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Abstract

The prospect of universal influenza vaccines is generating much interest and research at

the intersection of immunology, epidemiology, and viral evolution. While the current focus is

on developing a vaccine that elicits a broadly cross-reactive immune response in clinical tri-

als, there are important downstream questions about global deployment of a universal influ-

enza vaccine that should be explored to minimize unintended consequences and maximize

benefits. Here, we review and synthesize the questions most relevant to predicting the pop-

ulation benefits of universal influenza vaccines and discuss how existing information could

be mined to begin to address these questions. We review three research topics where

computational modeling could bring valuable evidence: immune imprinting, viral evolution,

and transmission. We address the positive and negative consequences of imprinting, in

which early childhood exposure to influenza shapes and limits immune responses to future

infections via memory of conserved influenza antigens. However, the mechanisms at play,

their effectiveness, breadth of protection, and the ability to “reprogram” already imprinted

individuals, remains heavily debated. We describe instances of rapid influenza evolution

that illustrate the plasticity of the influenza virus in the face of drug pressure and discuss

how novel vaccines could introduce new selective pressures on the evolution of the virus.

We examine the possible unintended consequences of broadly protective (but infection-per-

missive) vaccines on the dynamics of epidemic and pandemic influenza, compared to con-

ventional vaccines that have been shown to provide herd immunity benefits. In conclusion,

computational modeling offers a valuable tool to anticipate the benefits of ambitious univer-

sal influenza vaccine programs, while balancing the risks from endemic influenza strains

and unpredictable pandemic viruses. Moving forward, it will be important to mine the vast

amount of data generated in clinical studies of universal influenza vaccines to ensure that
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the benefits and consequences of these vaccine programs have been carefully modeled

and explored.

Author summary

There is a lot of interest in developing universal influenza vaccines that could elicit broad

protection against multiple strains of influenza viruses. This impetus is generating intense

basic science research in the field of influenza immunology, in the hope that new vaccine

candidates can be identified, reach clinical trials, and deliver robust influenza responses.

However, there are important downstream questions about using universal influenza vac-

cines in large populations that should be considered during the development and imple-

mentation of these novel products. Important questions include how early childhood

influenza exposure limits immune responses to future influenza infections, how universal

influenza vaccines could drive viral evolution, and how these new vaccines could impact

the epidemiology of influenza in epidemic and pandemic seasons. Here, we synthesize the

questions most relevant to predicting the population impacts of universal influenza vac-

cines and discuss how existing data could be analyzed to address these questions.

Introduction

In today’s interconnected world, human influenza A viruses emerge, evolve, and spread glob-

ally, eluding host defenses and the best efforts of vaccine manufacturers. A current public

health goal is to develop influenza vaccines that provide broad protection against all influenza

A viruses capable of infecting humans [1]. These “universal influenza vaccines” would signifi-

cantly reduce global morbidity and mortality from seasonal influenza epidemics, while also

protecting populations against the potential emergence of novel pandemic influenza viruses

from animal reservoirs, including swine and poultry. This article explores the potential popula-

tion-level consequences of universal vaccines on immunity, viral evolution, and transmission

and identifies gaps in extant experimental and observational data. Two recent articles [2, 3]

offer complementary views on the optimization of universal influenza vaccines and address

disease dynamics between and within hosts.

Although influenza B viruses cocirculate with influenza A viruses and cause annual epidem-

ics, our review is limited to influenza A viruses since they are responsible for most of the

annual burden of influenza epidemics, have greater evolutionary rates than influenza B viruses,

and exert a unique pandemic threat [4]. In consequence, influenza A viruses are a major target

for universal influenza vaccine development. We focus on universal vaccines candidates that

target the hemagglutinin (HA) stem, a conserved region of the main surface protein of the

influenza virus, since this is a relatively new field that is generating questions that are ripe for

computational modeling. We also discuss universal vaccines constructs based on highly con-

served proteins such as nucleoprotein (NP) and matrix (M), which have inspired prior model-

ing work [5]. We take a broad view of computational modeling to include quantitative

analyses of epidemiological and phylogenetic data and simulations of disease dynamics under

various epidemiological and intervention scenarios.

Universal influenza vaccines and population immunity

Despite decades of research, influenza immunity remains a complex topic about which we

only have a limited understanding. Influenza A subtypes are classified based on their surface
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proteins hemagglutinin (HA) and neuraminidase (NA), with influenza H1N1, H2N2, and

H3N2 having circulated in humans since the 1918 pandemic (see Fig 1 for a timeline of antigen

circulation). Individuals are exposed to a variety of influenza strains throughout life, while

periodic cycling of influenza subtypes and strains shapes the immune response of different

birth cohorts. Similarly to many other pathogens, influenza attack rates are highest in immu-

nologically naïve children [6]. Although older individuals experience greater rates of hospitali-

zation and death than the young during seasonal influenza epidemics, older individuals tend

to be less affected during pandemics because their immune systems have often already seen

similar viruses in childhood. This phenomenon of “senior sparing” was observed in individu-

als aged 50 years and over during the 2009 H1N1 pandemic, prompting the theory that expo-

sure to related H1N1 viruses in childhood may have conferred long-lasting protective

immunity [7]. This epidemiological observation, later confirmed by immunologic studies [8–

10], illustrates the existence of lifelong immunity structured by birth year that may alleviate

symptoms from influenza infection.

