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We investigate disorder-driven topological phase transitions in quantized electric quadrupole insulators
in two dimensions. We show that chiral symmetry can protect the quantization of the quadrupole moment
qxy, such that the higher-order topological invariant is well defined even when disorder has broken all
crystalline symmetries. Moreover, nonvanishing qxy and consequent corner modes can be induced from a
trivial insulating phase by disorder that preserves chiral symmetry. The critical points of such topological
phase transitions are marked by the occurrence of extended boundary states even in the presence of strong
disorder. We provide a systematic characterization of these disorder-driven topological phase transitions
from both bulk and boundary descriptions.
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Introduction.—Disorder is ubiquitous in condensed
matter systems. A wide range of fundamental phenomena,
such as the Anderson localization and the Kondo effect
[1–6], are closely related to disordered systems. When
disorder is included in the study of topological phases of
matter [7,8], the surprising phenomenon of topological
Anderson insulators will occur [9–14], which showcases a
nontrivial interplay between disorder and topology.
Recently, the concept of topological invariants in solids
has been generalized to higher orders [15–43]. These
higher-order topological insulators, like their conventional
cousins, possess boundary states dictated by bulk topo-
logical invariants, but only at even lower dimensions than
the latter. Among the higher-order topological phases, the
quantized electric quadrupole insulator (QEQI) is a proto-
typical one that features a quantized electric quadrupole
moment in the bulk and zero-energy modes at the corners
[15,16]. From the outset, a QEQI has been considered as a
topological crystalline insulator [44,45], where the quan-
tization of its electric quadrupole moment is protected by
the underlying crystalline symmetries [16]. This apparently
poses a no-go condition for the existence of any nontrivial
effect induced by disorder in such a system, where all the
crystalline symmetries are bound to be broken. As such, a
systematic study of the disorder effect in QEQIs, especially
its resultant topological phase transitions, remains an open
problem despite some related efforts [46–53].
In this Letter, we first prove that the electric quadrupole

moment will remain quantized in the presence of disorder,
as long as a chiral symmetry is preserved in the system.
This allows us to investigate well-defined topological
phases in disordered QEQIs. We found that disorder
generically introduces a deformation of the phase diagram

from the clean limit of a QEQI [see Fig. 1(a)]. This
deformation is nontrivial in the sense that the topological
phase regime can expand due to disorder in certain
parameter space [see Fig. 1(b)]. The disordered phase
diagrams can be analyzed accurately by using the effective
medium theory for the bulk, despite the fact that the
topological phase transitions bear no signature in the bulk
energy spectrum. Indeed, as an unusual feature of higher-
order topological phases, a disorder-induced transition
between distinct phases is marked by a localization-
delocalization-localization (LDL) transition on specific
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FIG. 1. Phase diagrams of disordered electric quadrupole
insulators. (a) Electric quadrupole moment qxy as a function
of mass parameters tx and ty at a fixed disorder strengthW ¼ 2.5.
The dashed lines indicate the phase boundaries in the clean limit.
(b) qxy as a function of tx andW at fixed ty ¼ 0.8. The dot-dashed
lines are the phase boundaries obtained from an effective medium
theory. In these phase diagrams, the disorder is of the VðrÞγ4
type, with 120=150 random configurations averaged in (a)/(b).
The system is of size Lx × Ly ¼ 30 × 30 with periodical boun-
dary conditions. The two distinct phases are higher-order topo-
logical insulator and normal insulator.
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parts of the system boundary, which leads to a redistrib-
ution of fractional charges at the corners of a QEQI. We
demonstrate this picture explicitly by combining finite-size
scaling analyses with exactly obtained charge densities.
Quantized electric quadrupole moments qxy protected by

chiral symmetry.—We consider the following effective
Bloch Hamiltonian for a QEQI [15,16]:

