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Constraining the state space in any physical theory with the principle of information symmetry
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Symmetry shares an entwined history with the structure of physical theory. We propose a consequence
of symmetry towards the axiomatic derivation of Hilbert space quantum theory. We introduce the notion of
information symmetry (IS) and show that it constraints the state-space structure in any physical theory. To
this end, we study the minimal error binary state discrimination problem in the framework of generalized
probabilistic theories. A theory is said to satisfy IS if the probability of incorrectly identifying each of two
randomly prepared states is the same for both the states. It is found that this simple principle rules out several
classes of theories while being perfectly compatible with quantum theory.
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Introduction. Obtaining a physical perspective of the ab-
stract mathematical description of quantum theory is a long-
standing aspiration in quantum foundations. A variety of
different approaches, some as old as the theory itself, have
attempted to addressed this question, providing deeper un-
derstanding about the Hilbert space formulation of the theory
[1–11]. The advent of quantum information theory introduces
a new direction to this endeavor. It identifies physically mo-
tivated principles excluding a class of multipartite nonlocal
correlations that are strong enough to be incompatible with
quantum theory, though weak enough to satisfy relativistic
causality or the no-signalling (NS) principle [12–21], thus
providing a device-independent outlook about the correlations
al lowed in the physical world [22,23]. Another approach is to
identify rudimentary rule(s) that directly derive the state space
structure or some crucial features of quantum theory [24–41].

Despite a number of nontrivial achievements, a complete
physical or first-principles motivation of Hilbert space quan-
tum mechanics is still elusive. In the present work, we con-
sider a different approach to address this issue, by investi-
gating the state space structure of physical theories from the
perspective of symmetry, as a principle. Symmetry has played
a long and widespread role in formulating theories of the
physical world. Rather than being the byproduct of dynamical
laws, symmetry principles have been appreciated as primary
features of nature, that in turn, determine the fundamental
physical laws [42,43]. For instance, while formulating the
special theory of relativity, Einstein recognized relativistic
invariance as a principle, which stipulates the form of trans-
formation rules to be Lorentzian. Later, a similar approach
guided him to develop his seminal theory of gravity where
the principle of equivalence—a principle of local symmetry—
determines the dynamics of space-time. In the context of
the present work too, we take symmetry as the guiding
feature, though the symmetry we explore here has different
consequences. Rather than guiding directly the dynamics, it
imposes constraints on the ways of information gain in the

act of measurement, and consequently puts restrictions on the
structure of state space.

In order to study the implications of the proposed sym-
metry, we consider a very generic mathematical framework
that allows the largest possible class of convex operational
theories, also called generalized probability theories (GPTs).
The state space of such a theory is a convex set in Rn

with extreme points [44] denoting pure states or states of
maximal knowledge. This framework embraces the notion of
indistinguishable states—members of a set of states that can
not be identified perfectly given a single copy of the system
prepared in one of these states. For a completely random
ensemble of two such states, the most general strategy for
minimum-error discrimination comprises of a two-outcome
measurement—the two different outcomes correspond to two
different preparations. While extracting information through
such a binary measurement, error can occur in two ways: (i)
outcome-1 that should correspond to state-1 may click even
when the system is prepared in state-2, and (ii) outcome-2 may
click when the system is prepared in state-1. Our proposed
information symmetry (IS) assumes that for any randomly
prepared binary ensemble of pure states, optimal information
about the preparation is obtained symmetrically from both
the states. In other words, the two possible sources of er-
ror contribute equally in minimal error state discrimination.
Throughout the paper we consider that the pair of states are
prepared with uniform probability distribution.

Through the analysis presented herein, we find that this
seemingly naive symmetry condition is not satisfied by a
large class of GPTs. In particular, we show that regular
polygonal state spaces [45] with more than four pure states are
incompatible with IS. Polygonal state spaces with four pure
states, known by the name squit, also become incompatible
with IS when it is applied to the binary ensembles of mixed
states. This newly identified symmetry property turns out to
be pivotal in determining the state space structure of physical
theories as we find that both classical and quantum theory are
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perfectly compatible with IS. We begin our analysis with a
brief discussion on the mathematical framework of GPTs.

Framework. The structure of any operational theory con-
sists of three basic notions—state or preparation, observable
or measurement, and transformation [24,26,30,31]. While ob-
servables correspond to the possible choices of measurement
on the system, its initial preparation is represented by a state,
and the time evolution of the state is governed by some
transformation rule. In the prepare and measure scenario, the
state and observable together yields the statistical prediction
of an outcome event.

