
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 4, pp. 1529–1546

RANKING ON ARBITRARY GRAPHS: REMATCH VIA
CONTINUOUS LINEAR PROGRAMMING∗

T-H. HUBERT CHAN† , FEI CHEN† , XIAOWEI WU† , AND ZHICHAO ZHAO†

Abstract. Motivated by online advertisement and exchange settings, greedy randomized al-
gorithms for the maximum matching problem have been studied, in which the algorithm makes
(random) decisions that are essentially oblivious to the input graph. Any greedy algorithm can
achieve a performance ratio of 0.5, which is the expected number of matched nodes to the num-
ber of nodes in a maximum matching. Since Aronson, Dyer, Frieze, and Suen [Random Structures
Algorithm, 6 (1991), pp. 29–46] proved that the modified randomized greedy algorithm achieves a
performance ratio of 0.5 + ε (where ε = 1

400000
) on arbitrary graphs in the midnineties, no further

attempts in the literature have been made to improve this theoretical ratio for arbitrary graphs
until two papers were published in FOCS 2012 [G. Goel and P. Tripathi, IEEE Computer Society,
Los Alamitos, CA, 2012, pp. 718–727; M. Poloczek and M. Szegedy, IEEE Computer Society, Los
Alamitos, CA, 2012, pp. 708–717]. In this paper, we revisit the ranking algorithm using the linear
programming framework. Special care is given to analyze the structural properties of the ranking
algorithm in order to derive the linear programming constraints, of which one known as the boundary
constraint requires totally new analysis and is crucial to the success of our linear program (LP). We
use continuous linear programming relaxation to analyze the limiting behavior as the finite LP grows.
Of particular interest are new duality and complementary slackness characterizations that can handle
the monotone and the boundary constraints in continuous linear programming. Improving previous

work, this paper achieves a theoretical performance ratio of
2(5−

√
7)

9
≈ 0.523 on arbitrary graphs.
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1. Introduction. Maximum matching [16] in undirected graphs is a classical
problem in computer science. However, as motivated by online advertising [8, 2] and
exchange settings [18], information about the graphs can be incomplete or unknown.

As mentioned in [9], an example of this setting is the kidney exchange prob-
lem [18], in which an incompatible patient-donor pair is represented by a node. A
probe between two nodes corresponds to testing whether swapping between the two
pairs can allow both patients to have compatible donors, in which case an edge exists
between the two nodes. Due to cost and ethical concerns, it is preferable that an ex-
change is performed whenever two such compatible patient-donor pairs are discovered.
Hence, the procedure is greedy in nature.

Other online or greedy versions of matching problems [5, 17, 9] can also be for-
mulated by the following problem, in which the algorithm is initially oblivious to the
input graph.

Oblivious Matching Problem. An adversary commits to a graph G(V,E) and re-
veals the nodes V (where n = |V |) to the (possibly randomized) algorithm, while
keeping the edges E secret. The algorithm returns a list L that gives a permutation
of the set

(
V
2

)
of unordered pairs of nodes. Each pair of nodes in G is probed according
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1530 HUBERT CHAN, CHEN, WU, AND ZHAO

to the order specified by L to form a matching greedily. In the round when a pair
e = {u, v} is probed, if both nodes are currently unmatched and the edge e is in E,
then the two nodes will be matched to each other; otherwise, we skip to the next pair
in L until all pairs in L are probed. The goal is to maximize the performance ratio
of the (expected) number of nodes matched by the algorithm to the number of nodes
in a maximum matching in G.

Observe that any ordering of the pairs
(
V
2

)
will result in a maximal matching in

G(V,E), giving a trivial performance ratio of at least 0.5. However, for any determin-
istic algorithm, the adversary can choose a graph such that the ratio 0.5 is attained.
The interesting question is: how much better can randomized algorithms perform on
arbitrary graphs? For bipartite graphs, there are theoretical analyses of randomized
algorithms [12, 15] achieving ratios better than 0.5.

The Ranking algorithm (an early version appeared in [13]) is simple to describe:
a permutation σ on V is selected uniformly at random and, naturally, induces a
lexicographical order on the unordered pairs in

(
V
2

)
used for probing. Although, by

experiments, the Ranking algorithm and other randomized algorithms seem to achieve
performance ratios much larger than 0.5, until very recently, the best theoretical
performance ratio 0.5 + ε (where ε = 1

400000 ) for the problem on arbitrary graphs was
proved in the midnineties by Aronson et al. [5], who analyzed the Modified Randomized
Greedy algorithm (MRG). In the MRG algorithm, in addition to choosing the random
permutation that decides the ordering of nodes to be probed, an extra independent
random permutation is chosen for every node in the graph.

After more than a decade of research, two papers were published in FOCS 2012
that attempted to give theoretical ratios significantly better than the 0.5 + ε bound.
Poloczek and Szegedy [17] also analyzed the MRG algorithm to give a ratio 0.5+ 1

256 ≈
0.5039. Goel and Tripathi [9] analyzed the Ranking algorithm and claimed the ratio
0.56 can be achieved, but they later realized that there was a crucial bug in their
proof, and announced the withdrawal of the paper on arXiv [10]. Both papers used
a common framework which has been successful for analyzing bipartite graphs: (i)
utilize the structural properties of the matching problem to form a minimization linear
program that gives a lower bound on the performance ratio; (ii) analyze the linear
probram (LP) theoretically and/or experimentally to give a lower bound.

In this paper, we revisit the Ranking algorithm using the same framework: (i)
we use novel techniques to carefully analyze the structural properties of Ranking for
producing new linear programming constraints; (ii) moreover, we develop new primal-
dual techniques for continuous LPs to analyze the limiting behavior as the finite LP
grows. Of particular interest are new duality and complementary slackness results
that can handle monotone constraints and boundary conditions in continuous linear
programming. Compared to previous work, our paper achieves the best theoreti-

cal performance ratio of 2(5−
√
7)

9 ≈ 0.523 on arbitrary graphs. As a side note, our
experiments suggest that Ranking cannot perform better than 0.724 in general.

1.1. Our contribution and techniques. We show the following main result
in this paper.

Theorem 1. For the Oblivious Matching Problem on arbitrary graphs, the Ranking

algorithm achieves a performance ratio of at least 2(5−
√
7)

9 ≈ 0.523.

Following previous work on the analysis of Ranking [13], we consider a set U of
instances, each of which has the form (σ, u), where σ is a permutation on V and u is
a node in V . An instance (σ, u) is good if the node u is matched when Ranking is run
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RANKING ON ARBITRARY GRAPHS 1531

with σ, and bad otherwise; an event is a subset of instances. As argued in [17, 9], one
can assume that G contains a perfect matching when analyzing the ratio of Ranking.
Hence, the performance ratio of Ranking is the fraction of good instances.