Broadly protective immunity to influenza could be mediated by a variety of immune

responses raised to conserved components of influenza A viruses that circulate in humans

(recapitulated in Fig 2A and 2C). It is generally accepted that such broad immune responses

do not provide sterilizing immunity and cannot prevent infection. However, they can modu-

late the course of infection by reducing viral titers, disease severity, duration of infection, and

onward transmission, as shown by a variety of animal and human studies (See [5] for an illus-

tration of modeling of such data). Plausible mechanisms of broadly protective immunity

include antibody responses to the stem of the HA [11], which appears to be more evolution-

arily constrained than other parts of the protein, or antibody responses to stable epitopes on

the HA head that can persist for decades or reappear [8, 12, 13]. Further, antibody responses

against NA can be broadly protective [14–16] and have been implicated in protection against

pandemic viruses [17]. In addition, it has been long suspected from epidemiological data that

T-cell memory responses to conserved proteins of the virus (e.g., nucleoprotein NP, matrix

M1 and M2e, and polymerase PB1) may also play an important role in pandemic protection

[18]. A protective role of T-cell responses is supported by modern immunologic assays in

humans [19, 20] and epidemiological studies reporting how influenza T-cell escape variants

can spread in populations [21]. In addition, non-neutralizing antibody responses to conserved

proteins M2 [22, 23] and NP [24] can contribute to protection.

Replacement of a resident influenza subtype by a new pandemic virus within a year or two

of pandemic virus emergence, as occurred during the 1957 and 1968 pandemics, provides

strong population-level evidence for broadly protective immunity induced by one subtype and

protective against another subtype (Fig 2A). Replacement signals competition between influ-

enza A subtypes in human populations, likely mediated by heterosubtypic cross-immunity.

Various heterosubtypic cross-protective immune mechanisms likely act in combination (e.g. B

Fig 1. Timeline of influenza A virus circulation in humans from 1918 to present. Colored boxes represent different eras of influenza A subtype circulation and,

hence, imprinting of population cohorts by different subtypes. Group-level imprinting is indicated as purple shading for group 1 (H1 and H2 viruses) and in green

for group 2 (H3 virus). Cohorts born after 1977 can be imprinted by either group due to cocirculation of H1 and H3 viruses.

https://doi.org/10.1371/journal.ppat.1008583.g001

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008583 September 24, 2020 3 / 19

https://doi.org/10.1371/journal.ppat.1008583.g001
https://doi.org/10.1371/journal.ppat.1008583


PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008583 September 24, 2020 4 / 19

https://doi.org/10.1371/journal.ppat.1008583


cell or T cell mediated) and their impact on infection, disease, and transmission remains diffi-

cult to untangle [10, 17, 18, 25, 26, 27, 28]. As a case in point, following the 2009 influenza pan-

demic, seasonal H1N1 viruses were replaced by the new H1N1 pandemic virus, likely due to

cross-immunity to conserved regions of these relatively distant viruses [11]. Harnessing

broadly cross-protective immune mechanisms is critical for the development of universal

influenza vaccines, and dissecting their effects over a lifetime of influenza exposures in large

populations will help guide the development and implementation of universal influenza vac-

cines. Below, we review broadly protective immune mechanisms in detail, their putative popu-

lation profiles, and their expected impact on disease dynamics.

The HA stem is a proposed target for universal influenza vaccines

The HA stem is a relevant region of the influenza virus for vaccine purposes because it is con-

served across different influenza subtypes that infect host species that may be sources of new

pandemic variants. To date, 16 antigenically distinct HA subtypes (H1-H16) have been identi-

fied in wild birds, the reservoir of influenza viruses. Based upon HA stem sequences, HAs seg-

regate phylogenetically into two major groups: Group 1 includes the human seasonal H1 and

avian H5 subtypes, as well as the H2 subtype that circulated in humans during 1957–68, while

group 2 includes the human seasonal H3 and avian H7 strains (Fig 2B). Monoclonal antibodies

specific to the HA stem and present in the serum of influenza-infected individuals are usually

group specific but may not bind all virus strains within a group. Rare antibodies have also

been identified that bind to both group 1 and group 2 viruses [29–31].

Designing vaccines that generate strong HA stem-specific responses is difficult in practice

because the HA stem is typically immunosubdominant to the HA head [32]. Thus, innovative

vaccination strategies based on chimeric HAs or stabilized headless stems have been used to

focus the immune response away from the immunodominant head to the less immunogenic

stem. These strategies elicit broad cross-protective immunity against a wide range of influenza

subtypes and historical strains in animal models, and Phase I clinical trials of such vaccines

have been initiated [33–35]. While monoclonal antibodies directed against the HA stem

exhibit neutralizing activity in vitro, they also act via mechanisms like antibody-dependent cel-

lular cytotoxicity, which do not block viral entry into cells [36]. Due to these immune mecha-

nisms, and/or imperfect cross-reactivity with circulating stem epitopes, an HA stem-based

vaccine may be an infection-permissive or “leaky” vaccine.