HqðkÞ ¼ t sin kyγ1 þ ½ty þ t cos ky�γ2
þ t sin kxγ3 þ ½tx þ t cos kx�γ4; ð1Þ

where the gamma matrices are defined as γj ¼ −τ2σj
(j ¼ 1, 2, 3) and γ4 ¼ τ1σ0 with τ and σ both being
Pauli matrices but for different degrees of freedom; kx=y is
the wave vector along x=y (we have set the lattice constant
to be unit). The bulk bands of Eq. (1) are gapped unless
jtxj ¼ jtyj ¼ jtj. Without loss of generality, we will set
t ¼ 1 hereafter. This model respects chiral symmetry
γ−15 HqðkÞγ5 ¼ −HqðkÞ, where the chiral symmetry oper-
ator γ5 ≡ −γ1γ2γ3γ4 ¼ τ3σ0. Since kx and ky are decoupled
in Eq. (1), the total Hamiltonian can be recast as the sum of
two Su-Schrieffer-Heeger (SSH) models along two direc-
tions as HqðkÞ ¼ HxðkxÞ þHyðkyÞ. In the clean limit, the
topologically nontrivial phase is constrained in the region
jts¼x;yj < 1 where both HxðkxÞ and HyðkyÞ are topo-
logically nontrivial. Under this condition, if an open
boundary with a right-angle corner is considered, we can
solve the corner state wave function to be of the form
Ψcðx; yÞ ¼ χcϕxðxÞϕyðyÞ, where ϕx and ϕy are two scalar
functions, and χc is an eigenstate of the chiral symmetry
operator: γ5χc ¼ �χc [54].
When disorder is introduced into the system, the first

question we encounter is whether, or when, the electric
quadrupole moment will remain quantized, such that a
disordered QEQI phase can be well defined. This question
is particularly relevant because QEQIs have been con-
structed as topological crystalline insulators from the out-
set, where mirror symmetries are required to ensure the
quantization of the electric quadrupole moment. In addi-
tion, the nested Wilson loop approach [16] originally used
to obtain the topological invariant from the momentum
space is no longer applicable in the disordered systems.
Here, we prove that the quadrupole moment defined in the
real space, given by [55,59,60]

qxy ¼
1

2π
Im log ½detðU†Q̂UÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ̂†Þ

q
�; ð2Þ

is indeed quantized even in the presence of disorder as long
as the chiral symmetry is preserved. In the above equation,
Q̂≡ exp½i2πq̂xy� and q̂xy ≡ x̂ ŷ =ðLxLyÞ with x̂ðŷÞ
the position operator along the xðyÞ dimension and Lx;y

the corresponding size;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ̂†Þ

q
¼ exp½−iπTrq̂xy�; the

matrix U is constructed by column-wise packing all the

occupied eigenstates, such that UU† is the projector to the
occupied subspace.
We sketch our proof as follows and leave the full details

in the Supplemental Material [54]. For qxy to be quantized

as an integer multiple of 1=2, clearly detðU†Q̂UÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Q̂†

p
has to be real. By using Sylvester’s determinant identity
detð1þ ABÞ ¼ detð1þ BAÞ, and the identity UU† þ
VV† ¼ 1 with VV† the projector to the unoccupied sub-
space (V is constructed from the unoccupied eigenstates
similar to U), we obtain detðU†Q̂UÞ ¼ detðV†Q̂†VÞ det Q̂.
Noticing that the chiral symmetry operator relates the
occupied states with unoccupied states by V ¼ γ5U, as
well as the fact that ½γ5; Q̂� ¼ 0, we have

detðU†Q̂UÞ ¼ detðU†Q̂†UÞ det Q̂: ð3Þ

Since Q̂ is unitary, it follows immediately that
detðU†Q̂UÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detQ†

p
is real. In other words, qxy is quan-

tized to be 0 or 1=2 as long as the system preserves the
chiral symmetry [54]. Note that, in this proof, the explicit
form of Q̂ is irrelevant except for its commutativity with the
chiral symmetry operator, which is generally true because
the chiral symmetry is a local symmetry (i.e., diagonal in
terms of real-space degrees of freedom) whereas Q̂ is
constructed from position operators only. Therefore, the
conclusion of this proof can be straightforwardly general-
ized by replacing Q̂ with other functions of position
operators such as the electric octupole moment operator
[15,16]. In the Supplemental Material [54], we further show
how to generalize this proof to the case of particle-hole
symmetry [60], which is also a local symmetry but does not
commute with Q̂ because of its antiunitary nature.
Phase diagram of disordered electric quadrupole