(1) Relating bad and good events to form linear programming constraints. A
simple combinatorial argument [13] is often used to relate bad and good instances.
For example, if each bad instance relates to at least two good instances, and each
good instance is related to at most one bad instance, then the fraction of good in-
stances would be at least 2

3 . By considering the structural properties of Ranking, one
can define various relations between different bad and good events, and hence can
generate various constraints in an LP, whose optimal value gives a lower bound on
the performance ratio. Despite the simplicity of this combinatorial argument, the
analysis of these relations can be elusive for arbitrary graphs.

We define and analyze our relations carefully to derive three type of constraints:
monotone constraints, evolving constraints, and a boundary constraint, the last of
which involves a novel construction of a sophisticated relation, and is crucial to the
success of our LPn.

(2) Developing new primal-dual techniques for continuous linear programming. As
in previous works, the optimal value of LPn decreases as n increases. Hence, to obtain
a theoretical proof, one needs to analyze the asymptotic behavior of LPn. It could be
tedious to find the optimal solution of LPn and investigate its limiting behavior. One
could also use experiments (for example, using strongly factor-revealing LPs [15]) to
give a proof. We instead observe that LPn has a continuous LP∞ relaxation (in which
normal variables become a function variable). However, the monotone constraints in
LPn require that the function in LP∞ be monotonically decreasing. Moreover, the
boundary constraint has its counterpart in LP∞. Contrary to previous work [15], the
method of continuous relaxation avoids the computation of an additional strongly
factor-revealing LP to bound the factor-revealing LP. To the best of our knowledge,
such continuous LPs have not been analyzed in the literature.

We describe our formal notation in section 2. In section 3, we relate bad and
good events in order to form LPn. In section 4, we prove a lower bound on the perfor-
mance ratio; in particular, we develop new primal-dual and complementary slackness
characterizations for a general class of continuous linear programming, and solve the
continuous LP∞ relaxation (and its dual). In section 5, we describe a hard instance
and our experiments suggest that Ranking performs no better than 0.724 in general.

1.2. Related work. We describe and compare the most relevant related work.
Please refer to the references in [17, 9] for a more comprehensive background on the
problem. We describe Oblivious Matching Problem general enough so that we can
compare different works that are studied under different names and settings. Dyer
and Frieze [6] showed that picking a permutation of unordered pairs uniformly at
random cannot produce a constant ratio that is strictly greater than 0.5. On the
other hand, this framework also includes the MRG algorithm, which was analyzed by
Aronson et al. [5] to prove the first nontrivial constant performance ratio crossing
the 0.5 barrier. One can also consider adaptive algorithms in which the algorithm
is allowed to change the order in the remaining list after seeing the probing results;
although hardness results have been proved for adaptive algorithms [9], no algorithm
in the literature seems to utilize this feature yet.

On bipartite graphs. Running Ranking on bipartite graphs for the Oblivious Match-
ing Problem is equivalent to running ranking [13] for the Online Bipartite Matching
problem with random arrival order [12]. From Karande, Mehta, and Tripathi [12],
one can conclude that Ranking achieves a ratio of 0.653 on bipartite graphs. Moreover,
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1532 HUBERT CHAN, CHEN, WU, AND ZHAO

they constructed a hard instance in which Ranking performs no better than 0.727; we
modify their hard instance and our experiments suggests that Ranking performs no
better than 0.724.

On a high level, most works on analyzing Ranking or similar randomized algo-
rithms on matching are based on variations of the framework by Karp, Vazirani, and
Vazirani [13]. The basic idea is to relate different bad and good events to form con-
straints in an LP, whose asymptotic behavior is analyzed when n is large. For Online
Bipartite Matching, Karp, Vazirani, and Vazirani [13] showed that ranking achieves a
performance ratio of 1 − 1

e ; similarly, Aggarwal et al. [2] also showed that a modi-
fied version of Ranking achieves the same ratio for the node-weighted version of the
problem.

Sometimes very sophisticated mappings are used to relate different events, and
produce linear programs whose asymptotic behavior is difficult to analyze. Mahdian
and Yan [15] developed the technique of strongly factor-revealing LP. The idea is to
consider another family of linear programs whose optimal values are all below the
asymptotic value of the original LP. Hence, the optimal value of any LP (usually a
large enough instance) in the new family can be a lower bound on the performance
ratio. The results of [15] imply that for the Oblivious Matching Problem on bipartite
graphs, Ranking achieves a performance ratio of 0.696.

Recent attempts. No attempts have been made in the literature to theoretically
improve the 0.5 + ε ratio for arbitrary graphs until two recent papers appeared in
FOCS 2012. Poloczek and Szegedy [17] used a technique known as contrast analysis
to analyze the MRG algorithm and gave a ratio of 1

2 + 1
256 ≈ 0.5039. However, we

discover some gaps in their proof; from personal communication with the authors, we
are told that they are currently bridging those gaps at the time of writing.

Goel and Tripathi [9] showed a hardness result of 0.7916 for any algorithm and 0.75
for adaptive vertex-iterative algorithms. They also analyzed the Ranking algorithm
for a better performance ratio, but later withdrew the paper [10] when they discovered
a bug in their proof.

Continuous LPs. Duality and complementary slackness properties of continuous
LPs were investigated by Tyndall [19] and Levinson [14]. Anand, Garg, and Kumar [4]
used continuous LP relaxation to analyze online scheduling.

1.3. Subsequent work. Since the conference version of this paper was pub-
lished, there have been subsequent works in this line of research.

In a follow-up paper [1], the node-weighted version of the Oblivious Matching
Problem was considered and the first performance ratio strictly above 0.5 has been
achieved. Interestingly, it was shown in [1] that applying the techniques developed
for the node-weighted case to the unweighted case, the performance analysis of the
Ranking algorithm can be slightly improved to 0.5268.

Wang and Wong [20] considered the online fractional matching problem in gen-
eral graphs (with arbitrary arrival order of nodes), and achieved a 0.526 competitive
algorithm.

The online bipartite matching problem with random arrival of edges was consid-
ered in [11]. Indeed, they studied a more general online matroid intersection problem,
and achieved the first competitive ratio strictly above 0.5 by a randomized algorithm.

Similarly to the continuous relaxation techniques used in this paper, Alaei et al. [3]
considered a continuous optimization problem to achieve the worst case approximation
factor of anonymous pricing in certain auction settings.

We discuss further future research directions in section 6.
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RANKING ON ARBITRARY GRAPHS 1533

2. Preliminaries. Let [n] := {1, 2, . . . , n}, [a..b] := {a, a+ 1, . . . , b} for 1 ≤ a ≤
b, and Ω be the set of all permutations of the nodes in V , where each permutation is
a bijection σ : V → [n]. The rank of node u in σ is σ(u), where smaller rank means
higher priority.

