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Multiscattering effects in disordered two-dimensional anisotropic Weyl fermions
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Exploiting the Lanczos method in momentum space, we determine accurately the quasiparticle properties of
disordered two-dimensional Weyl fermions with anisotropic dispersion, which is linear in one direction and
quadratic along the other. For comparison, we also present a perturbative analytical analysis based on the
Born approximation and renormalization group methods. We reveal that low-energy quasiparticle properties
are substantially corrected by multiple impurity scattering processes and manifested by the power-law function
of self-energy. Near the nodal point, quasiparticle residue is considerably reduced and vanishes as ZE ∝ Er

with a disorder-dependent exponent r. To highlight the importance of such unconventional quasiparticle residue
behavior, we compute the classical diffusive conductivity via the Kubo formalism. We show that the sharp change
of ZE in the vicinity of the nodal point gives rise to the strong temperature dependence of classical conductivity,
which can be directly tested by transport measurements in the future.
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I. INTRODUCTION

The exploration of the role of disorder is a major activ-
ity in condensed matter physics, a subject that has enriched
our understanding of many unconventional transport proper-
ties such as Anderson localization [1], the integer quantum
Hall effect [2], and the anomalous Hall effect [3]. Gener-
ally speaking, in a metallic state, the influence of disorder
on the quasiparticle and transport properties is characterized
by two important physical quantities, i.e., the quasiparticle
residue and the elastic scattering time, which can be derived
from the self-energy of the Green’s function. In the weak
scattering limit (EF τ � 1) [4,5], the elastic scattering time
can be perturbatively calculated by using the inverse of a
dimensionless parameter (EF τ ) as a small expansion parame-
ter. Meanwhile, the influence of disorder on the quasiparticle
residue is negligible since the perturbative calculations con-
firm that the real part of self-energy does not strongly fluctuate
with the energy, and thereby quasiparticle residue remains an
order of magnitude of unity. However, in the strong scattering
limit (EF τ � 1), it is usually believed that multiple scattering
processes involving many impurity centers have driven most
conventional disordered metals into insulator states—such a
phenomenon is called Anderson localization. As Anderson
localization occurs in this new regime, all states are localized,
thus the quasiparticle residue and the elastic scattering time
lose their real meanings to describe the effect of disorder on
the hopping transport at finite temperatures.
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Because of the divergence of the wavelength at the nodes
of semimetals [6,7], as exemplified by graphene, the effects
of disorder are drastically different from those in conventional
metals with a finite Fermi surface—those Dirac fermion sys-
tems easily enter into the strong scattering limit as the Fermi
energy is close to the nodes [8]. Therefore, it is naturally
expected that the interference effect, originating from many
impurities being multiply scattered, will dominate physics
around the nodal point; these processes are different from the
usual weak localization effect. Indeed, previous perturbative
calculations show that such multiple impurity scattering pro-
cesses not only have a considerable influence on the elastic
scattering time [9,10] but also give rise to the ultraviolet
logarithmic corrections to the quasiparticle residue [11,12].

Similarly, it is anticipated that multiple impurity scattering
events may also play an important role in two-dimensional
(2D) anisotropic Weyl fermions (AWFs) [13–19], the gap-
less low-energy quasiparticles with anisotropic dispersion
emerging from the merging point of two Dirac nodes in
the Brillouin zone [20–22]. The possible physical realization
of this anisotropic dispersion has already been reported in
previous studies [23–27]. Indeed, the first-order Born ap-
proximation shows that quasiparticle residue vanishes at the
nodal point as ZE ∝ (E )−1/2; in addition, the self-consistent
Born approximation predicts ZE approaches a finite constant,
ZE→0 = 1/2 [28]. On the other hand, a renormalization group
(RG) analysis [17] on the tree level shows that disorder is
a relevant perturbation in the AWF system, in contrast with
its isotropic partner such as graphene, where the disorder
is marginally relevant. A further analysis based on one-loop
RG in this work confirms that quasiparticle residue vanishes
at a special energy scale (Ec) near the nodal point, ZE ∝√

1 − (Ec/E )1/2 [28], below which RG does not work. For

2469-9950/2020/102(13)/134207(6) 134207-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7576-6738
https://orcid.org/0000-0003-4871-5681
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.134207&domain=pdf&date_stamp=2020-10-15
https://doi.org/10.1103/PhysRevB.102.134207