Preparation or state ω of a system specifies outcome prob-
abilities for all measurements that can be performed on it.
A complete specification of the state is achieved by listing
the outcome probabilities for measurements belonging to a
“fiducial set’ [24,26]. The set � of all possible states is a
compact and convex set embedded in the positive convex cone
V+ (see Ref. [44] for precise definition) of some real vector
space V . Convexity of � assures that any statistical mixture
of states is a valid state. The extremal points of the set � are
called pure states. For example, state of a quantum system
associated with Hilbert space H is described by positive
semidefinite operator with unit trace, i.e., a density operator
ρ ∈ D(H), where D(H) denotes the set of density operators
acting on H. For the simplest two level quantum syste m (also
called a qubit) D(C2) is isomorphic to a unit sphere in R3

centered at the origin, where points on the surface correspond
to pure states.

An effect e is a linear functional on � that maps each
state onto a probability p(e|ω) representing successful filter
of the effect e on the state ω. Unit effect u is defined as,
p(u|ω) = 1, ∀ ω ∈ �. The set of all linear functionals forms
a convex set embedded in the cone V ∗

+ dual to the state cone
V+. The set of effects is occasionally denoted as �∗ ⊂ V ∗

+ .
A d-outcome measurement M is specified by a collection
of d effects, i.e., M ≡ {e j | ∑

j e j = u}. For every effect e
one can always construct a dichotomic measurement M :=
{e, ē} such that p(e|ω) + p(ē|ω) = 1, ∀ ω ∈ �; ē is called the
complementary effect of e. Likewise the states, effects can
also be characterized as pure and mixed ones. Framework
of GPTs may assume, a priori, that not all mathematically
well-defined states are allowed physical states and not all
mathematically well-defined observables are allowed physical
operations. For example, the set of physically allowed effects
E may be a strict subset of �∗. A theory is called ‘dual’ if it
allows all elements of �∗ as valid effects [46]. In this generic
framework of probabilistic theory, one can define the notion
of distinguishable states.

Definition 1. Members of a set of n states {ωi}n
i=1 ⊂ � are

called distinguishable if they can be perfectly identified in a
single shot measurement, i.e., if there exists an n-outcome
measurement M = {e j | ∑n

j=1 e j = u} such that p(e j |wi) =
δi j .

Not every set of states can be perfectly discriminated.
However, a set of such indistinguishable states can be distin-
guished probabilistically allowing one to define the following
state discrimination task. Suppose one of the states chosen
randomly from the pair {ω1, ω2} ⊂ � is given. The aim is to
optimally guess the correct state while one copy of the system
is provided. Without loss of generality one can perform a two

outcome measurement M = {e1, e2 | e1 + e2 = u} and guess
the state as ωi while the effect ei clicks. The error in guessing
can occur in two ways—effect e1 clicks when the given state
is actually ω2 which happen with probability p12 := p(e1|ω2),
and with p21 := p(e2|ω1) probability effect e2 clicks when
the given state is actually ω1. As the states are chosen with
uniform probability, the total error is therefore pE = 1

2 (p12 +
p21), and hence, the probability of successful guessing is pI =
1 − pE . The measurement that minimizes the error pmin

E :=
minM pE is known as the Helstrom measurement, initially
studied for quantum ensembles in 1970’s [47–49] and more
recently, also studied in the GPT framework [50–53]. While e1

and e2 used in the above discrimination task are mixed effects
in general, however in the Helstrom measurement one of them
is a pure effect.

Remark 1. For any pair of indistinguishable states in a
GPT the measurement that optimally discriminates the states
consists of a pure effect and its complementary effect.

In a GPT a pure state corresponds to the state of maximal
knowledge. While in binary state-discrimination problem, a
pair of such states are given randomly with uniform proba-
bility distribution, it seems that both states should contribute
identically in the error probability of optimal guessing. This
leads us to the following definition.

Definition 2. A GPT is said to satisfy information sym-
metry (IS) if p12 = p21 in pmin

E for every pair of pure states
allowed in that GPT. In orther words, for any pair of pure
states, maximum information about the ensemble is obtained
only if both states contribute symmetrically to this quantity.

Classical theory trivially satisfies IS as all the pure
states are perfectly distinguishable. The classical state
space with d number of perfectly distinguishable states
is a (d − 1)-simplex. In quantum mechanics, there how-
ever exists indistinguishable pure states. For a pair of such
pure states, ψ ≡ |ψ〉 〈ψ | , φ ≡ |φ〉 〈φ| ∈ D(H) the mini-
mum error state discrimination (MESD) is obtained through
Helstrom measurement [47–49]. While ψ and φ are pre-
pared randomly with equal probability, the measurement
M ≡ {Eψ, Eφ | Eψ, Eφ ∈ L+(H) s.t . Eψ + Eφ = I} achiev-
ing MESD is the one consisting of projectors onto the basis
that “straddles” ψ and φ in Hilbert space, and we have
pmin

E = 1
2 (1 −

√
1 − | 〈ψ |φ〉 |2) [44]; L+(H) i s the set of

positive operators on H. Although IS holds true in classical
and quantum theory, we now show that the class of GPTs with
regular polygonal state spaces are not compatible with it.