The Ranking algorithm. For the Oblivious Matching Problem, the algorithm selects
a permutation σ ∈ Ω uniformly at random, and returns a list L of unordered pairs
according to the lexicographical order induced by σ. Specifically, given two pairs e1
and e2 (where for each i, ei = {ui, vi} and σ(ui) < σ(vi)), the pair e1 has higher
priority than e2 if (i) σ(u1) < σ(u2), or (ii) u1 = u2 and σ(v1) < σ(v2). Each pair
of nodes in G(V,E) is probed according to the order given by L; initially, all nodes
are unmatched. In the round when the pair e = {u, v} is probed, if both nodes are
currently unmatched and the edge e is in E, then each of u and v is matched, and
they are each other’s partner in σ; moreover, if σ(u) < σ(v) in this case, we say that
u chooses v. Otherwise, if at least one of u and v is already matched or there is no
edge between them in G, we skip to the next pair in L until all pairs in L are probed.

After running Ranking with σ (or, in general, probing with list L), we denote the
resulting matching by M(σ) (or M(L)), and we say that a node is matched in σ (or
L) if it is matched in M(σ) (or M(L)). Given a probing list L, let Lu denote the
probing list obtained by removing all occurrences of u in L such that u always remains
unmatched. The following lemma is similar to [9, Claim 1] and [17, Lemma 3]. We
present here a formal proof for completeness.

Lemma 2 (removing one node). The symmetric difference M(L)⊕M(Lu), i.e.,
the set of edges that appear in exactly one of M(L) and M(Lu), is an alternating path
consisting of edges alternating between M(L) and M(Lu). This path contains at least
one edge iff u is matched in L.

Proof. Observe that probing G with Lu is equivalent to probing Gu with L, where
Gu is exactly the same as G except that the node u is labeled occupied and will not
be matched in any case. Hence, we will use the same L to probe G and Gu, and
compare what happens in each round to the corresponding matchings M = M(L)
and Mu = M(Lu). For the sake of this proof, “occupied” and “matched” nodes
are considered to be “unavailable” and have the same availability status, while an
“unmatched” node is considered to be “available.”

We apply induction on the number of rounds of probing. Observe that the follow-
ing invariants hold initially. (i) There is exactly one node known as the crucial node
(which is initially u) that has different availability in G and Gu. (ii) The symmetric
difference M(L) ⊕M(Lu) is an alternating path connecting u to the crucial node;
initially, this path is degenerate.

Consider the inductive step. Observe that the crucial node and M(L) ⊕M(Lu)
do not change in a round except for the case when the pair being probed is an edge in
G (and Gu), involving the crucial node w with another currently unmatched node v in
G. Observe that in this case, v is also unmatched in Gu, as the induction hypothesis
states that every other node apart from the crucial node has the same availability in
both graphs. Hence, this edge is added to exactly one of M and Mu. Therefore, w
is unavailable in both graphs (so no longer crucial), and v becomes the new crucial
node; moreover, the edge {w, v} is added to M(L) ⊕M(Lu), which now is a path
connecting u to v. This completes the inductive step.

Observe that u is matched in M in the end, iff in some round an edge involving
u must be added to M but not to Mu, which is equivalent to the case when M ⊕Mu

contains at least one edge.
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1534 HUBERT CHAN, CHEN, WU, AND ZHAO

The performance ratio r of Ranking on G is the expected number of nodes matched
by the algorithm to the number of nodes in a maximum matching in G, where the
randomness comes from the random permutation in Ω. We consider the set U := Ω×V
of instances; an event is a subset of instances. An instance (σ, u) ∈ U is good if u is
matched in σ, and bad otherwise.

Perfect matching assumption. According to Corollary 2 of [17] (and also implied
by our Lemma 2), without loss of generality, we can assume that the graph G(V,E)
has a perfect matching M∗ ⊆ E that matches all nodes in V . For a node u, we denote
by u∗ the partner of u in M∗ and we call u∗ the perfect partner of u. From now on, we
consider Ranking on such a graph G without mentioning it explicitly again. Observe
that for all σ ∈ Ω, (σ, σ−1(1)) is always good; moreover, the performance ratio is the
fraction of good instances.

Definition 3 (σu, σiu). For a permutation σ, let σu be the permutation obtained
by removing u from σ while keeping the relative order of other nodes unchanged;
running Ranking with σu means running σ while keeping u always unavailable (or
simply deleting u in G). Let σiu be the permutation obtained by inserting u into σu at
rank i and keeping the relative order of other nodes unchanged.

Fact 1 (Ranking is greedy). Suppose Ranking is run with permutation σ. If u
is unmatched in σ, then each neighbor w of u (in G) is matched to some node v in σ
with σ(v) < σ(u).

Similarly to [17, Lemma 3], the following fact is an easy corollary of Lemma 2,
by observing that if (σ, u) is bad, then M(σ) = M(σu).

Fact 2 (symmetric difference). Suppose (σ, u) is bad, and (σiu, u) is good for
some i. Then, the symmetric difference M(σ)⊕M(σiu) is an alternating path P with
at least one edge, where except for the endpoints of P (of which u is one), every other
node in G is either matched in both σ and σiu, or unmatched in both.

We adopt the following definitions as used in [2] for the Online Bipartite Matching
problem.

Definition 4 (Qt, Rt, and St). For each t ∈ [n], let Qt be the good event that the
node at rank t is matched, where Qt := {(σ, u) : σ ∈ Ω, u = σ−1(t) is matched in σ};
similarly, let Rt be the bad event that the node at rank t is unmatched, where Rt :=
{(σ, u) : σ ∈ Ω, u = σ−1(t) is unmatched in σ}.

Moreover, we define the marginally bad event St at rank t ∈ [2..n] by St :=
{(σ, u) ∈ Rt : (σt−1u , u) /∈ Rt−1}; observe that S1 = R1 = ∅.

Given any (σ, u) ∈ U , the marginal position of u with respect to σ is the (unique)
rank t such that (σtu, u) ∈ St, and is null if no such t exists.

Note that for each t ∈ [n], Qt and Rt are disjoint and |Qt ∪Rt| = n!.

Definition 5 (xt, αt). For each t ∈ [n], let xt = |Qt|
n! be the probability that a

node at rank t is matched, over the random choice of permutation σ. Similarly, we

let αt = |St|
n! ; observe that 1− xt = |Rt|

n! .

Note that the performance ratio is 1
n

∑n
t=1 xt, which will be the objective function

of our minimization LP. Observe that all xt’s and αt’s are between 0 and 1, and x1 = 1
and α1 = 0. We derive constraints for the variables in the next section.

3. Relating bad and good events to form linear programming con-
straints. In this section we define some relations between bad and good events to
form linear programming constraints. The high level idea is as follows. Suppose f is
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a relation between A and B, where f(a) is the set of elements in B related to a ∈ A,
and f−1(b) is the set of elements in A related to b ∈ B. The injectivity of f is the
minimum integer q such that for all b ∈ B, |f−1(b)| ≤ q. If f has injectivity q, we
have the inequality

∑
a∈A |f(a)| ≤ q|B|, which follows from counting the number of

edges in the bipartite graph induced by f on A and B. In our constructions, usually
calculating |f(a)| is straightforward, but sometimes special attention is required to
bound the injectivity.

