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Abstract: An ultrastrong and ductile deformed and partitioned (D&P) steel developed by dislocation
engineering has been reported recently. However, the microstructure evolution during the
D&P processes has not yet been fully understood. The present paper aims to elucidate the
process–microstructure relation in D&P process. Specifically, the evolution of phase fraction and
microstructure during the corresponding D&P process are captured by means of X-ray diffraction
(XRD) and electron backscatter diffraction (EBSD). Subsequently, the effect of partitioning temperature
on dislocation density and mechanical properties of D&P steel is investigated with the assistance of
uniaxial tensile tests and synchrotron X-ray diffraction. It is found that a heterogeneous microstructure
is firstly realized by hot rolling. The warm rolling is crucial in introducing dislocations, while
deformation-induced martensite is mainly formed during cold rolling. The dislocation density of the
D&P steel gradually decreases with the increase of partitioning temperature, while the high yield
strength is maintained owing to the bake hardening. The ductility is firstly enhanced while then
deteriorated by increasing partitioning temperature due to the strong interaction between dislocation
and interstitial atoms at higher partitioning temperatures.

Keywords: D&P steel; processing; microstructure; phase transformation; dislocation density;
mechanical properties

1. Introduction

Strong and ductile metallic materials are ideal to develop high-performance yet energy-efficient
structural components for many applications [1,2]. Unfortunately, strength and ductility are, in
general, mutually exclusive in metallic materials [3,4]. Sustained effort has been paid to overcome the
strength–ductility trade-off of structural materials. Alloying by the addition of cobalt and titanium is
an effective way to simultaneously improve the strength and ductility. Nevertheless, this strategy is
not cost-efficient for the industrial application and not sustainable for the limited resources on earth [5].
Developing novel thermal-mechanical process to tune the microstructure is an alternative way to
resolve such trade-off. For example, quenching and partitioning (Q&P) treatment enables a dual-phase
microstructure of retained austenite embedded and martensite matrix has been successfully applied
to medium Mn steel, austenitic stainless steel, and martensitic stainless steel [6–8]. The retained
austenite can provide transformation-induced plasticity (TRIP) effect to improve strain hardening rate,
delaying the onset of necking and leading to the high strength and good ductility [9]. Recently, a novel
dislocation engineering concept was employed to introduce intensive dislocations in a deformed and
partitioned (D&P) steel that achieves an ultrahigh yield strength (~2.2 GPa) without compromising
ductility (uniform elongation is up to ~16%) [10]. In general, strength tends to increase as dislocation
density increases by resisting dislocation motion. However, ductility, which requires the glide of
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dislocations, is deteriorated by abundant dislocations [11]. Opposite to such traditional view, the D&P
steel demonstrates that a high dislocation density can simultaneously introduce ultrahigh yield strength
as well large ductility [10]. The D&P steel shows a dual-phase heterogeneous microstructure with
metastable retained austenite embedded in a highly dislocated martensitic matrix [10,12]. The retained
austenite provides TRIP effect upon deformation [9]. Intensive dislocations not only provide dislocation
hardening for high strength but promote ductility by glides of mobile dislocations [10,13].

The excellent mechanical properties are tailored by the corresponding D&P process. However,
the evolution of microstructure during the D&P process has not yet been fully understood, which are
crucial to the industrialization of the D&P steel. Meanwhile, the effect of partitioning parameters on
the properties of D&P steel has not yet been discussed. Therefore, the present study investigates the
contribution of different processing step of the D&P process, especially the partitioning temperature,
on microstructure evolution and consequently mechanical properties of the D&P steel.