Regular polygonal state spaces. An associated toy theory
for bipartite systems was first proposed to demonstrate the
possibility of no-signaling theories which can have nonlocal
behavior similar to quantum mechanics [54]. This entails the
need to exclude such theories by providing new physical prin-
ciples. In fact, several successful attempts have been made to
exclude stronger than quantum nonlocal correlations [12–21].
Here we take a different approach. We aim to exclude a large
class of such theories by invoking principle(s) that consider
only the elementary system, i.e., single partite system.

For an elementary system the state space �n is a
regular polygon with n vertices [45,55–60]. For a fixed
n, �n is the convex hull of n pure states {ωi}n−1

i=0 with

ωi := (rn cos( 2π i
n ), rn sin( 2π i

n ), 1)
T ∈ R3; where T denotes
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FIG. 1. State and effect spaces of squit (left) and pentagon (right)
models. Blue dots are the extremal states and red dots denote the ray
extremal effects. Green dots denote extremal effects that are not ray
extremal. In the squit model the effect e1 is scaled up to ẽ1 so that
its tip (black dot) lies on the normalized states space (green surface)
and it can be represented as ẽ1 = u + ê1. In the pentagon model, the
state ω0 and the states ω

(η)
0 := ηω′

0 + (1 − η)ω′′
0 ≡ ηω2 + (1 − η)ω3

are perfectly distinguishable by the dichotomic measurement M ≡=
{e0, ē0}, for all η ∈ [0, 1].

transpose and rn := √
sec(π/n). The unit effect is given

by u := (0, 0, 1)T . The set E of all possible measure-
ment effects consists of convex hull of zero effect, unit
effect, and the extremal effects {ei, ēi}n−1

i=0 , where ei :=
1
2 (rn cos( (2i−1)π

n ), rn sin( (2i−1)π
n ), 1)

T
for even n and ei :=

1
1+rn

2 (rn cos( 2π i
n ), rn sin( 2π i

n ), 1)
T

for odd n.

The pure effects {ei}n−1
i=0 correspond to exposed rays and

consequently the extreme rays of V ∗
+ [44,61]. For odd-gonal

cases, due to self-duality of state cone V+ and its effect cone
V ∗

+ [62] every pure effect ei has one to one ray-correspondence
to the pure state ωi. Consequently, for every pure state ωi there
exist exactly two other pure states ω′

i and ω′′
i such that ωi and

ω̄
(η)
i := ηω′

i + (1 − η)ω′′
i are always perfectly distinguishable

for all η ∈ [0, 1] (see Fig. 1). The discriminating measurement
consists of the effects {ei, ēi} such that p(ei|ωi ) = 1 and
p(ei|ω̄(η)

i ) = 0. The effects {ēi}n−1
i=0 are extremal elements of

E but they are not ray extremal, i.e., they do not lie on
an extremal ray of the cone V ∗

+ [63]. For an even-gon, the
scenario is quite different as the self duality between V+ and
V ∗

+ is absent. Here, all the ei’s and their complementary effects
ēi’s correspond to extreme rays of V ∗

+ .
Every ray-extremal effect e generates an extreme ray λe

for the cone V ∗
+ , where λ � 0. With proper choice of λ

any such e can be scaled up to a new ẽ ≡ λe, such that
the tip of this scaled effect vector ẽ lies on the normalized
state plane. Let us consider a particular direct sum decom-
position of the space R3, i.e., R3 = Ru ⊕ V̂ , where V̂ is a
two-dimensional subspace of R3 parallel to the X -Y plane.
This allows a particular representation of ẽ in the following
way ẽ = u + ê, where ê ∈ V̂ . Similarly, every ω ∈ � has a
representation ω = u + ŵ, with ŵ ∈ V̂ (see Fig. 1). In this
representation, the outcome probability of the effect e on the
state ω reads p(e|w) = λp(ẽ|ω) = λ(u + ê).(u + ω̂) = λ(1 +
ê.ω̂) [64], where dot represents euclidean inner-product in
Rn. Set of the vectors ω̂ corresponding to the states ω ∈ �

FIG. 2. Absolute difference between p and p̄ is plotted against
m � 2, m ∈ Z, where �(2m+1) is the corresponding odd-gon state
space. Inset depicts magnified plot for higher values of m.

forms a convex-compact set Ŵs ⊂ V̂ . For the n-gonal case,
norm of these vectors satisfy the bound ||ω̂||2 � rn with
exactly n vectors saturating the bound. Similarly the vectors
ê forms another convex-compact set Ŵe ⊂ V̂ and ||ê||2 � rn

with exactly n vectors saturating the bound. Self-duality for
the odd-gonal cases imply Ŵs = Ŵe which is not the case for
even n.