NING, FU, SHI, AND WANG PHYSICAL REVIEW B 102, 134207 (2020)

FIG. 1. Lattice structure of deformed graphene with anisotropic
hopping integrals t, t ′. The nearest-neighbor lattice vectors are �a1, �a2,
discussed in the text.

comparison, the quasiparticle residue in graphene goes to zero
as ZE ∝ √

ln(E/Ec) [11,12]. Those three approximative ap-
proaches unveil parts of the properties of quasiparticle residue,
reflecting the importance of multiple impurity scattering pro-
cesses, however, they present inconsistent results. To uncover
the physics near the nodal point, a more careful nonperturba-
tive analysis involving all multiscattering events is needed.

In this paper, we present exact numerical results of the
quasiparticle properties in disordered AWFs by using the
Lanczos method that is able to rigorously treat all multiscatter-
ing events. Our simulation clearly reveals that the self-energy
obeys a common power-law behavior, whose exponent is de-
pendent on the disorder strength. This nonanalytic correction
serves as the very basis for the unusual behaviors of quasi-
particles and many other physical properties surrounding the
nodal point. We also show that quasiparticle residue goes to
zero as ZE ∝ Er in the vicinity of the nodal point. This uncon-
ventional behavior is distinctly different from that predicted
by the Born approximation and one-loop RG calculations
[28]. Furthermore, we show that such quasiparticle behavior
gives rise to the strong temperature dependence of classical
diffusive conductivity along the linear dispersion direction.

II. MODEL AND METHOD

In order to study the effects of disorder on anisotropic Weyl
fermions numerically, we choose the deformed honeycomb
lattice for simplicity [24]. In the absence of disorder, a tight-
binding model of the Hamiltonian is H0 = ∑

〈i j〉 ti j |i〉〈 j| +
H.c., where ti j is the hopping energies t, t ′ (see Fig. 1). The
Hamiltonian in k space is

H =
( 0 f (k)

f ∗(k) 0

)
, (1)

with the function f (k) defined as f (k) = t ′ + tei�k·�a1 + tei�k·�a2 ,
where �a1 = a(

√
3

2 , 3
2 ), �a2 = a(−

√
3

2 , 3
2 ) are elementary vectors

of the Bravais lattice, and a is the distance between atoms
and is set to a = 1. When t ′ = t , the Hamiltonian is the usual
model of graphene with two Dirac nodes at K = ( 2π

3
√

3a
, 2π

3a ),

K ′ = (− 2π

3
√

3a
, 2π

3a ) in the Brillouin zone. More interestingly,
by setting t ′ = 2t , the two Dirac nodes merge into a single

point at D = (0, 2π
3a ) to form anisotropic Weyl fermions. The

low-energy effective continuum model can be written as [24]

H = cxk2
x σx + cykyσy, (2)

with parameters cx = 3
4 ta2, cy = 3ta, where 1/(2cx ) = m is

the effective mass along the x direction and cy is the veloc-
ity along the y direction, and the quasiparticle dispersion is
εk± = ±√

(cxk2
x )2 + (cyky)2. Thus, the low-energy quasiparti-

cle exhibits a unique anisotropic dispersion which is linear in
one direction and quadratic along the other.

To explore the disorder effect, the sublattice uncorrelated
Anderson-type disorder is introduced by the on-site random
potential distributed independently within [−W/2,W/2]. A
dimensionless parameter γ = AcW 2

12π
√

t
√

cxcy
rφ is used to charac-

terize the strength of disorder obtained from Fermi’s golden
rule as usual. Here, Ac = 3

√
3

2 a2 is the area of the unit cell, and
the constant rφ = 1

π

∫ dφ√
cos φ

≈ 0.835. The energy is measured
in units of t = 1 and we set h̄ = 1 in this work. In order to
suppress the artificial finite-size effect, we choose a large sam-
ple L2 = (104)2 and calculate its retarded self-energy in the
quasiparticle representation �(E , k) by the momentum-space
Lanczos recursive method [29–31]. A small artificial damping
parameter 10−3 is used in our simulation so that we can extract
the self-energy of the single-particle Green’s function with a
high-energy resolution. In our simulation, we find that both
real and imaginary parts of the self-energy are insensitive to
wave vector k [30], are independent of the band index [32],
and are dependent only on the energy E .