3.1. Monotone constraints: xt−1 ≥ xt, t ∈ [2..n]. These constraints follow
immediately from Lemma 6, which is similar to [2, Claim 2] (for bipartite graphs), as
the αt’s are nonnegative. The constraints say that nodes with smaller ranks are more
likely to be matched (over the choice of random permutations).

Lemma 6 (bad–to–marginally-bad). For all t ∈ [n], we have 1− xt =
∑t
i=1 αi;

this implies that for t ∈ [2..n], xt−1 − xt = αt.

Proof. Fix t ∈ [n]. From the definitions of xt and αt, it suffices to provide a
bijection f from Rt to ∪ti=1Si. Suppose (σ, u) ∈ Rt. This means (σ, u) is bad, and
hence u has a marginal position tu ≤ t with respect to σ. We define f(σ, u) :=
(σtuu , u) ∈ ∪ti=1Si.

Surjective: for each (ρ, v) ∈ ∪ti=1Si, the marginal position of v with respect to ρ
is some i ≤ t; hence, it follows that (ρtv, v) ∈ Rt is bad, and we have f(ρtv, v) = (ρ, v).

Injective: if we have f(σ, u) = (ρ, v), it must be the case that u = v, σ(u) = t,
and ρ = σiu for some i; this implies that σ must be ρtv.

Hence, |Rt| = | ∪ti=1 Si| =
∑t
i=1 |Si|, which is equivalent to 1 − xt =

∑t
i=1 αi if

we divide the equation by n! on both sides.

3.2. Evolving constraints:
(
1− t−1

n

)
xt +

2
n

∑t−1
i=1 xi ≥ 1, t ∈ [2..n]. The

monotone constraints require that the xt’s do not increase. We next derive the evolv-
ing constraints that prevent the xt’s from dropping too fast. Fix t ∈ [2..n]. We shall
define a relation f between ∪ti=1Si and ∪t−1i=1Qi such that f has injectivity 1, and for
(σ, u) ∈ Si, |f(σ, u)| = n − i + 1. This implies Lemma 7; from Lemma 6, we can
express αi = xi−1−xi (recall α1 = 0), and rearrange the terms to obtain the required
constraint.

Proof intuition. Given a bad instance (σ, u) ∈ Rt, the perfect partner u∗ must be
matched to some node v such that σ(v) < t. Hence, demoting the rank of u further to
[t..n] will produce the same matching, and u∗ will still be matched to the same v. If
the graph is bipartite, then after promoting the rank of u, it can be shown that u∗ will
be matched to some node (perhaps a different one) with rank in [1..t− 1]. Therefore,

if the graph is bipartite, we could have produced the constraint 1− xt ≤ 1
n

∑t−1
i=1 xi,

which would lead to a performance ratio of 1− 1
e .

However, for general graphs, promoting the rank of u might cause its perfect
partner u∗ to become unmatched. Hence, we can only derive a weaker evolving
constraint that is obtained by considering only demotion of an unmatched node.

Lemma 7 (1-to-(n−i+1) mapping). For all t ∈ [2..n], we have
∑t
i=1(n−i+1)αi

≤
∑t−1
i=1 xi.

Proof. Let (σ, u) ∈ ∪ti=1Si be a marginally bad instance. Then, there exists a
unique i ∈ [2..t] such that (σ, u) ∈ Si. If we move u to any position j ∈ [i..n], (σju, u)
is still bad, because i is the marginal position of u with respect to σ. Moreover,
observe that M(σu) = M(σ) = M(σju) for all j ∈ [i..n].
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1536 HUBERT CHAN, CHEN, WU, AND ZHAO

Hence, it follows that for all j ∈ [i..n], node u’s perfect partner u∗ is matched in
σju to the same node v such that σ(v) = σju(v) ≤ i−1 ≤ t−1, where the first inequality
follows from Fact 1. In this case, we define f(σ, u) := {(σju, v) : j ∈ [i..n]} ⊂ ∪t−1i=1Qi,
and it is immediate that |f(σ, u)| = n− i+ 1.

Injectivity. Suppose (ρ, v) ∈ ∪t−1i=1Qi is related to some (σ, u) ∈ ∪ti=1Si. It follows
that v must be matched to u∗ in ρ; hence, u is uniquely determined by (ρ, v). More-
over, (ρ, u) must be bad, and suppose the marginal position of u with respect to ρ
is i, which is also uniquely determined. Then, it follows that σ must be ρiu. Hence,
(ρ, v) can be related to at most one element in ∪ti=1Si.

Observing that S1 = ∅, the result follows from

t∑
i=1

(n− i+ 1)|Si| =
∑

a∈∪t
i=1Si

|f(a)| ≤ | ∪t−1i=1 Qi| =
t−1∑
i=1

|Qi|,

since |Si| = n!αi and |Qi| = n!xi.

3.3. Boundary constraint: xn + 3
2n

∑n
i=1 xi ≥ 1. One can check (for in-

stance, by experiments) that the monotone and the evolving constraints alone cannot
give a ratio better than 0.5. Indeed, by setting xt = n−t+1

n for all t ∈ [n], all previous
constraints are satisfied while the performance ratio is 1

2 + 1
2n .

However, it can be observed (for instance, by experiments) that given the mono-
tone and evolving constraints, we have

∑t
i=1 xi ≥

∑t
i=1

n−t+1
n . Hence, in some sense,

the above solution is the “worst” possible. Hence, as long as we can show that xn ≥ δ
for some small constant δ > 0, we can achieve a performance ratio strictly larger
than 0.5.

The boundary constraint provides such a lower bound in terms of the performance
ratio, i.e., xn is lower bounded by some constant whenever the performance ratio is
strictly smaller than 2

3 . The boundary constraint is crucial to the success of our LP,
and hence we analyze our construction carefully.

The high level idea is that we define a relation f between Rn and Q := ∪ni=1Qi.
As we shall see, it will be straightforward to show that |f(a)| = 2n for each a ∈
Rn, but it will require some work to show that the injectivity is at most 3. Once
we have established these results, the boundary constraint follows immediately from∑
a∈Rn

|f(a)| ≤ 3|Q|, because |Rn|
n! = 1− xn and |Qi|

n! = xi.

Defining relation f between Rn and Q. Consider a bad instance (σ, u) ∈ Rn. We
define f(σ, u) such that for each i ∈ [n], (σ, u) produces exactly two good instances of
the form (σiu, ∗).

For each i ∈ [n], we consider σiu:
1. if u is unmatched in σiu: (u and u∗ cannot be both unmatched):

R(1): produce (σiu, u
∗) and include it in f(σ, u);

R(2): let v be the partner of u∗ in σiu; produce (σiu, v) and include it in
f(σ, u).

2. if u is matched in σiu:
R(3): produce (σiu, u) and include it in f(σ, u);
(a) if u∗ is matched to u in σiu:

R(4): produce (σiu, u
∗) and include it in f(σ, u);

(b) if u∗ is matched to v 6= u in σiu:
R(5): produce (σiu, v) and include it in f(σ, u);

(c) if u∗ is unmatched in σiu: (all neighbors of u∗ in G must be
matched):
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RANKING ON ARBITRARY GRAPHS 1537

R(6): let vo be the partner of u∗ in σ, produce (σiu, vo) and include it in
f(σ, u).