Theorem 1. GPTs with state space �n with n > 3 (for odd
n) and with n > 4 (for even n) are not compatible with IS.

Proof. Let us first consider an n-gonal state space with
odd n and n > 3. Without loss of generality, consider the
two neighboring states ω0, ω1 ∈ �n. According to Remark
1 the measurement that optimally discriminate these states
consists of one of the effects corresponding to the vectors
ên−k ∈ Ŵe such that ||ên−k||2 = rn, with k ∈ {0, · · · , n − 1}
and its complementary effects. With such a measurement the
error reads as

pE = 1

2

[
1 + 1

1 + r2
n

ên−k .(ω̂0 − ω̂1)

]
. (1)

Let us denote the angle between ên−k and (ω̂0 − ω̂1) as θk . It
is evident from (1) that for minimal error k should be chosen
in a way that |θk − π | → 0. However, the self-duality of
odd-gonal theory demands that θk = π

2 + (2k + 1)π
n . Then, a

straightforward calculation shows that minimal error discrim-
ination is achieved for k = [ n

4 ]. For this optimal measurement,
probability of clicking en−k when the input state is ω0 is
given by p = 1

1+r2
n
[1 + r2

n cos{ 2π
n (k + 1)}] and probability of

clicking ēn−k on ω1 is given by p̄ = r2
n

1+r2
n
[1 − cos( 2π

n k)]. An
elementary trigonometric argument ensures that the probabil-
ities p and p̄ are not same for any �n, with odd n and n � 3.
The absolute difference of these two probabilities, however,
decreases with increasing n (see Fig. 2).

The proof for the even-gonal case is similar to the odd-
gonal case. We provide the detailed proof in Ref. [44]. �

We have shown that all polygonal state spaces �n, with
n � 5 are incompatible with IS. Now the question arises as
to what happens for n = 4 which corresponds to the marginal
state space of the most general two-input-two output bipar-
tite NS correlations. This state apace is also known by the
name squit whose center corresponds to the marginal state of
the famous Popescu-Rohrlich correlation [54]. Here we have
the following observation about squit state space.
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Observation 1. Any pair of pure states in squit can be
discriminated perfectly.

It is possible to generalize IS that applies to the ensemble of
mixed states. A GPT is said to be compatible with generalized
information symmetry (GIS) if every pair of states each
having identical minimal type subjective ignorance can be
optimally discriminated with symmetric error measurement.
While a pure state is the state of maximal knowledge, i.e.,
contains no subjective ignorance, a state ω is said to have
minimal type subjective ignorance if it allows a convex de-
composition in terms of two distinguishable pure states, i.e.,
ω = pωi + (1 − p)ω j for some perfectly distinguishable pair
of pure states ωi and ω j . Two such states ω = pωl + (1 −
p)ω j and ω′ = qωk + (1 − q)ωl are said to have identical
subjective ignorance when p = q. It turns out that squit state
space does not satisfy GIS while quantum theory is perfectly
compatible with GIS [44].

Discussions. The newly identified symmetric primitive,
namely, the information symmetry, has important implications
in the axiomatic derivation of Hilbert space quantum mechan-
ics as it puts nontrivial restrictions on the state space structure
of generalized probabilistic models. While the state space
of quantum theory is perfectly compatible with IS, we find
that the polygonal state spaces do not satisfy this elementary
symmetry condition, or its generalized version.

In this context, it is worth mentioning a couple of other
features of the structure of GPTs, which though interesting,
are not powerful enough to exclude various categories of
models while allowing for quantum and classical mechanics
in the manner of IS. First, the notion of logical bit-symmetry
[33] imparts self-duality on the state space leading to the
exclusion of even-gonal state spaces only, but not the odd-
gonal ones [45]. Secondly, polygonal state spaces lack well
defined purification for all states [65]. However, the state
space of the classical bit also lacks this particular property,

whereas it satisfies IS. On the other extreme, the “toy bit”
model of Spekkens [66] does not satisfy IS though it may
allow well defined purification [44].

To summarize, IS imparts a remarkable restriction on the
state space structure, excluding all regular polygonal state
spaces as well as the Spekkens model, thus representing a
more stringent structural constraint compared to self-duality.
Moreover, unlike bit-symmetry, IS assumes no constraint
on the dynamics of the theory. Before concluding, note that
though it can be shown that the state space of the bipartite
NS box with a Bell measurement is equivalent to a Bloch
ball [39], the formulation of IS is more general and does not
involve any structure from composite systems. Finally, it may
be interesting to explore implications of IS on other state
space structures as well as generalizations of IS for ensembles
prepared with bias.
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