Immunological imprinting

Here, we use the term immunological imprinting to refer to the theory that influenza expo-

sures early in life shape and limit future immune responses to influenza infection; by this defi-

nition, imprinting is related to birth year. This concept originated in 1960, when Thomas

Francis coined the term”Original Antigenic Sin” (OAS) to describe how the first influenza

infection “governs the response to vaccination with other strains” [37] (Fig 2D). The theory of

antigenic seniority is a variation on OAS, in which there is a hierarchy of immune responses to

viruses encountered during a lifetime, with the first virus generating the highest antibody titers

compared to viruses seen later in life [38]. A possible mechanism explaining antigenic senior-

ity is back-boosting, whereby initial influenza responses are amplified upon re-exposure to

Fig 2. Immune mechanisms involved in influenza protection, with their evolutionary and epidemiological signatures, and evidence for imprinting by birth year.

Immune mechanisms are organized by breadth of protection, from broadest to most specific. (A) Protection against all influenza A viruses. (B) Protection at the HA group

level. (C) Protection at the subtype level. (D) Strain-specific protection. The strength and duration of protection, and the impact on transmission, remain debated for most

of these mechanisms (see also [111–115]).

https://doi.org/10.1371/journal.ppat.1008583.g002
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later influenza variants that share epitopes with the earlier strains [39]. The theories of anti-

genic sin and seniority have been primarily developed to interpret antibody responses to vari-

able epitopes on the head of the H3 HA [40]. The concepts of imprinting, OAS, antigenic

seniority, and back-boosting all relate to the unique consequences of early life exposures. The

mechanisms behind immune imprinting and even the existence of OAS are being actively

debated [40, 41].

While the theory of OAS has been in the literature for decades, the immunological basis for

the phenomenon is poorly understood. The first exposure to influenza in childhood has been

shown to generate a very narrow antibody response, with little cross-reactivity to other influ-

enza hemagglutinin subtypes [42]. Subsequent exposure to a related influenza virus that has

undergone antigenic drift stimulates a small subset of memory B cell clones that respond to

regions of the HA head and/or stem that are cross-reactive with those encountered earlier

[13]. Responses to previously seen epitopes can increase year after year as long as strains cross-

reactive at that site are circulating (Fig 2D). Early influenza infections can therefore leave a life-

long imprint or “bias” in an individual’s immune repertoire [9], and, in turn, population-level

immunity is expected to be biased and structured by birth year. Imprinting could also affect

other aspects of influenza immunity, including antibody responses to the NA [43] or T-cell

responses [44].

Other types of interference can occur between memory B cells and de novo immune

responses that are unrelated to birth year but can cause the immune system to become hyper-

focused on familiar epitopes, leaving the host unprepared against a drifted strain [40]. As a

case in point, impaired immune responses after routine annual vaccination may arise from

repeat exposure to highly similar antigens. This phenomenon has been observed across a

broad range of age groups and, hence, is distinct from birth year imprinting [40, 45].

Computational models can test immunological hypotheses

Support for imprinting can be found in epidemiological analyses of population-level surveil-

lance data, particularly by comparing the risk of influenza infection in birth cohorts imprinted

by different influenza histories (Fig 2B and 2C). A long-standing epidemiological puzzle had

been the stark contrast in the age mortality profiles of individuals infected with avian-origin

H5N1 and H7N9 viruses in Asia. A recent study revisited these data under the imprinting

hypothesis, highlighting how the birth year profiles of cases aligned with the switch between

circulation of group 1 and group 2 HA in 1968 ([46], Fig 2B). Individuals born prior to 1968

are likely imprinted by group 1 HA (H1N1 or H2N2 viruses); these individuals are more sus-

ceptible to zoonotic viruses carrying a group 2 HA, such as H7N9. Conversely, younger indi-

viduals born after 1968 are more likely to be first exposed to group 2 HAs (H3N2 viruses) and

may, therefore, be more susceptible to zoonotic viruses belonging to the other group, including

H5N1. These epidemiological observations are consistent with the theory of imprinting at the

HA group level. Monoclonal antibodies to the HA stem are generally specific to an HA group

(reviewed in [47]), suggesting a role for stem antibodies in the protection against zoonotic

influenza strains [46, 48].