2. Materials and Methods

The investigated D&P steel has a chemical composition of Fe-10Mn-0.47C-0.7V-2Al (in wt %).
Figure 1 is a schematic illustration on the thermal-mechanical processing route to produce the D&P
steel. The as-received ingot is firstly homogenized at 1150 ◦C for 2.5 h, followed by hot rolling (HR)
down to a thickness of 4 mm. The hot rolled sheet is further warm rolled (WR) at 750 ◦C with a total
thickness reduction of 50% and is then intercritical annealed (IA) at 620 ◦C for 5 h. Afterwards, the sheet
is further subjected to cold rolling (CR) with a thickness reduction of 30%, giving the final thickness of
about 1.4 mm. The specimens subjected to HR, WR, IA, and CR are named as “Deformed” samples
for brevity. Finally, Deformed samples are tempered at various temperatures for carbon partitioning
from martensite to austenite to optimize austenite stability. Specimens tempered at 200 ◦C, 300 ◦C, and
400 ◦C are referred to D&P200, D&P300, and D&P400, respectively.
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The evolution of phase fraction during the whole thermomechanical process is monitored by X-
ray diffraction (XRD) carried out on a Rigaku diffractometer (Rigaku Corporation, Tokyo, Japan) 
operating in the reflection mode with Cu Kα radiation (wavelength = 1.542 Å). Scanning is performed 
from 40 to 100 degree at a counting rate of 0.01°·s−1. Diffraction peaks including (110)α, (200)α, (211)α, 
(200)γ, (220)γ, and (311)γ are selected to determine the phase fraction of austenite and martensite. 
The cross-section along rolling direction (RD) of samples is mechanically polished down to 1 µm 
followed by electrical polishing in a solution of 20% perchloric acid and 80% acetic acid (vol %) for 
XRD measurement and further microstructure observation. The microstructure is captured by 
electron backscatter diffraction (EBSD) with an LEO 1530 FEG SEM (Zeiss, Oberkochen, Germany) 
operated at 20 kV with a step size of 0.25 µm. Vickers hardness measurements are conducted on the 
electropolished samples with a peak load of 200 gf at ambient temperature. Dog-bone-shaped tensile 

Figure 1. The schematic illustration on the thermal-mechanical processing route to produce the
deformed and partitioned (D&P) steel.

The evolution of phase fraction during the whole thermomechanical process is monitored by
X-ray diffraction (XRD) carried out on a Rigaku diffractometer (Rigaku Corporation, Tokyo, Japan)
operating in the reflection mode with Cu Kα radiation (wavelength = 1.542 Å). Scanning is performed
from 40 to 100 degree at a counting rate of 0.01◦·s−1. Diffraction peaks including (110)α, (200)α, (211)α,
(200)γ, (220)γ, and (311)γ are selected to determine the phase fraction of austenite and martensite.
The cross-section along rolling direction (RD) of samples is mechanically polished down to 1 µm
followed by electrical polishing in a solution of 20% perchloric acid and 80% acetic acid (vol %) for
XRD measurement and further microstructure observation. The microstructure is captured by electron
backscatter diffraction (EBSD) with an LEO 1530 FEG SEM (Zeiss, Oberkochen, Germany) operated at
20 kV with a step size of 0.25 µm. Vickers hardness measurements are conducted on the electropolished
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samples with a peak load of 200 gf at ambient temperature. Dog-bone-shaped tensile specimens with a
gauge length of 12 mm, thickness of 1.4 mm, and width of 4 mm are machined from the tempered sheets.
Tensile tests are performed using a universal tensile testing machine under a strain rate of 10−3 s−1 at
room temperature. To determine the dislocation density of the martensitic matrix of the D&P steel,
synchrotron X-ray diffraction with a wavelength of 0.0688 nm, and a two-dimensional (2D) detector are
performed on the electropolished samples at the BL14B beamline of Shanghai Synchrotron Radiation
Facility (SSRF) (Shanghai, China). The 2D X-ray diffraction pattern is converged to intensity-2theta
profiles by Fit2d for further calculation. The modified Williamson–Hall method is employed to obtain
the dislocation density from the synchrotron X-ray profiles [14].

3. Results

The evolution of phase fraction during thermal-mechanical processing of the D&P steel process
is demonstrated in Figure 2. The specimens had almost fully austenitic microstructure after HR and
WR (Figure 2a). The volume fraction of austenite was slightly decreased after intercritical annealing,
indicating that ferrite transformation is negligible during IA. This can be explained by the strong
hardenability caused by high Mn content (10%) (Figure 2a). A large amount of austenite grains
transformed to martensite during the subsequent cold rolling process. Around 18% of austenite was
retained after cold rolling and it basically remained unchanged during subsequent partitioning process,
confirming that almost no phase transformations took place during low-temperature partitioning
process (Figure 2b).
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Figure 2. (a) The evolution of austenite phase fraction during HR (hot rolling), WR (warm rolling), and
IA process (intercritical annealed). (b) The phase fraction and increment of carbon content of austenite
in Deformed, D&P200, D&P300, and D&P400 samples.

