VP Global Markets’,
*John Arnold (john.arnold) VP Financial Enron Online’,

’Louise Kitchen (louise.kitchen) President Enron Online’,

*David Delainey (david.delainey) CEO ENA and Enron Energy Services’,
*John Lavorato (john.lavorato) CEO Enron America’,

*Sally Beck (sally.beck) COO °,

*Joannie Williamson (joannie.williamson) Executive Assistant °,

Liz Taylor (liz.taylor) Executive Assistant to Greg Whalley ’

"Michelle Lokay (michelle.lokay) Admin. Asst. Transwestern Pipeline Company (ETS)’,
’Kimberly Watson (kimberly.watson) Employee Transwestern Pipeline Company (ETS)’,
"Lynn Blair (Iynn.blair) Employee Northern Natural Gas Pipeline (ETS)’,

“Shelley Corman (shelley.corman) VP Regulatory Affairs’,

"Drew Fossum (drew.fossum) VP Transwestern Pipeline Company (ETS)",

*Lindy Donoho (lindy.donoho) Employee Transwestern Pipeline Company (ETS)’,
*Kevin Hyatt (kevin.hyatt) Director Asset Development TW Pipeline Business (ETS)’,
"Darrell Schoolcraft (darrell.schoolcraft) Employee Gas Control (ETS)’,

*Rod Hayslett (rod.hayslett) VP Also CFO and Treasurer’,

*Susan Scott (susan.scott) Employee Transwestern Pipeline Company (ETS)’
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Figure 9: Temporal cluster profiles (from the third factor matrix) for
the ENRON e-mail dataset

APPENDIX
A. Motivation examples

In this appendix, two motivating examples for probabilistic
tensor CPD with nonnegative factors are presented.

1) Motivating example 1 (fluorescence spectroscopy): Fluo-
rescence spectroscopy is a fast, simple and inexpensive method
to determine the concentration of any solubilized sample
based on its fluorescent properties, and is widely used in
chemical, pharmaceutical and biomedical fields [34], [35]. In
fluorescence spectroscopy, an excitation beam with a certain
wavelength \; passes through a solution in a cuvette. The
excited chemical species in the sample will change their
electronic states and then emit a beam of light, of which
its spectrum is measured at the detector. Mathematically, let
the concentration of the 7 specie in the sample be c,, and
the excitation value at wavelength \; be a,();). Then, the
noise-free measured spectrum intensity at the wavelength J; is
ar(Xi)br(\j)er, where b,.();) is the emission value of the r*”
species at the wavelength \;. If there are R different species
in the sample, the noise-free fluorescence excitation-emission
measured (EEM) data at A; is

R
Dijg = ZaT()\i)bT()\j)cr. (27)
r=1
Assume the excitation beam contains I wavelengths, and the
noise-free EEM data is collected at J different wavelengths,
an [ x J data matrix is obtained as
R
P=) A.,0B.,c,

r=1

(28)

where symbol o denotes vector outer product, A. , € R s
a vector with the i*" element being a,.()\;) and B., € R/*!
is a vector with the j** element being b,-(\;). Assume K > 1
samples with the same chemical species but with different
concentration of each specie are measured. Let the concen-
tration of the 7" specie in the k*" sample be cy ., then after
stacking the noise-free EEM data for each sample along a third
dimension, a three dimensional (3D) tensor data P € RIX/xK
can be obtained as

R

P=Y A.,0B.,oC,2[A B.C], (29)

r=1
where C., € REX! is a vector with the k' element being
c.r; matrices A € RIXE B € R/”*E and C € REXF are
matrices with their " columns being A.,, B., and C.,,
respectively.

It is easy to see that the noise-free data model in (29)
yields exactly the tensor CPD model [1], and that is why CPD
algorithms work very well for EEM data analysis [9]. More
specifically, accounting for the possible Gaussian noise, the
EEM data analysis aims to solve the following problem:

: _ 2
Jmin || P —[A,B.C] |F

st. A>0;xr,B>0;4r,C > 0xxr, (30)

where the nonnegative constraints are enforced due to the
physical nature of elements in matrices A, B and C as
introduced above.