Observe that for k ∈ [6], applying each rule R(k) produces exactly one good
instance. Moreover, for each i ∈ [n], when we consider σiu, exactly 2 rules will be
applied: if u is unmatched in σiu, then R(1) and R(2) will be applied; if u is matched
in σiu, then R(3) and one of R(4),R(5),R(6)} will be applied.

Observation 1. For each (σ, u) ∈ Rn, we have |f(σ, u)| = 2n.

Observation 2. If (ρ, x) ∈ f(σ, u), then σ = ρnu and exactly one rule can be applied
to (σ, u) to produce (ρ, x).

Bounding injectivity. We first show that different bad instances in Rn cannot
produce the same good instance using the same rule.

Lemma 8 (rule injectivity). For each k ∈ [6], any (ρ, x) ∈ Q can be produced by
at most one (σ, u) ∈ Rn using R(k).

Proof. Suppose (ρ, x) ∈ Q is produced using a particular rule R(k) by some
(σ, u) ∈ Rn. We wish to show that in each case k ∈ [6], we can recover u uniquely, in
which case σ must be ρnu.

The first 5 cases are simple. Let y be the partner of x in ρ. If k = 1 or k = 4, we
know that x = u∗ and hence we can recover u = x∗; if k = 2 or k = 5, we know that
y = u∗ and hence we can recover u = y∗; if k = 3, we know that u = x.

For the case when k = 6, we need to do a more careful analysis. Suppose R(6)
is applied to (σ, u) ∈ Rn to produce (ρ, x). Then, we can conclude the following: (i)
in σ = ρnu, u is unmatched, and u∗ is matched to x; (ii) in ρ, u is matched, u∗ is
unmatched, and x is matched.

For contradiction’s sake, assume that u is not unique and there are two u1 6= u2
that satisfy the above properties. It follows that u∗1 6= u∗2 and according to property
(ii), in ρ, both u1 and u2 are matched, and both u∗1 and u∗2 are unmatched; hence, all
4 nodes are distinct. Without loss of generality, we assume that ρ(u∗1) < ρ(u∗2). Let
σ2 := ρnu2

, and observe that σ2(u∗1) < σ2(u∗2).
Now, suppose we start with σ2, and consider what happens when u2 is promoted

in σ2 resulting in ρ. Observe that u2 changes from unmatched in σ2 to matched in
ρ, and by property (i), u∗2 changes from matched in σ2 to unmatched in ρ. From
Fact 2, every other node must remain matched or unmatched in both σ2 and ρ; in
particular, u∗1 is unmatched in σ2. However, x is a neighbor of both u∗1 and u∗2 (in G),
and σ2(u∗1) < σ2(u∗2), but x is matched to u∗2 in σ2; this contradicts Fact 1.

Lemma 8 immediately implies that the injectivity of f is at most 6. However,
to show a better bound of 3, we need to show that some of the rules cannot be
simultaneously applied to produce the same good instance (ρ, x). We consider two
cases for the remaining analysis.

Case (1): x is matched to x∗ in ρ.

Lemma 9. For (ρ, x) ∈ Q, if x is matched to x∗ in ρ, then we have |f−1(ρ, x)| ≤ 3.

Proof. If (ρ, x) is produced using R(1), then x∗ must be unmatched in ρ; if (ρ, x)
is produced by (σ, u) using R(2), then x must be matched to u∗ (6= x∗) in ρ since
x 6= u; similarly, if (ρ, x) is produced by (σ, u) using R(5), then x ( 6= u) must be
matched to u∗ (6= x∗) in ρ.

Hence, (ρ, x) cannot be produced by R(1), R(2), or R(5), and at most three
remaining rules can produce it. It follows from Lemma 8 that |f−1(ρ, x)| ≤ 3.
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1538 HUBERT CHAN, CHEN, WU, AND ZHAO

Case (2): x is not matched to x∗ in ρ.

Observation 3 (unused rule). For (ρ, x) ∈ Q, if x is not matched to x∗ in ρ, then
(ρ, x) cannot be produced by applying R(4).

Out of the remaining 5 rules, we show that (ρ, x) can be produced from at most
one of {R(2),R(5)}, and at most two of {R(1),R(3),R(6)}. After we show these
two lemmas, we can immediately conclude from Lemma 8 that |f−1(ρ, x)| ≤ 3 and
complete the case analysis.

Lemma 10 (one in R(2),R(5)). Each (ρ, x) ∈ Q cannot be produced from both
R(2) and R(5).

Proof. Suppose the opposite is true: (σ1, u1) produces (ρ, x) according to R(2),
and (σ2, u2) produces (ρ, x) according to R(5). This implies that in ρ, x is matched
to both u∗1 and u∗2, which means u1 = u2. By Observation 2, this means σ1 = σ2,
which contradicts the fact that the same (σ, u) ∈ Rn cannot use two different rules to
produce the same (ρ, x) ∈ Q.

Lemma 11 (two in R(1),R(3),R(6)). Each (ρ, x) ∈ Q cannot be produced from
all three of R(1), R(3), and R(6).

Proof. Assume the opposite is true. Suppose (σ1, u1) produces (ρ, x) using R(1);
then x = u∗1 (hence, x is a neighbor of u1 in G) and u1 is unmatched in ρ. Suppose
(σ2, u2) produces (ρ, x) using R(3); then x = u2 is unmatched in σ2, and matched
in ρ. Suppose (σ3, u3) produces (ρ, x) using R(6); then u3 is matched in ρ, u∗3 is
unmatched in ρ, and x is a neighbor (in G) of u∗3.

By Observation 2, all of u1, u2, and u3 are distinct. In particular, observe that
u1 = x∗ = u∗2 6= u∗3; hence, all of u1, u2, and u∗3 are distinct (since u2 is matched in ρ,
but the other two are not).

Now, suppose we start from σ2 = ρnx and promote x = u2 resulting in ρ. Observe
that u2 changes from unmatched in σ2 to matched in ρ, and both u1 and u∗3 are
unmatched in ρ. By Fact 2, at least one of u1 and u∗3 is unmatched in σ2; however, both
u1 and u∗3 are neighbors of x = u2 (in G), which is unmatched in σ2. This contradicts
that fact that in any permutation, two unmatched nodes cannot be neighbors in G.

We have finally finished the case analysis, and can conclude the f has injectivity
at most 3, thereby achieving the boundary constraint.