Although the partitioning process had a less-significant effect on the austenite fraction, it influenced
the carbon content and, consequently, the stability of austenite. The carbon content of austenite, which
can be estimated from the peak shift of XRD profiles [15,16], was increased by 0.072, 0.12, and 0.168%
after partitioning at 200, 300, and 400 ◦C, respectively (Figure 2b).

The typical microstructure of HR, HR + WR, and D&P specimens were characterized by EBSD,
as shown in Figure 3. The HR specimen had an austenitic microstructure with prior austenite grain
boundaries (PAGBs) decorated with granular submicron ferrite grains (Figure 3a1,a2). The fraction
of austenite obtained from EBSD microstructure was quantitively consistent with the XRD results.
The coarse austenite grains (5–30 µm) dominated the microstructure, while some recrystallized
austenite grains (~0.5 µm) were found at PAGBs (Figure 3a1,a2).
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Figure 3. The microstructure of (a1,a2,a3) HR sample and (b1,b2,b3) HR+WR sample. (c) The Vickers
hardness (HV) of HR+WR sample and HR+WR+IA sample. The microstructure of (d1,d2) D&P
samples partitioned at 300 ◦C for 6 min. (a1, b1 and d1 are electron backscatter diffraction (EBSD)
phase maps, wherein yellow and blue colors represent martensite/ferrite and austenite, respectively;
a2, b2 and d2 are EBSD band contrast maps; a3 and b3 are the distribution of geometrically necessary
dislocations (GND) densities of austenite matrix estimated based on the kernel average misorientation
(KAM)). RD: Rolling direction; ND: Normal direction; TD: Transverse direction.

The dominated austenitic microstructure was maintained after warm rolling (Figure 3b1).
To distinguish the difference of dislocation density between HR and HR + WR samples, the
geometrically necessary dislocation (GND) densities were further estimated based on the kernel
average misorientation (KAM), which represents the average misorientation between the measured
point and the nearest neighbor points in the EBSD measurement (Figure 3b3). It was found that
intensive dislocations were generated in austenite grains by warm rolling (Figure 3b3). Moreover,
prior austenite grains were substantially elongated along the rolling direction or even fragmented into
subgrains, resulting in obvious grain refinement.
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The HR + WR specimen was further softened by means of intercritical annealing to facilitate
subsequent deformation at room temperature. The Vickers hardness of specimens, before and after
intercritical annealing, are summarized in Figure 3c. The hardness measurements were conducted in
different regions through the thickness of the sample. This leads to the dispersion of hardness values
due to the edge of the steel sheet which are stronger than the center resulting from warm rolling.
The slight decrease of the hardness implies that some dislocations in the HR + WR specimen were
annealed after IA.

Cold rolling greatly promoted the deformation-induced martensitic transformation, leading to a
dual-phase lamella microstructure with austenite grains embedded in a highly dislocated martensite
matrix in D&P steel (Figure 3d1,d2). The prior austenite grain boundaries (PAGB) exist before the
martensitic transformation and can be retained after the formation of martensite. The martensitic matrix
possesses a heterogeneous microstructure, consisting of large lenticular grains and small martensite
lath. Retained austenite grains also exhibit heterogeneous morphologies and bimodal distribution.
The large austenite grains with a length of 30 µm or above were elongated along the rolling direction
and constituted most of the austenite phase, while fine granular austenite grains can be observed at
PAGB. Abundant dislocations were introduced to the martensitic matrix by cold rolling, as showed by
the low image quality of martensite phase in Figure 3d2. In contrast, it seems that the austenite grains,
especially the coarse elongated ones, still contained relatively lower defects than the martensite phase
(Figure 3d2).

The mechanical properties of the D&P steel processed by varying partitioning temperatures are
summarized in Figure 4a. The Deformed specimen is brittle, although it possesses an ultrahigh yield
strength of up to 2200 MPa. The ductility of the D&P steel was greatly enhanced after low-temperature
partitioning (200 and 300 ◦C) without a noticeable decrease of the yield strength. However, very
different deformation behaviors were obtained after partitioning at a relatively high temperature
(400 ◦C). Necking was found to proceed upon yielding for the D&P400 specimen. A typical yield drop
phenomenon, which is induced by the un-locking of dislocations from the interstitial C atoms [17],
was observed in all specimens. It was interesting to find that Lüders deformation is also tailored by
the partitioning conditions (Figure 4b). Lüders deformation dominated in D&P300 specimen and
accounted for 65.5% of the total elongation. The highest ductility was obtained in D&P300 specimen,
which possessed the largest Lüders strain, followed by work hardening at large plastic deformation
regime (Figure 4a).
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on the ductility of D&P steels.