III. SELF-ENERGY AND QUASIPARTICLE PROPERTIES

The imaginary part of the self-energy Im �(E ) for dis-
ordered 2D AWFs with different strengths of disorder γ is
plotted in Fig. 2(a). Notice that the first-order Born approx-
imation predicts the square-root behavior

√
E [28] of the

self-energy. However, as shown in Fig. 2(a), the self-energy
has distinct structures as the disorder strength increases; a
natural generalization can be made by observing that Im �(E )
gradually deviates from the square-root behavior and the value
of the imaginary part of self-energy at zero energy �0 is
increased. These characterized features inspire us to use a
power-law formula to fit our numerical results,

Im �(E ) = −�0 − 	|E | 1
2 +β. (3)

In order to further corroborate that the imaginary part of
self-energy can be described by a constant plus power-law
function, we plot the imaginary part of the self-energy on a
log-log scale within an energy window E ∈ [0.01, 0.2]. As
shown in Fig. 3, the power-law form of the self-energy pro-
vides a fairly good fit in this energy regime.

Here, we report the fitting results of the power-law self-
energy Im �(E ) in the weak disorder strength. The fitting
parameters β, 	, and �0 as a function of disorder strength
γ are shown in Figs. 4(a)–(c), respectively. The fitting pa-
rameters β and 	 are approximately proportional to the
disorder strength as β = 11.3γ and 	 = 2.1γ . The depen-
dence of β on γ clearly reflects that proper treatment of all
orders of multiscattering events will fundamentally modify

134207-2



MULTISCATTERING EFFECTS IN DISORDERED … PHYSICAL REVIEW B 102, 134207 (2020)

E/t
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Im
Σ

 

-0.04

-0.03

-0.02

-0.01

0
(a)

E/t
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

R
eΣ

 

-0.02

-0.01

0

0.01

0.02

(b)

γ=0.003
γ=0.008
γ=0.015
γ=0.025
γ=0.038

FIG. 2. (a) Imaginary and (b) real parts of the self-energy of dis-
ordered 2D AWFs as a function of energy E with different disorder
strengths γ . The open circles are the numerical results while the solid
lines are the fitting curves of Eqs. (3) and (5), respectively.

the quasiparticle properties of AWF, which is out of reach
of conventional perturbation theory. More intriguingly, with
the help of the one-loop RG approach (see Ref. [28] for a
detailed derivation), we find an expression, Eq. (4), to fit �0 as
a function of disorder strength, interpreted as a characteristic
low-energy scale Ec, and the system enters into the strong-
coupling regime below the characteristic energy Ec [12]. The
calculation of the RG [28] shows that the characteristic energy
Ec is written as

Ec = g1γ
2

(1 + g2γ )2
. (4)

The constants g1, g2 can be obtained by fitting the numeri-
cal data of �0 with g1 ≈ 10.7, g2 ≈ 4.3. Notice that a similar
relationship between the �0 and the Ec has been reported in
disordered graphene [11,12]. As shown in Fig. 2(a), the agree-
ment between Eq. (3) and the numerical results is excellent.

Moreover, the corresponding fitting formula for the real
part of self-energy Re �(E ) can be constructed via the
Kramers-Kronig relation [33],

Re �(E ) = D sgn(E )|E | 1
2 +β + CE , (5)

where sgn denotes the signum function, and the param-

eters are D = −tan[π
2 ( 1

2 + β )]	, and C = − 2	E
β− 1

2
c

π (β− 1
2 )

[34].