3.4. Lower bounding the performance ratio by linear programming for-
mulation. Combining all the proved constraints, the following LPn gives a lower
bound on the performance ratio when Ranking is run on a graph with n nodes. It is
not surprising that the optimal value of LPn decreases as n increases (although our
proof does not rely on this). In section 4, we analyze the continuous relaxation LP∞
in order to give a lower bound for all finite LPn, thereby proving a lower bound on
the performance ratio of Ranking:

LPn min 1
n

∑n
t=1 xt

s.t. x1 = 1,

xt−1 − xt ≥ 0, t ∈ [2..n],(
1− t−1

n

)
xt + 2

n

∑t−1
i=1 xi ≥ 1, t ∈ [2..n],

xn + 3
2n

∑n
t=1 xt ≥ 1,

xt ≥ 0, t ∈ [n].
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4. Analyzing LPn via continuous LP∞ relaxation. In this section, we an-
alyze the limiting behavior of LPn by solving its continuous LP∞ relaxation, which
contains both monotone and boundary condition constraints. We develop new duality
and complementary slackness characterizations to solve for the optimal value of LP∞,
thereby giving a lower bound on the performance ratio of Ranking.

4.1. Continuous linear programming relaxation. To form a continuous lin-
ear program LP∞ from LPn, we replace the variables xt’s with a function variable z
that is continuous in [0, 1] and differentiable almost everywhere in [0, 1]. The dual
LD∞ contains a real variable γ, and function variables w and y, where y is continuous
in [0, 1] and differentiable almost everywhere in [0, 1]. In the rest of this paper, we
use “∀θ” to denote “for almost all θ,” which means for all but a measure zero set.

Continuity requirement. In other literature [19, 14] concerning continuous linear
programming, it is often only required that the functions concerned are measurable.
However, we require z and y to be continuous everywhere in [0, 1], which is essential
in deriving weak duality for LP∞ and LD∞.

It is not hard to see that xi corresponds to z( in ), but perhaps it is less obvious how
LD∞ is formed. We remark that one could consider the limiting behavior of the dual
of LPn to conclude that LD∞ is the resulting program. We show in section 4.2 that
the pair (LP∞, LD∞) is actually a special case of a more general class of primal-dual
continuous linear programming. First, we show in Lemma 12 that LP∞ is a relaxation
of LPn:

LP∞ min
∫ 1

0
z(θ)dθ

s.t. z(0) = 1,

z′(θ) ≤ 0 ∀θ ∈ [0, 1],

(1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ ≥ 1 ∀θ ∈ [0, 1],

z(1) + 3
2

∫ 1

0
z(θ)dθ ≥ 1,

z(θ) ≥ 0 ∀θ ∈ [0, 1].

LD∞ max
∫ 1

0
w(θ)dθ + γ − y(0)

s.t. (1− θ)w(θ) + 2
∫ 1

θ
w(λ)dλ+ 3γ

2 + y′(θ) ≤ 1 ∀θ ∈ [0, 1],

γ − y(1) ≤ 0,

γ, y(θ), w(θ) ≥ 0 ∀θ ∈ [0, 1].

Lemma 12 (continuous linear programming relaxation). The optimal value of
LPn is at least the optimal value of LP∞.

Proof. We fix n, and let pn and p∞ be the optimal values for LPn and LP∞,
respectively. For the sake of contradiction, suppose p∞ = pn + δ for some δ > 0,
which may be dependent on n. Let x be an optimal solution for LPn. In order to
obtain a contradiction, our goal is to construct a feasible solution z (from x) for LP∞
that has an objective value smaller than pn + δ.

The rest of the proof proceeds in the following manner. We first construct a
natural step function ẑ in [0, 1] corresponding to x. Although ẑ is not continuous, it

satisfies the constraints of LP∞ and the objective function evaluates to
∫ 1

0
ẑ(θ)dθ = pn.

Then we modify ẑ into a feasible solution z for LP∞, increasing the objective value
by less than δ.

D
ow

nl
oa

de
d 

01
/2

8/
21

 to
 1

47
.8

.3
1.

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1540 HUBERT CHAN, CHEN, WU, AND ZHAO

Recall that x is an optimal solution for LPn. Define a step function ẑ in interval
[0, 1] as follows: ẑ(0) := 1 and ẑ(θ) := xt for θ ∈

(
t−1
n , tn

]
and t ∈ [n]. It follows that

∫ 1

0

ẑ(θ)dθ =

n∑
t=1

∫ t
n

t−1
n

ẑ(θ)dθ =
1

n

n∑
t=1

xt = pn.

We now prove that ẑ satisfies the constraints of LP∞. Clearly ẑ(0) = 1 and ẑ′(θ) = 0
for θ ∈ [0, 1] \ { tn : 0 ≤ t ≤ n, t ∈ Z}.

Evolving constraint. For every θ ∈ (0, 1], suppose θ ∈
(
t−1
n , tn

]
, and we have

(1− θ)ẑ(θ) + 2

∫ θ

0

ẑ(λ)dλ = (1− θ)xt + 2

t−1∑
i=1

∫ i
n

i−1
n

ẑ(λ)dλ+ 2

∫ θ

t−1
n

ẑ(λ)dλ

= (1− θ)xt +
2

n

t−1∑
i=1

xi + 2

(
θ − t− 1

n

)
xt

=

(
1− t− 1

n
+

(
θ − t− 1

n

))
xt +

2

n

t−1∑
i=1

xi

≥
(

1− t− 1

n

)
xt +

2

n

t−1∑
i=1

xi

≥ 1,

where the last inequality follows from the feasibility of x in LPn. The above inequality
holds trivially at θ = 0.

Boundary constraint. Using the fact that
∫ 1

0
ẑ(θ)dθ = 1

n

∑n
t=1 xt we have

ẑ(1) +
3

2

∫ 1

0

ẑ(θ)dθ = xn +
3

2n

n∑
t=1

xt ≥ 1,

where the last inequality follows from the feasibility of x in LPn.
Achieving continuity. Next we define a continuous function z as follows. Let

ε := min{δ, 1
2n}. The idea is that for t ∈ [2..n], at the transition point t−1

n , we let the
function drop gradually from xt−1 to xt, as θ increases from t−1

n to t−1
n + ε.

Formally, let z(θ) := x1 = 1 for θ ∈ [0, 1
n ]. For each t ∈ {2, . . . , n}, let

z(θ) :=

{
xt + xt−1−xt

ε

(
t−1
n + ε− θ

)
, θ ∈

(
t−1
n , t−1n + ε

]
,

xt, θ ∈
(
t−1
n + ε, tn

]
.

Observe that z is continuous on [0, 1]. Moreover, it is differentiable almost every-
where, and has nonpositive derivative whenever it is differentiable. To check that z
is feasible, observe that z ≥ ẑ on [0, 1], and so z also satisfies the evolving and the
boundary constraints.
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Finally, observe that for each t ∈ [2..n], when we let the function z drop gradually
at the transition point t−1

n , the difference in area under the curves z and ẑ on the

interval [ t−1n , t−1n +ε] is (xt−1−xt)ε
2 . Hence, the total difference in area under the curves

z and ẑ is
∑n
t=2

(xt−1−xt)ε
2 = (x1−xn)ε

2 ≤ ε
2 .