To understand the difference in the mechanical behaviors of various D&P specimens, 2D
synchrotron X-ray diffraction measurements were carried out and the modified Williamson–Hall
method was employed to study the evolution of dislocation density during the partitioning process.
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2D synchrotron X-ray diffraction can provide better intensity and statistics for quantitative analysis
and phase identification, especially for samples with texture, large grain size, and small quantity [18].
The broadening of diffraction peaks depends on the dislocation density (ρ), the average crystallite size
(d’), and the faulting probability (β) by the following equation [14]:

∆K = 0.9/d′ + (πA2b2/2) · ρ1/2
·K2C + βWhkl + o(K4C

2
) (1)

where ∆K = cosθB(∆2θ)/λ and K = 2sinθB/λ, θB is the diffraction angle at certain Bragg position, ∆2θ is
the full width at half-maximum (FWHM) of the diffraction peak at θB, and λ is the wavelength of the
X-ray. A is a constant which can be determined by the effective outer cut-off radius of dislocation, b is
the Burgers vector of dislocations and Whkl is the scale factor representing the peak broadening induced
by a fault at exact {hkl} deflection. Here, the faulting probability (β)-induced peak broadening was
not considered because twin martensite was barely founded in the present material. C is the average
dislocation contrast factor determined by the empirical equations. Six martensite diffraction rings and
four austenite diffraction rings were obtained from 2D synchrotron X-ray (Figure 5a). The 2D diffraction
patterns are further converted to peak profiles to calculate ∆K and K (Figure 5b). Five martensite
peaks, including (110), (200), (211), (220), and (310) were selected to calculate dislocation density of
martensitic matrix. Dislocation density (ρ) and d’ were subsequently determined by considering the
best linear fitting between ∆K and K2C.
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temperatures. Images have been colorized with high contrast to highlight the Debye diffraction rings.
(b) 1D synchrotron X-ray diffraction profiles (intensity-2 theta curves) converged by 2D diffraction
patterns. (c) The dislocation density of the martensitic matrix in D&P steels.

As shown in Figure 5c, the dislocation density of martensitic matrix was around 1016 m−2 after cold
rolling, which is two-orders of magnitude larger than conventional thermally transformed martensite
(6 × 1013 m−2) and cold-rolled martensite (5.39 × 1014 m−2) [19,20]. The ultrahigh dislocation density
resulted from the deformation (hot rolling, warm rolling, and cold rolling) and displacive shear
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deformation. The dislocation density decreased with an increase of partitioning temperature and
reduced to 6 × 1015 m−2 after partitioning at 400 ◦C for 6 min.

4. Discussion

A heterogeneous microstructure with bimodal grain distribution was firstly developed by hot
rolling (Figure 3a1). The subsequent warm rolling further enhanced the inhomogeneity and introduced
intensive dislocations in austenite grains (Figure 3b1–3b3). These dislocations were slightly recovered
during the intercritical annealing, while the majority can be inherited by the martensite formed
during cold rolling. Note that the intercritical annealing between warm rolling and cold rolling
process plays a key role in relieving the residual internal stress. Sudden cracking may take place
before reaching the targeted cold rolling reduction if the HR + WR sheet is not sufficiently annealed.
The amount of ferrite transformed during warm rolling and intercritical annealing were very low
(Figure 2a). The sluggish transformation kinetics of ferrite was due to the high alloying contents,
especially the high Mn (10%) contents, of the present steel [21]. Cold rolling enables the occurrence of
deformation-induced martensitic transformation. Consequently, substantial amount of dislocations
was introduced during the cold rolling process owing to the displacive shear transformation and
deformation of early transformed martensite grains (Figure 3d2). In a word, although the majority of
martensite was formed during cold rolling, the previous hot rolling, warm rolling, and intercritical
annealing were of great importance in developing heterogeneous and dislocated microstructure in the
final martensite matrix.

The partitioning process was applied to tailor the austenite stability, dislocation density, and
consequently, mechanical behaviors of the D&P steel. The carbon content of austenite only increased
slightly after partitioning (Figure 2b), which could be because of the formation of abundant Cottrell
atmosphere, leading to a retarded carbon diffusion from martensite to austenite. These results suggest
that the stability of retained austenite is not the key factor controlling the mechanical behaviors of
D&P steel.