While immune imprinting may generate lifelong antibody responses to conserved epitopes

and offer partial protection against certain zoonotic strains and pandemics, it may also have

detrimental effects during seasonal outbreaks. When a new influenza virus variant emerges

through the process of antigenic drift, some individuals may recall memory B cells that target

variable epitopes of the HA head of related strains seen earlier in life, but these responses may

not be sufficiently well-matched to block infection. For example, individuals who had their

first exposure to H1N1 in the period from 1977 to 1986 may have focused their response to a
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particular epitope of the HA head (K166) that was similar to, and protective against, the 2009

pandemic H1N1 virus. When this region of H1N1 viruses acquired substitutions during the

2013 to 2014 influenza epidemic, these middle-aged cohorts experienced higher disease bur-

den than in prior seasons and responded more poorly to seasonal influenza vaccines [49, 50].

Further, group-level imprinting may not be universally protective against pandemic strains;

cohorts imprinted by H2N2 may have experienced increased mortality risk during the 2009

pandemic, relative to surrounding cohorts [51].

Modeling risk of infection by birth year

Computational models can be useful to test the plausibility of various imprinting mechanisms

given a set of surveillance observations (Fig 2C). Testable hypotheses include whether there is

evidence of lifelong immune protection at the HA group level or narrower protection at the

level of the HA or NA subtype. Another question of interest is whether HA imprinting is

stronger for group 1 or group 2 viruses. A number of studies have started to confront these

immunologic scenarios by analyzing influenza surveillance data stratified by birth year and

virus subtype [52, 53]. The early life influenza exposure of each birth cohort is reconstructed

probabilistically, based on information on influenza circulation since 1918. Critical break-

points in these studies are the pandemic years of 1957, 1968, and 1977, which signal the begin-

ning of new influenza exposure histories for cohorts born in distinct influenza eras.

Reconstruction of exposure histories after 1977 is more complicated due to cocirculation of

H1N1 and H3N2 viruses since that time (Fig 1). Detailed information on the intensity of H1

and H3 epidemics each year in various locations is important to accurately model exposure

histories but difficult to obtain.

Recent analyses of the risk of seasonal influenza infection have illuminated the role of birth

year imprinting at the HA and NA subtype levels [52, 53] (Fig 2C). Those primed by H1N1

(born before 1957) experience partial protection against all seasonal influenza H1N1 viruses

throughout life but no advantage against H3N2 infections. The converse is true of those

primed by H2N2 or H3N2. It is difficult to disentangle from seasonal data whether this type of

subtype-level protection originates from priming with HA and NA, or both, as both hypothe-

ses have similar statistical support. However, seasonal influenza data do not support the contri-

bution of immunity at the HA group level. Computational models are particularly useful here

as they take into account age-differences in susceptibility and behavioral factors that drive the

risk of influenza infection and propensity to seek care and, in turn, affect the data collected by

surveillance systems [46, 52–55]. Models of seasonal surveillance data [52, 53] have tested for

complex combinations of biological hypotheses such as age-specific risk for finely resolved age

groups; birth year risk related to imprinting by HA, NA, or both; antigenic distance from the

last season; and demographic age distribution. Existing surveillance data support birth year

imprinting by HA and NA, superimposed on age-specific risks and demography [52, 53].

Modeling immune responses by birth year

In addition to modeling of population-level surveillance data, mechanistic models can guide

interpretation of immunologic data collected from prospective cohort studies or cross-sec-

tional surveys [38, 54, 56]. Existing research has primarily focused on interpretation of sero-

logic markers, through the lens of hemagglutination inhibition titers, to determine cross-

reactivity between antibody responses to different influenza strains (see profile of HA antibody

titers throughout a lifetime of exposure in Fig 2D). In the future, modeling approaches could

be applied to a broader range of biologic markers that are becoming available to fully capture

the specificity of the immune profile of different birth cohorts. Analysis of somatic
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hypermutation in cohorts of varying birth years and ages could help define the changing effect

of immune imprinting over the human life span [57]. Birth year analyses of T-cell responses

would provide a better sense of the role of cellular immunity in imprinting. Mathematical

models are useful to interpret immunological markers because they can incorporate measure-

ment errors that affect biological assays [58, 59]. For instance, the hemagglutination inhibition

test is prone to measurement errors and repeatability issues, and to be conservative, a 4-fold

rise over baseline is typically defined as evidence of infection. Because of this strict definition, a

fraction of true infections may be missed. In a Vietnamese cohort study, a “data-augmenta-

tion” approach was applied to reconstruct the distribution of unobserved infections, given a

set of hemagglutinin inhibition titers in a large population and repeat serology in a subset of

individuals [58]. The analysis showed that a fraction of individuals with a weak (2-fold) rise in

titers could not be explained by measurement error alone and that applying a strict 4-fold cri-

teria would underestimate attack rates [58]. Modeling of serologic data is an active area of

influenza modeling research; it is expected to contribute to our understanding of the build-up

of population immunity over a lifetime of exposure.

Can vaccines exploit imprinting?