The comparison between the fitting formula and numerical
results of Re �(E ) is shown in Fig. 2(b), again in very

log
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FIG. 3. The logarithmic plot shows constant plus power-law be-
havior of the imaginary part of self-energy on different strengths
of disorder; the circles are numerical results and the solid line is
the linear fitting over an energy scale E ∈ [0.01, 0.2] (or log10 E =
[−2, −0.7]).

good agreement with each other. Now, we can easily ex-
tract the quasiparticle residue via the formula ZE = 1/[1 −
∂E Re �(E )]. Near the nodal point, ZE scales as E

1
2 −β . Equa-

tions (3) and (5) are the central findings of our work.
We then study multiscattering effects on several fundamen-

tal physical quantities such as the elastic mean free time (τ ),
group velocity (vg), and mean free path (l). As the Fermi
energy approaches the nodal point, the self-energy function
Im �(E ) approaches a constant �0 and the decay time τ =
1/[2ZE |Im �(E )|] [35] is divergent as ∝E− 1

2 +β . The group
velocity along the direction of linear dispersion is renormal-
ized by a factor of ZE as vg = ZE cy, which is reduced quickly
down to zero as vg ∝ E

1
2 −β , as we can see in Fig. 5(a). For

comparison, we plot the prediction based on the one-loop
RG theory ZE ∝

√
1 − (Ec/E )1/2 and our simulation result

in Fig. 5(b) for the same disorder strength. The two curves
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FIG. 4. The fitting parameters of self-energy β, 	, and �0 as
functions of the disorder strength γ are shown in (a)–(c), respec-
tively. The black open circles are the numerical results, and red solid
lines are fitting curves.
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FIG. 5. (a) Quasiparticle residue ZE as a function of energy E
for different strengths of disorder. (b) Comparison between the RG
results of ZE with the curve (γ = 0.04) in the left panel.

are close to each other in E/Ec � 1 and behave differently
as E → Ec, below which the one-loop RG breaks down. The
mean free path along the direction of linear dispersion ly =
vgτ = cy/[2|Im �(E )|] is independent of ZE and approaches
a constant 1/�0 as E → 0. The one-loop RG calculation can
obtain the same mean free path at E = Ec, but beyond this
length scale, the renormalization process should be stopped.

IV. TRANSPORT BEHAVIOR

The finding of the accurate self-energy Eqs. (3) and (5) can
also lead to further studies of the diffusive transport behavior
[13–16] of AWF. Based on the standard Kubo-Greenwood
formula [36], the longitudinal conductivity σμμ(μ = x, y) can
be expressed as

σμμ(EF , T ) =
∫

dω
(
−∂ f (ω, EF )

∂ω

)
Kμμ(ω),

Kμμ(ω) = e2

π

∫
d2k

(2π )2
Tr[v̂μÂ(k, ω)v̂μÂ(k, ω)], (6)

where f (ω) = 1/(e(ω−EF )/(kBT ) + 1) is the Fermi-Dirac distri-
bution function, EF is the Fermi energy, and Â is the spectral
function containing the accurate self-energy discussed in this
work. In the following discussion, for simplicity, we define

two constants σ 0
xx = e2

π

√
cx

√
t

π2cy
and σ 0

yy = e2

π

cy

4π2√cx
√

t
as the unit

of conductivity along the direction of quadratic and linear
dispersion [28], respectively. We depict the zero-temperature
conductivity as a function of Fermi energy EF in Figs. 6(a)
and 6(b). In this case, the function − ∂ f (ω,EF )

∂ω
in Eq. (6)

is replaced by the delta function −δ(ω − EF ). The residual
conductivity σ r

μμ at the nodal point EF = 0 is directly depen-
dent on the strength of disorder and behaves as σ r

xx ∝ √
�0,

σ r
yy ∝ 1/

√
�0, respectively. Our results are in contrast to the

prediction obtained by the Boltzmann transport theory such as
σxx ∝ EF

γ
= 0 and σyy ∝ 1

γ
[13–15].

As the Fermi energy is away from the nodal point, our
results qualitatively agree with the calculation from Boltz-
mann transport theory. The σxx(EF ) increases linearly with the
Fermi energy [see Fig. 6(a)] which exhibits the conventional
behavior of 2D Schrödinger electron gas. The conductivity σxx

is proportional to the Fermi energy and the inverse of disorder
strength σxx ∝ EF

γ
. Therefore, as shown in Figs. 6(c) and 6(e),

our results of the conductivity σxx at finite temperature can
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FIG. 6. Zero-temperature conductivity along the (a) x direction
σxx and (b) y direction σyy for different disorder strengths. (c) and
(d) show the finite-temperature effect on conductivity σμμ(EF ) for
different temperatures. (e) and (f) show the temperature dependence
of the conductivity σμμ(T ) for different Fermi energies, where they
are measured by their value at zero temperature σ T =0

xx , σ T =0
yy . In (c)–

(f), the strength of disorder is fixed at γ = 0.01, which corresponds
to an energy scale �0 ≈ 10−3t .

also be well described by the Boltzmann transport theory,
signifying that multiple scattering effects on this direction
are very weak and hardly tested by transport measurements.
However, as the strength of disorder increases, there still ex-
ists a distinct quantitative difference between our results and
the Boltzmann’s prediction [28], reflecting the importance of
multiscattering effects around the nodal point.