It follows that
∫ 1

0
z(θ)dθ ≤

∫ 1

0
ẑ(θ)dθ+ ε

2 = pn+ ε
2 < pn+δ, obtaining the desired

contradiction.

4.2. Primal-dual for a general class of continuous linear programming.
We study a class of continuous linear programs CP that includes LP∞ as a special
case. In particular, CP contains monotone and boundary conditions as constraints.
Let K,L > 0 be two real constants. Let A, B, C, F be measurable functions on [0, 1].
Let D be a nonnegative measurable function on [0, 1]2. We describe CP and its dual
CD, following which we present weak duality and complementary slackness conditions.
In CP, the variable is a function z that is continuous on [0, 1] and differentiable almost
everywhere in [0, 1]; in CD, the variables are a real number γ, and measurable functions
w and y, where y is continuous on [0, 1] and differentiable almost everywhere in [0, 1].

CP min p(z) =
∫ 1

0
A(θ)z(θ)dθ

s.t. z(0) = K,(1)

z′(θ) ≤ 0 ∀θ ∈ [0, 1],(2)

B(θ)z(θ) +
∫ θ
0
D(θ, λ)z(λ)dλ ≥ C(θ) ∀θ ∈ [0, 1],(3)

z(1) +
∫ 1

0
F (θ)z(θ)dθ ≥ L,(4)

z(θ) ≥ 0 ∀θ ∈ [0, 1].

CD max d(w, y, γ) =
∫ 1

0
C(θ)w(θ)dθ + Lγ −Ky(0)

s.t. B(θ)w(θ) +
∫ 1

θ
D(λ, θ)w(λ)dλ+ F (θ)γ + y′(θ) ≤ A(θ) ∀θ ∈ [0, 1],(5)

γ − y(1) ≤ 0,(6)

γ, y(θ), w(θ) ≥ 0 ∀θ ∈ [0, 1].

Lemma 13 (weak duality and complementary slackness). Suppose z and (w, y, γ)
are feasible solutions to CP and CD, respectively. Then, d(w, y, γ) ≤ p(z). Moreover,
suppose z and (w, y, γ) satisfy the following complementary slackness conditions:

z′(θ)y(θ) = 0 ∀θ ∈ [0, 1],(7) [
B(θ)z(θ) +

∫ θ
0
D(θ, λ)z(λ)dλ− C(θ)

]
w(θ) = 0 ∀θ ∈ [0, 1],(8) [

z(1) +
∫ 1

0
F (θ)z(θ)dθ − L

]
γ = 0,(9) [

B(θ)w(θ) +
∫ 1

θ
D(λ, θ)w(λ)dλ+ F (θ)γ + y′(θ)−A(θ)

]
z(θ) = 0 ∀θ ∈ [0, 1],(10)

(γ − y(1))z(1) = 0.(11)

Then, z and (w, y, γ) are optimal for CP and CD, respectively, and achieve the same
optimal value.
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Proof. Using the primal and dual constraints, we obtain

d(w, y, γ) =
∫ 1

0
C(θ)w(θ)dθ + Lγ −Ky(0)

≤
∫ 1

0

[
B(θ)z(θ) +

∫ θ
0
D(θ, λ)z(λ)dλ

]
w(θ)dθ + Lγ −Ky(0) by (3)

=
∫ 1

0

[
B(θ)w(θ) +

∫ 1

θ
D(λ, θ)w(λ)dλ

]
z(θ)dθ + Lγ −Ky(0) (*)

≤
∫ 1

0
[A(θ)− F (θ)γ − y′(θ)] z(θ)dθ + Lγ −Ky(0) by (5)

=
∫ 1

0
A(θ)z(θ)dθ −

∫ 1

0
y′(θ)z(θ)dθ +

[
L−

∫ 1

0
F (θ)z(θ)dθ

]
γ −Ky(0)

≤
∫ 1

0
A(θ)z(θ)dθ −

∫ 1

0
y′(θ)z(θ)dθ + z(1)γ −Ky(0) by (4)

=
∫ 1

0
A(θ)z(θ)dθ − y(1)z(1) + y(0)z(0) +

∫ 1

0
z′(θ)y(θ)dθ + z(1)γ −Ky(0) (**)

≤
∫ 1

0
A(θ)z(θ)dθ + (γ − y(1))z(1) by (1), (2)

≤
∫ 1

0
A(θ)z(θ)dθ by (6)

= p(z),

where in (*) we change the order of integration by using Tonelli’s theorem on non-

negative measurable function g:
∫ 1

0

∫ θ
0
g(θ, λ)dλdθ =

∫ 1

0

∫ 1

θ
g(λ, θ)dλdθ; and in (**)

we use integration by parts and the fundamental theorem of calculus, as both y and z
are continuous everywhere in [0, 1]. Moreover, if z and (w, y, γ) satisfy conditions (7)–
(11), then all the inequalities above hold with equality. Hence, d(w, y, γ) = p(z); so z
and (w, y, γ) are optimal for CP and CD, respectively.

4.3. Lower bound for the performance ratio. The performance ratio of
Ranking is lower bounded by the optimal value of LP∞. We analyze this optimal value
by applying the primal-dual method to LP∞. In particular, we construct a primal
feasible solution z and a dual feasible solution (w, y, γ) that satisfy the complementary
slackness conditions presented in Lemma 13. Note that LP∞ and LD∞ are achieved
from CP and CD by setting K := 1, L := 1, A(θ) := 1, B(θ) := 1 − θ, C(θ) := 1,
D(λ, θ) := 2, F (θ) := 3

2 .
We give some intuition on how z is constructed. An optimal solution to LP∞

should satisfy the primal constraints with equality for some θ. Setting the constraint

(1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ ≥ 1 to equality, we get z(θ) = 1− θ. However this function

violates the last constraint z(1) + 3
2

∫ 1

0
z(θ)dθ ≥ 1. Since z is decreasing, we need to

balance between z(1) and
∫ 1

0
z(θ)dθ.

The intuition is that we set z(θ) := 1 − θ for θ ∈ [0, µ] and allow z to decrease
until θ reaches some value µ ∈ (0, 1), and then z(θ) := 1 − µ stays constant for

θ ∈ [µ, 1]. To determine the value of µ, note that the equation z(1) + 3
2

∫ 1

0
z(θ)dθ =

1 should be satisfied, since otherwise we could construct a feasible solution with
smaller objective value by decreasing the value of z(θ) for θ ∈ (µ, 1]. It follows that

(1 − µ) + 3
2 (1 − µ + µ2

2 ) = 1, that is, the value of µ ∈ (0, 1) is determined by the
equation 3µ2 − 10µ+ 6 = 0.

After setting z, we construct (w, y, γ) carefully to fit the complementary slackness
conditions. Formally, we set z and (w, y, γ) as follows with their plots in Figure 1.