School-age children are considered high-transmitter groups for influenza, due to high suscepti-

bility to influenza, increased contacts, and long duration of viral shedding [60, 61]. Hence,

large-scale pediatric immunization programs have the potential to provide herd immunity ben-

efits to all age groups, including seniors who fail to mount a robust immune response to vacci-

nation [62–64]. Given the importance of children for vaccination programs, a key area for

computational modeling in the coming years will be to extract signals of imprinting in surveil-

lance data to determine whether imprinting primarily results from a child’s first, or first few,

natural infection(s). A related question is whether the negative consequences of imprinting, if

any, can be overcome later in life by subsequent infections or vaccinations. Longitudinal birth

cohort studies will be particularly informative to compare the development of immune

responses between children in high and low vaccination settings [65]. Another important ques-

tion is whether development of broadly cross-protective immunity is impaired in vaccinated

infants, compared to unvaccinated infants whose first exposure to influenza is via natural infec-

tion. Findings might in turn lead to strategies that promote development of a long-lasting

broadly protective immunity among infants and children through universal influenza vaccines.

However, the difficulty of such analyses should not be underestimated; large, high-quality data

sets collected over several decades would be necessary to detect what may be small differences

in the strength of imprinting protection between cohorts of vaccinated and unvaccinated chil-

dren. On the other hand, influenza attack rates are high in children, which may help identify a

signal of protection more quickly than in vaccine studies focused on adults. Although rapid age

de-escalation of Phase II and III studies would increase power to detect protection, there is a

trade-off with the need for careful monitoring of safety signals in these vulnerable populations.

In the United States, it is recommended that infants be immunized at six months of age

with tri- or quadrivalent inactivated vaccines containing both group 1 and group 2 strains. It

remains unclear whether a first exposure to influenza in the form of conventional vaccines

could influence immune imprinting and, in turn, responses to novel pandemic strains, differ-

ently than priming by natural infection. Ideally, universal vaccines could imprint naïve chil-

dren with broad antigenic diversity; exposure to a full spectrum of antigens including the HA

stem and conserved proteins such as M2 and NP could be beneficial. So far, it is well-accepted

that the strength of immune memory conferred by conventional vaccines is weaker than that

of natural infection [16, 66].
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If studies determine that OAS cannot be overcome by vaccination or later life influenza

exposures, a universal influenza strategy that establishes broadly protective influenza immu-

nity in children might not be effective for the elderly, who are vulnerable to influenza. The abil-

ity of the elderly to adjust to rapidly drifting influenza strains declines with age, potentially due

to decreased somatic hypermutation [57], reduced B cell clonal diversity [67], or other aspects

of immune senescence. Repeat annual immunization with conventional vaccines may narrow

immune responses in the elderly even further [56]. While Phase I trials of inactivated adju-

vanted vaccines targeting the H1 stem have shown promising immunogenicity results in adults

[34], data on the strength and duration of protection are not available yet. Meanwhile, T-cell

vaccines have been shown to elicit responses in healthy adults who have experienced multiple

influenza exposures [68] and provide protection against challenge virus [69]. Efforts directed

toward stimulating T-cells with the influenza internal proteins NP and M1, M2, using multiple

peptides, viral vectors, and DNA constructs are among the most advanced universal influenza

vaccine programs [68–71]. Phase I and Phase II clinical trials have shown promise in eliciting

CD4 and CD8 T-cell responses, reducing viral shedding and symptoms, and producing

broadly cross-reactive responses. However, a Phase IIB clinical trial of an NP+M1 vaccine was

recently discontinued for failing to meet a predefined endpoint of reduction in incidence and

viral shedding [72]. It is plausible that an optimal universal vaccine will require multiple anti-

gens (e.g., HA stem, NA, NP, M2, and/or M1) to elicit B cell and T-cell mediated immunity

and provide long-lasting protection across birth cohorts or age groups that have already been

imprinted. Moreover, different combinations of antigens inducing different breadth, duration,

and strength of protection might be developed as products intended for different age cohorts.

Taken together, these examples illustrate the complexity of influenza immune responses

and how computational modeling could be useful to disentangle competing biological mecha-

nisms, project the fate of different birth cohorts responding to seasonal and universal influenza

vaccination, and integrate important aspects of influenza epidemiology. High-quality data will

be important to inform such models. Modeling will also be useful to synthesize different lines

of evidence from a diverse set of experimental and observational studies that have been

launched to aid universal influenza vaccine development.

Universal influenza vaccines and viral evolution

The evolution of influenza A viruses is notoriously difficult to predict. Not only does the virus

evolve through rapid mutation of surface HA and NA proteins to evade antibody detection,

but entire segments of the genome can be reshuffled through reassortment between different

viruses coinfecting the same cell. The evolution of the HA protein follows a distinct ladder-like

pattern in humans, driven by continual antibody-induced selection that results in global

sweeps of new variants every three to five years. Manufacturing effective seasonal vaccines

requires biannual predictions of the next year’s dominant strain, a process that has been

informed in recent years by the increased availability of genetic sequence data, including from

understudied tropical and subtropical regions, and the development of new visualization tools

and predictive methods [73]. Recently, the H3N2 tree has branched out into multiple cocircu-

lating clades, further complicating efforts to predict the next season’s dominant strain. It

remains difficult to observe immune-driven selection within a single host [74], and it has been

suggested that new variants may be more likely to emerge in people with prolonged influenza

infections (for instance, in immune-compromised hosts) [75]. Intriguingly, de novo mutations

that emerged in a small sample of immune-compromised hosts were later observed to domi-

nate globally [75]. Between hosts, viral evolution is promoted by longer serial chains of trans-

mission and is amplified by host heterogeneity along the chains [76].
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Evolutionary pressure from universal influenza vaccines