2) Motivating example 2 (social group clustering): Social
group clustering could be benefited by tensor data analysis, by
which multiple views of social network are provided [2]-[4].
For example, consider a 3D email data set ) € RIX/*K with
each element Y (i, 7, k) denoting the number of emails sent
from person i to person j at the k** day. Each frontal slice
Y(:,:, k) represents the connection intensity among different
pair of peoples in the k" day, while each slice V(:,,:)
shows the temporal evolution of the number of received mails
for the person j from each of the other person in the data
set. Consequently, decomposing the tensor ) into latent CPD
factors {A € RI*E B ¢ R/*E C ¢ RE*E} reveals
different clustering groups from different views (i.e., different
tensor dimensions). In particular, using the unfolding property
of tensor CPD [1], we have

Y = (CoB)AT, (31)



VB = (BoA)CT, (32)
where V%) is a matrix obtained by unfolding the tensor Y
along its k" dimension [1], and symbol ¢ denotes the Khatri-
Rao product (i.e., column-wise Kronecker product). From (31),
each column vector YV (:,i) € R7EX1 can be written as
YO (i)=Y (CoB).,A,,, which is a linear combina-
tion of column vectors in matrix (C'oB) € R7X*% with coef-
ficients {A; .}, and it represents the email sending pattern
of person 4. Thus, each column vector in matrix C' ¢ B can be
interpreted as one of the R underlying email sending patterns,
and A;, is the linear combining coefficient to generate the
person ¢’s email pattern. Similarly, from (32), each column
in B ¢ A can be interpreted as a temporal pattern and Cj, .
is the coefficient of the 7" temporal pattern for generating
the k" day’s pattern. Obviously, in contrast to the matrix-
based model such as k-means or Gaussian mixture model, the
tensor CPD model succeeds in mining clustering structures in
multidimensional data. To find the latent factor matrices from
the social network data ), the following problem is usually
solved:
: 2
min | Y- [4,B,C] |}

12y

st. A>0;xr, B>0;4g,C>0gxrg, (33)

where the nonnegative constraints are added to allow only
additions among the R latent rank-1 components. This leads to
a parts-based representation of the data, in the sense that each
rank-1 component is a part of the data, thus further enhancing
the model interpretability.

B. Properties on nonnegative Gaussian-gamma prior

Firstly, it is shown that generally a gamma distribution is not
conjugate to a truncated Gaussian distribution. Without loss of
generality, consider a truncated Gaussian-gamma distribution
pair with the following form:

S
p(w, {O‘s}f:l) = H p(ws|a5)p({as}f:1)

_ N(wsms,a;lfm)
s=1 f; N (wg|ps, as_lIMS)

a
bs ° as

T(as)

U (ws, w5)

X “Lexp(—bsa),

(34)

where the truncated Gaussian pdf is with support [w,w,];
parameter ps, o5 Iy, are the mean vector and the precision
matrix of the un-rectified Gaussian pdf. In order to compute
the the posterior pdf p(a|w), we only keep the terms relevant
to oz and then the following expression is obtained:

2 141
exp (*015 (st;ﬂs”F +b)>0&gb 14’2

f;j N('wsw's’ a;lIMS)

plas|w) o« (35)

Obviously, expression (35) does not take the same functional
form as that of the gamma distribution, and thus violates the
definition of the conjugacy.

But fortunately, when p, = Orx1, ws =
Om.x1 and wy; = oo, it is easy to show that
f()o;sxlN(ws|0Msx1aas_11Ms) = 2% due to the symmetric
property of the Gaussian pdf. Consequently, under this
specific setting, equation (35) becomes

_ 2
plasfw) o exp (—as ("“’S e +b)> oy T,
(36)

which takes exactly the same functional form as that of the
gamma distribution. As a result, Property 1 is proved, and
this important finding motivates the use of the nonnegative
Gaussian-gamma prior in the probabilistic modeling. Further-
more, under this parameter setting, the marginal distribution
for parameter w can be computed as follows:

S
v (w) = [ []ptwilap(fa.}dfan)

s
= HQMS /N(ws\us,a;lIMS)gamma(ozsms,bs)das

s=1

« Ulws > 041 x1)- (37)

Further using the fact [ N (w;|ps, ag Iy, )gamma(as|as, bs)
_ (1\Ms T(as+M./2) T —as—M,/2

dOés = (;) 2 m(2bs + ws ws) / [37],

Property 2 can be proved.
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