The high yield strength of D&P steels is mainly contributed by the presence of high dislocation
density (Figure 4a). The contribution of the dislocation density to the yield strength can be estimated
by the Taylor hardening law [11]:

σ = Mαµb
√
ρt (2)

where M represents the Taylor factor and is taken as 2.9, α = 0.23 is an empirical constant for martensite
with dislocation cell structure, µ = 85 GPa is shear modulus, and b = 0.25 nm is Burgers vector [10,11].
Therefore, the contribution of the dislocation density was estimated to be 1400, 1360, 1230, and 1100 MPa
for Deformed, D&P200, D&P300, and D&P400 specimens, respectively. Therefore, the decreased yield
strength of D&P400 should be around 300 MPa owing to the dislocation recovery. However, the
upper yield stress of deformed sample was decreased slightly from 2204 to 2115 MPa after partitioning
at 400 ◦C for 6 min. Therefore, other strengthening mechanisms may take place to compensate the
reduction of strength caused by dislocation recovery. The reduction of dislocation density without
obviously sacrificing the strength may be ascribed to the bake hardening. The carbon atoms tend
to diffuse into adjacent dislocations in martensitic matrix to minimize the strain energy during the
partitioning process, resulting in the formation of “Cottrell atmosphere” [17]. Dislocations surrounded
by atmosphere were immobilized, leading to an increase of the upper yield stress. The increase of
yield stress realized by the combination of pre-strain and strain-aging is known as bake hardening [22].
Therefore, bake hardening to some extent compensates the loss of dislocation hardening, beneficial to
the high yield strength of the D&P steel. However, dislocations can break away the Contrell atmosphere
and become mobile when a sufficiently large stress is applied. This causes the occurrence of yield drop
as observed in some D&P specimens (Figure 4a) [17].

The propagation of Lüders band after a yield drop depends on the work hardening ability of
the specimen [23,24]. The tangled dislocation structure makes the slip of dislocation very difficult
to proceed. Hence, the deformed specimen has low work hardening rate and very limited ductility
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(Figure 4). After low-temperature partitioning (200 ◦C), D&P steel was recovered but not yet sufficiently.
The D&P200 sample had improved ductility but still fractured during Lüders deformation (Figure 4).
Further increasing the partitioning temperature greatly improved the ductility of samples. The D&P300
specimen showed a completed propagation of Lüders band, followed by work hardening which could
be provided by the TRIP effect [10]. Although some reports on austenitic steels suggest that the TRIP
effect is the reason for the propagation of Lüders band [25], it was found that the Lüders band is
still present in medium Mn steels during relatively high temperature tensile deformation where the
TRIP effect is completely suppressed [26]. Therefore, the TRIP-induced Lüders band mechanism is
not favorable in explaining the deformation behaviors of the D&P steels with both of high dislocation
density and high carbon content. The discontinuous yielding in D&P400 sample results in localized
necking which is not able to propagate owing to the low work hardening ability, leading to the
disappearance of Lüders deformation. This can be explained in two aspects. The annihilation of
dislocation was promoted at high temperature, which greatly reduces the mobile dislocation density in
the specimen. Moreover, the diffusion of interstitial carbon atoms to dislocations was energetically
favored at high temperature. Namely, dislocations were more likely to be locked by carbon atoms,
leading to a further reduction of the mobile dislocations. Consequently, necking proceeded quickly
after the yield drop in D&P400 specimen (Figure 4).

5. Conclusions

The present work investigates the phase transformation and microstructure evolution during the
D&P process. The effect of partitioning temperatures on mechanical properties of D&P steel is also
addressed. The present results show that the hot rolling process can result in an initial single-phase
heterogeneous microstructure. The following warm rolling is highly effective in introducing dislocations.
Intercritical annealing reduces the residual stress by partially recovering dislocations, which facilitates
the cold rolling at room temperature. The subsequent cold rolling enables the deformation induced
martensitic transformation. Partitioning tunes the mechanical behaviors by influencing the dislocation
density and austenite stability. The increase of partitioning temperature slightly changes the austenite
stability because the strong interaction between dislocations and carbon atoms restricts the carbon
partitioning from martensite to austenite grains. Bake hardening compensates the reduction of strength
after partitioning process, enables the ultrahigh yield strength of D&P steels.
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