The antigenic evolution of the virus in humans is thought to be driven by host immune pres-

sure resulting from natural infection, with little evidence for vaccines affecting the long-term

epidemiology or evolution of the virus [77, 78]. However, it is important to explore the poten-

tial for a broadly protective vaccine to modulate influenza virus evolution, since the vaccine

could redirect the immune response towards proteins not targeted by natural immunity,

potentially introducing new selection pressures. Selection could also be strengthened during a

pandemic, with high vaccine utilization on a global scale. It has been theorized that a broadly

protective influenza vaccine, targeting conserved proteins NP and M2 and deployed at suffi-

ciently high levels, could actually slow the evolutionary rate of the virus by substantially reduc-

ing the number of infected individuals [5]. Vaccination is generally expected to decrease the

intensity and duration of shedding and shorten chains of influenza infection, potentially

decreasing the risk of escape variants [79]. At the same time, a widely deployed universal influ-

enza vaccine could select for escape mutants in sites that were not previously under immune

pressure, especially if this vaccine does not provide sterilizing immunity (infection-permissive

or “leaky” vaccines). The risk of escape mutants from a leaky universal influenza vaccine has

been considered low because existing vaccine candidates tend to target conserved regions of

the influenza virus, which show limited genetic variability in circulating strains. However,

restrictions on influenza evolution observed in experimental settings are not always borne out

in the real world. For example, the influenza A virus has evolved resistance to antiviral drugs

in genetic regions where experimental evidence had suggested that resistance mutations would

impair viral fitness [80].

Influenza viruses evolve resistance to antiviral drugs via multiple pathways

To understand the plasticity of the influenza virus, it is worth exploring two examples involv-

ing resistance to antiviral drugs. First, in 2005, H3N2 viruses that were resistant to the adaman-

tane class of antivirals rapidly reached fixation globally, leading to the entire discontinuation

of this class of drugs [81]. Phylogenetic analysis revealed that resistance was conferred by a sin-

gle S31N amino acid substitution in the M2 protein. The S31N substitution appears to have

originated in Asia, where cheap, over-the-counter adamantane drugs were anecdotally more

widely used than in Europe and North America [82, 83]. The global dissemination of the resis-

tant viruses was accelerated by a genomic reassortment event, in which the resistant M2 gene

hitchhiked with an antigenically novel HA that was strongly selected for [82, 83].

In a second notable case study, in 2007, seasonal H1N1 viruses emerged with a NA gene

carrying a single amino acid substitution (H274Y) that conferred resistance to a newer antivi-

ral, oseltamivir. Again, the drug resistant viruses rapidly disseminated globally, an observation

that was particularly alarming because (1) oseltamivir is a first-line drug and widely stockpiled

for use in a pandemic and (2) oseltamivir-resistant viruses had low observed fitness in experi-

mental studies [80]. The spatial and evolutionary origins of the oseltamivir-resistant mutation

have not been well characterized ecologically. However, experimental studies have elucidated

the role of “permissive” mutations in the NA that predate the H274Y change and have recon-

figured the protein to make it capable of acquiring resistance mutations without loss of fitness

[80]. This study of oseltamivir resistance demonstrates the importance of genetic context and

the range of evolutionary pathways by which influenza viruses circumvent functional con-

straints. Epistatic interactions and compensatory mutations remain an understudied but

highly relevant area of evolutionary research. In the same vein, cytotoxic T lymphocyte (CTL)-

escape variants are thought to be limited by strong functional constraints and the high poly-

morphism of human leukocyte antigens (HLA) [84]. However, a CTL-escape mutation located
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in a conserved region of the internal NP protein spread rapidly during the 1993 to 1994 epi-

demic, providing further demonstration of the evolutionary plasticity of influenza A viruses

and our inability to predict evolutionary constraints from available data [21].

Evolution in the head versus stem of the HA

Experimental data indicate that the HA head region has a higher mutational tolerance than the

HA stem [29, 85, 86], but in vitro studies have demonstrated that escape mutants from broadly

neutralizing antibodies can still occur in the stem [85, 87, 88]. Stem escape mutants arise at a

lower frequency than head escape mutants [29], especially under polyclonal immune response.

However, stem escape mutants can replicate and some variants do not seem to have impaired

replication fitness in vitro and retain virulence in mice [89]. It is possible that the high conser-

vation of the HA stem in nature arises from the region not being targeted by host antibodies,

due to the strong immunodominance of the HA head. If this is the case, by retargeting

immune responses towards the stem, vaccination could in theory induce higher selection pres-

sure on the stem. Systematic in vitro exploration of the viability of mutations in the HA stem is

useful [85, 89, 90], but genetic context is critical. Large-scale bioinformatic studies of circulat-

ing virus variants may inform how specific mutations would fare on a population level, or in a

different viral genetic background.