Lemma 14 (optimality of z and (w, y, γ)). The solutions z and (w, y, γ) con-
structed above are optimal for LP∞ and LD∞, respectively. In particular, the optimal

value of LP∞ is 2(5−
√
7)

9 ≈ 0.523.
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z(θ) =

{
1− θ, 0 ≤ θ ≤ µ,
1− µ, µ < θ ≤ 1,

w(θ) =

{
2(1−µ)2

(5−3µ)(1−θ)3 , 0 ≤ θ ≤ µ,
0, µ < θ ≤ 1,

y(θ) =

{
0, 0 ≤ θ ≤ µ,
2(θ−µ)
5−3µ , µ < θ ≤ 1,

γ = 2(1−µ)
5−3µ ,

where µ = 5−
√
7

3 is a root of the equation

3µ2 − 10µ+ 6 = 0. 3
0 0.5  1

1

2

3

7

1! 7
.

z (3)
w (3)
y (3)

Fig. 1. Optimal z and (w, y, γ).

Proof. We list the complementary slackness conditions and check that they are
satisfied by z and (w, y, γ). Then Lemma 13 gives the optimality of z and (w, y, γ).

(7) z′(θ)y(θ) = 0: we have y(θ) = 0 for θ ∈ [0, µ) and z′(θ) = 0 for θ ∈ (µ, 1].

(8) [(1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ− 1]w(θ) = 0: we have

(1− θ)z(θ) + 2

∫ θ

0

z(λ)dλ− 1 = (1− θ)2 + 2

(
θ − θ2

2

)
− 1 = 0

for θ ∈ [0, µ) and w(θ) = 0 for θ ∈ (µ, 1].

(9) [z(1) + 3
2

∫ 1

0
z(θ)dθ − 1]γ = 0: we have

z(1) +
3

2

∫ 1

0

z(θ)dθ − 1 = (1− µ) +
3

2

(
1− µ+

µ2

2

)
− 1 = 0

by the definition of µ.

(10) [(1− θ)w(θ) + 2
∫ 1

θ
w(λ)dλ+ 3γ

2 + y′(θ)− 1]z(θ) = 0: for θ ∈ [0, µ), we have

(1− θ)w(θ) + 2

∫ 1

θ

w(λ)dλ+
3γ

2
+ y′(θ)− 1

=
2(1− µ)2

(5− 3µ)(1− θ)2
+ 2

∫ µ

θ

w(λ)dλ+
3(1− µ)

5− 3µ
+ 0− 1 = 0,

and for θ ∈ (µ, 1], we have

(1− θ)w(θ) + 2

∫ 1

θ

w(λ)dλ+
3γ

2
+ y′(θ)− 1

=
3γ

2
+ y′(θ)− 1 =

3(1− µ)

5− 3µ
+

2

5− 3µ
− 1 = 0.

(11) (γ − y(1))z(1) = 0: we have γ − y(1) = 2(1−µ)
5−3µ −

2(1−µ)
5−3µ = 0.

Moreover, the optimal value of LP∞ is
∫ 1

0
z(θ)dθ = 1−µ+ µ2

2 = 2(5−
√
7)

9 ≈ 0.523.

Proof of Theorem 1. The expected ratio of Ranking is lower bounded by the op-
timal value of LPn. Hence, the theorem follows from Lemmas 12 and 14.
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Fig. 2. Double bomb graph.

Table 1
Experimental performance results.

n 20 50 100 200 500
ε = 0.33 0.7344 0.7297 0.7281 0.7272 0.7267
ε = 0.63 0.7314 0.7267 0.7253 0.7244 0.7240
ε = 0.90 0.7318 0.7274 0.7260 0.7252 0.7248

5. Hardness example. Our experiments suggest that the hardness result in [12]
can be slightly improved by adjusting the parameter of their hard instance. An
example of the graph is shown in Figure 2. We define the graph as follows:

Let G be a bipartite graph over 2(3+ε)n vertices (ui’s and vi’s). Define the edges
by the adjacency matrix A. (A[i][j] = 1 if there is an edge between ui and vj .)

A[i][j] =



1 if i = j,

1 if i ∈ [1, n], j ∈ (n, (2 + ε)n],

1 if i ∈ (n, (2 + ε)n], j ∈ ((2 + ε)n, (3 + ε)n],

0 otherwise.

We run experiments on different n’s and ε’s (each for 100, 000 times) and get the
following results; see Table 1.

We observe that when ε ≈ 1 − 1/e the ratio is minimized for this kind of graph.
It is close to 0.724 in this case. We leave as future work to analyze it theoretically.

6. Open problems and future work. In this paper, we show that the Ranking
algorithm has a performance ratio strictly above 0.5 for the Oblivious Matching Problem
on general graphs. It is shown in [1] that a weighted version of the Ranking algorithm
achieves a performance ratio strictly above 0.5 for the problem on general node-
weighted graphs, in which each node u has weight wu, and the objective is to maximize
the total weight of matched nodes.

It is interesting to consider edge-weighted versions of oblivious or online matching
problems. Partial solutions have been given in [1] for the following variants.

Edge-weighted Oblivious Matching Problem. A set V of nodes is given, together
with a weight wuv attached to each pair of nodes u and v. If (after probing the pair
{u, v}) there is an edge e ∈ E between u and v, then its weight is given by wuv. The
goal of the problem is to decide a probing order on the pairs that produces a matching
with maximum total edge weights. Note that the node-weighted setting is a special
case of the edge-weighted setting when wuv = wu + wv.

It can be easily shown that the greedy algorithm that probes pairs {u, v} in non-
increasing order of their weights wuv achieves a performance ratio exactly 0.5.

D
ow

nl
oa

de
d 

01
/2

8/
21

 to
 1

47
.8

.3
1.

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANKING ON ARBITRARY GRAPHS 1545

It is shown in [1] that when the number of distinct weights is bounded by a
constant, a performance ratio strictly above 0.5 can be achieved. However, for the
problem with arbitrary weights, whether a performance ratio strictly above 0.5 can
be achieved remains unknown.

Another closely related open problem is the edge-weighted online bipartite match-
ing problem with arbitrary arrival order of online nodes and free disposal.

Edge-weighted online bipartite matching with free disposal. Suppose we are given
a set V of offline nodes, while the online nodes U come in an arbitrary order. When
an online node u ∈ U arrives, all the weights wuv’s of edges between u and the offline
nodes v ∈ V are revealed to the (randomized) algorithm. The algorithm can match u
to any of the offline nodes v. Even if node v is already matched to a previous online
node u′, the algorithm is allowed to dispose of the edge {u′, v} and include the edge
{u, v} in the matching. The goal is to maximize the performance ratio, which is the
(expected) weight of the final matching to that of a maximum weight matching in
hindsight.

It was shown that ratio 0.5 can be achieved by some greedy algorithm [7]. For the
special case when each online node has bounded degree, a performance ratio strictly
larger than 0.5 has been achieved in [1]. Achieving a performance ratio strictly above
0.5 for the general case remains an open problem.

We believe that the techniques developed in this paper can shed light on solving
the above two open problems. We think that it is possible to prove a performance
ratio strictly above 0.5 using a randomized algorithm similar to the weighted Ranking
algorithm used in [2, 1].
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