However, multiscattering events can significantly affect
the conductivity along the ky direction as plotted in Figs. 6(b),
6(d) and 6(f). At zero temperature, in the presence of weak
disorder strength (γ = 0.01), the conductivity σyy displays a
sharp dip around the nodal point due to the multiscattering
effect. As the disorder strength increases, such a dip is
gradually smeared. Therefore, at weak disorder, the dip can
be manifested by its strong temperature dependence as shown
in Fig. 6(d). Moreover, as shown in Fig. 6(f), we plot the
conductivity σyy as a function of temperature for several
different Fermi energies varying from EF = 0 to 0.02. At a
high Fermi energy (corresponding to a high carrier density),
the conductivity σyy exhibits metallic temperature behavior
(dσ/dT < 0). However, in the low doping regime, if the
temperature is not too small, it shows an insulating-type
temperature dependence (dσ/dT > 0). Therefore, the
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conductivity σyy(T ) shows a nonmonotonic temperature
dependence in Fig. 6(f), and there exists a local minimum at
finite temperature. Due to smearing of the dip of conductivity
σyy(EF ) at a moderate disorder strength γ = 0.04, as shown
in Fig. 6(b), the conductivity is approximately independent of
Fermi energy, and it is thereby independent of temperature. In
this scenario, although the qualitative behavior of conductivity
is consistent with the prediction of Boltzmann’s theory, the
quantitative behavior is still quite different. Thus, the strong
temperature dependence of conductivity can be tested in
the ultrahigh-mobility AWF sample along the direction of
relativistic quasiparticle dispersion.

V. DISCUSSIONS

Up to now, we have focused on studying nontrivial quasi-
particle behavior and classical diffusive conductivity near the
nodal point (including the contribution from the ladder vertex
correction [28]), and neglect the contribution from the weak
localization correction. In fact, the previous calculation of the
weak (or antiweak) localization correction to the conductivity
only works well in the weak scattering limit. In this weak
scattering limit, our calculation [28] finds that the weak local-
ization correction to the conductivity obeys the conventional
formula σwl ∝ − ln ( LIR

le
) [1], where le = vF τ is the electron

mean free path and LIR is the infrared cutoff, confirming that
the quantum correction to the conductivity depends sensitively
on the symmetry of the system. Notice that our discussed sys-
tem belongs to the orthogonal class. However, as the energy
approaches the nodal point, our discussed system naturally
enters into the strong scattering limit. In this situation, how
to treat the contribution to the conductivity from the quantum
interference process is still a challenging task and deserves
further study. More importantly, comparing our results with

real experiments may uncover some useful information about
the correction from the quantum interference process in this
strong scattering limit.

In this work, notice that we have focused on studying the
effects of the sublattice uncorrelated Anderson disorder on
the quasiparticle properties. Generally speaking, because of
the divergence of the wavelength near the nodal point, it is
expected that correlated and uncorrelated disorder may give
rise to similar physical results. However, in this anisotropic
system, the situation is quite different. It is reported [14,17]
that sublattice correlated Anderson disorder may generate a
mass term in the effective Hamiltonian of AWF, which leads
to a quantum phase transition from a semimetal to a gapped
insulator. It is very interesting and important to investigate the
role of multiple impurity scattering processes in this kind of
quantum phase transition. We will defer consideration of this
important issue to future works.

In summary, using the momentum-space Lanczos method,
we have investigated multiple scattering effects on the quasi-
particle and transport properties of disordered anisotropic
Weyl fermions. A power-law behavior of the self-energy is
constructed for describing the nontrivial quasiparticle proper-
ties which lead to unconventional transport behavior and can
be directly related to experimental observations.
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