The capacity of influenza viruses to evolve resistance to antiviral drugs does not necessarily

translate to vaccines. In general, resistance to drugs evolves far more rapidly than to vaccines,

for multiple reasons [91]. Drugs are delivered therapeutically, when viral diversity and patho-

gen populations within a host are high. In contrast, prophylactic administration of vaccines

typically prevents or limits infection so that the potential to generate new virus variants is

lower. Additionally, drugs tend to target a single biological pathway, and their effects can often

be diminished by a single mutation. In contrast, vaccines induce polyclonal immune responses

that target multiple antigens and are dependent on host cofactors (e.g., HLAs) that are intrinsi-

cally diverse, limiting viral escape at the population level. Therefore, resistance is less likely to

emerge in influenza vaccines that prevent or reduce transmission and more likely to emerge in

vaccines that narrowly target a small number of epitopes (for example, peptide-based vac-

cines). This is true whether targeting the HA stem or internal proteins and regardless of

whether the targets are thought to be functionally constrained. As a result, the optimal strategy

could be to engineer vaccine cocktails targeting multiple immunologic sites, such as MP + NP,

or MP + NP + NA + HA stem. Large-scale deep-sequencing analysis of intrahost evolution

and transmission events in prospective and household transmission studies across the globe

may also be useful to understand how influenza escape mutants arise in individuals and propa-

gate in large populations.

Impact of universal vaccines on transmission

Leaky vaccines

In contrast to conventional vaccines, some universal vaccines will likely permit a limited

amount of infection and may not block onward transmission. A better understanding of how

transmission will be reduced by vaccination is important to anticipate the population-level

benefits of universal influenza vaccines and the potential for escape variants [5]. A reduction

in transmission will affect influenza dynamics in three ways: (1) Vaccination will decrease cir-

culation of influenza in the community and, hence, reduce the probability of infection in

unvaccinated individuals (the so-called herd immunity effect). (2) By reducing opportunities

for influenza infection, vaccination may generate pockets of unprotected individuals who are

more susceptible to new influenza strains than if they had been naturally infected. This may be
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particularly important in pandemic seasons [5]. (3) Additionally, as previously noted, a leaky

vaccine allowing for viral shedding and onward transmission could promote viral evolution

away from the immune sites targeted by the vaccine or other antigenic regions of the virus. The

interplay of these different mechanisms will determine the net population benefits and evolu-

tionary consequences of a new vaccine [5]. Because novel influenza variants emerge and circu-

late globally, increased vaccine pressure in a highly vaccinated population could potentially

have trickle down effects in other areas of the world that do not have yet access to the vaccine.

Correlates of transmission

Estimating the impact of universal influenza vaccines on transmission is important but diffi-

cult in practice. One would have to design randomized controlled trials to study the reduction

in risk of transmission from vaccinated to unvaccinated individuals. Such trials would be pro-

hibitively expensive due to large sample size, and it is unlikely they would be conducted in

early stages of vaccine development or during licensure.

In the absence of direct information on transmission, identification of correlates would be

useful, especially if one could rely on variables that are more easily monitored, such as virus

shedding or clinical symptoms. Model projections of the population benefits of T-cell based

vaccines have used viral shedding data in ferrets vaccinated with NP+M2 recombinant adeno-

virus vaccines to calibrate transmission effects [5]. Further experimental data support the

transmission benefits of vaccination in mice, for recombinant adenovirus vaccines expressing

NP+M2 [92, 93] and adjuvanted split virus vaccines [94].

Additional data can be gleaned from household studies, which provide a well-controlled

environment to study how transmissibility is affected by the intensity and duration of viral

shedding. Difficulties here relate to the putative nonlinear relationship between transmission

risk and shedding [95, 96], the different assays used to measure shedding, whether infectious

viral titers are quantified (preferably by plaque assay or TCID50, rather than quantitative

RT-PCR), and how frequently measurements are taken.

A related question is how much transmission occurs, if any, from asymptomatic or pauci-

symptomatic individuals. Ferret experiments indicate that transmission can occur prior to

symptom development [97]. In mouse models, transmission was reduced in recipients of a

leaky vaccine that renders them asymptomatic or pauci-symptomatic when challenged [92,

93]. Household studies have shown decreased shedding in pauci- and asymptomatic individu-

als infected with influenza, relative to symptomatic individuals; however, the potential for

onwards transmission remains unclear [98]. In humans, the contribution of asymptomatic

and pauci-symptomatic transmission could be modulated by the behavior and contacts of

individuals with few or no symptoms. A potentially detrimental effect of a vaccine that consid-

erably reduces disease severity might be to increase influenza transmission outside of the

home due to increased contacts and mobility, relative to more severely ill individuals. If the

transmission reduction conferred by a broadly protective vaccine was compensated by an

increase in contacts in those who shed the virus, then broadly protective vaccination programs

could result in larger epidemics than well-matched conventional vaccines. This hypothetical

issue should be weighed in against the imperfect match of conventional vaccines in seasonal

influenza situations and the lack of rapidly available conventional vaccines in pandemic situa-

tions. Mathematical models could highlight the particular conditions under which the unin-

tended consequences of universal influenza vaccination could occur and assess the trade-offs

against existing formulations [99]. Related work in the context of respiratory syncytial virus

illustrates how different characteristics of candidate vaccines may affect disease dynamics posi-

tively or negatively [100].
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While more work needs to be done to improve our understanding of the relationship

between shedding and transmission, there is even less understanding of how symptom severity

may affect transmission. Ultimately, predictive models of transmission based on symptoms

would open the door to using data routinely collected during vaccine trials.

Linking animal transmission studies to epidemiological data

Animal models have been used to study influenza transmission potential since the seminal

work of Andrewes and Glover in the 1940s and Kilbourne and Schulman in the 1960s [101,

102]. More recent work suggests a correlation between secondary attack rates in households

and risk of influenza transmission by respiratory droplets in ferrets, which is auspicious for

predictive models based on animal experiments [103]. The mapping between household trans-

mission and experimental data is weaker, however, when direct contact between donor and

sentinel ferrets is allowed [103]. Whether there is a relationship between transmission in

humans and other influenza models (guinea pigs or mice) remains to be seen. These experi-

ments are costly, and a variety of viruses need to be tested to validate the predictive ability of

animal models. A large range of human-to-human transmission potential has been reported

for influenza A viruses, from zoonotic viruses that transmit poorly between humans to

endemic viruses that generate large epidemics (reproduction number R~0.2 for H5N1 virus to

R~3.0 for the 1918 pandemic H1N1 virus [104, 105]). Whether animal models can recapitulate

such a broad range of transmissibility remains unclear.

A further barrier is the typically small sample size and lack of standardization of animal

transmission experiments, which are underpowered for accurate estimation of transmission

risk [106]. Ideally, an initial investment in a large set of experiments could help define a

robust relationship between transmission in animals and humans. Smaller and less costly ani-

mal studies could then be conducted more routinely as new vaccine candidates become

available.

Quantifying the herd immunity effects of conventional vaccines

Herd immunity is an important consideration for any vaccination program, and there is

much to learn here in the context of conventional influenza vaccines that have been used for

decades. While these vaccines are regarded as suboptimal with respect to direct protection,

their indirect transmission benefits also remain debated. The Japanese experience with mass

vaccination of schoolchildren in the 1950 to 1970s, along with modeling studies, have

pointed at the herd immunity benefits that would be expected from large-scale influenza

immunization efforts [63, 78, 107]. Randomized controlled trials in smaller communities

have shown how targeting school-aged children for vaccination can reduce influenza trans-

mission [64, 108]. A large-scale pediatric vaccination program initiated 5 years ago in the

United Kingdom generated much enthusiasm but has reported mixed-effects on disease

impact [109]. Routine influenza immunization programs have become well-established in

high-income countries, and new programs are being rolled out in middle-income settings.

The time is ripe for modeling of surveillance data in different geographic contexts to estimate

and, possibly, reconcile the transmission benefits of conventional vaccines [62, 78]. Analyses

need to control for year-to-year variations in the intensity of epidemics and vaccine effective-

ness; comparison of otherwise similar regions with high and low vaccine coverage can be

particularly useful here [110]. Another promising avenue includes modeling of detailed

individual-level data on the transmission of influenza outbreaks in closed settings, such as

military camps, households, or college dormitories, where a fraction of the population is

vaccinated.
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Conclusion

The field of universal influenza vaccines is rapidly expanding and generating a vast amount of

immunological, virologic, and clinical information, along with important questions on how to

optimize these vaccines to maximize protection and minimize harm. Computational modeling

can help synthesize these new data streams and contribute to the identification or confirma-

tion of the mechanisms driving immune imprinting on a population level. In parallel, evolu-

tionary studies need to clarify how selection pressures operate at the individual and population

levels and drive the global emergence of new strains due to pressure from natural infection,

vaccination, or antiviral drugs. Further research is needed to clarify the host and immunologic

conditions that increase or decrease the rate of viral evolution and quantify the evolutionary

constraints on the different regions of the virus. Combined with data from transmission stud-

ies in humans and animals, this information can be used to project the population benefits of

universal influenza vaccines. The push towards universal influenza vaccines may generate a

complex vaccine landscape with co-existence of different formulations targeting different anti-

gens in different birth and age cohorts. Computational modeling offers a valuable tool to antic-

ipate the benefits of such ambitious programs, while balancing the risks from endemic

influenza strains and unpredictable pandemic viruses. Moving forward, it will be important to

mine the vast amount of data generated in clinical studies to ensure that the risk-benefits of

these vaccine programs have been carefully assessed.
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