insulators.—With a well-defined topological invariant
established for disordered QEQIs, we now present the
resulting phase diagrams based on the model in Eq. (1).
To be specific, we choose one particular type of disorder
that preserves the chiral symmetry, represented by Vdis ¼
VðrÞγ4 with the random function VðrÞ distributed uni-
formly within the interval ½−W=2;W=2� and W being the
disorder strength. The averaged quadrupole moment qxy of
disordered QEQIs as a function of tx and ty is shown in
Fig. 1(a). Two separate phases can be clearly distinguished:
one with qxy ¼ 1=2 (in blue) signifying a nontrivial higher-
order topological insulator (HOTI) phase, and the other
with qxy ¼ 0 (in red) signifying a trivial normal insulator
(NI) phase. This phase diagram is more informative when
compared with the phase diagram in the clean limit, the
phase boundary of which has been marked by dashed lines
also in Fig. 1(a). There are obviously contrasting behaviors
in terms of the deformation of the HOTI phase regime in the
two parameter dimensions (tx and ty) caused by disorder:
the HOTI phase occurs in a shrunk range in ty but an
expanded range in tx—the chosen type of disorder is
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coupled to the same gamma matrix γ4 with the latter
parameter but not the former one. A more precise analysis
of how the deformed phase boundary relies on the disorder
type and strength will be given in the next section by
employing the effective medium theory and the self-
consistent Born approximation (SCBA). Before that, we
examine more closely the disorder induced expansion of
the nontrivial HOTI phase in the parameter space tx.
In Fig. 1(b) we show the phase diagram in theW-tx space

with fixed ty. We notice again two types of phase
boundaries, marked by a black (upper) and a purple (right
side) dot-dashed line, respectively. The upper phase boun-
dary exhibits a clear monotonic increase of the critical tx
with stronger disorderW, corresponding to the expanded tx
range by disorder for the HOTI phase in Fig. 1(a), until it
intersects with the right-side phase boundary. As we are set
to show in the next section, the right-side phase boundary,
which puts an upper bound of the disorder strength for the
HOTI phase, originates from the constraint imposed by the
disorder-renormalized ty that has also led to the shrunk
range of ty for the HOTI phase in Fig. 1(a). These two phase
boundaries represent exactly the topological phase transi-
tions that are central to this paper.
Effective medium theory of the disorder-induced

topological phase transitions.—A better understanding of
the disorder-induced topological phase transitions can be
achieved with the help of an effective medium theory and
the SCBAmethod [61–64]. In the SCBAmethod, the key is
to obtain the self-energy introduced by the disorder self-
consistently, and then to include the self-energy as renorm-
alization to the original Hamiltonian. In our case, by
symmetry arguments the self-energy can be simplified to be

ΣðEFÞ ¼ Σ4γ4 þ Σ2γ2 þ Σ0I4×4: ð4Þ

Specifically, the self-energy Σ satisfies the following self-
consistent integral equation:

ΣðEFÞ ¼
W2

48π2

Z
BZ

d2kγ4
1

EF þ iη −HqðkÞ − ΣðEFÞ
γ4;

ð5Þ

where the integral runs over the first Brillouin zone, and η is
an infinitesimal positive number. EF is Fermi energy which
is set at zero here, i.e., the system is half filled. From
Eq. (5), there are explicitly three coupled self-consistent
integral equations that will fully determine Σ [54]. After
obtaining the self-energy Σ (where Σ0 turns out to be zero at
zero energy because of the chiral symmetry), the topo-
logical mass terms tx and ty are renormalized according to

t̄x ¼ tx þ ReΣ4; ð6aÞ

t̄y ¼ ty þ ReΣ2: ð6bÞ

This produces the new phase boundaries at jt̄xj ¼ jt̄yj ¼ 1,
which formally resemble the conditions in the clean limit
but with a key difference in the implicit dependence on W.
The preceding approach can quantitatively account for

the phase boundaries in the presence of disorder. The
expanded range of tx and the shrunk range of ty for the
HOTI phase in the disordered phase diagram, as shown in
Fig. 1(a), can be understood from the opposite signs of the
self-energy contributions Σ4 and Σ2, which in turn comes
from the anticommutation relation between γ4 and γ2 [54].
In previous discussions, we have seen that only if the two
individual SSH models consisting the full model in Eq. (1)
are topologically nontrivial simultaneously, the system can
possess nontrivial bulk topological invariant and host zero-
energy modes at its corners. Therefore, if disorder drives
one of the two SSH components from topologically non-
trivial to trivial, a phase transition of the higher-
dimensional system will occur. Indeed, the topological
phase transitions of the two SSH components are each
captured by one of the conditions jt̄x;yj ¼ 1 with the
renormalized mass t̄x;yðtx;y;WÞ given by Eq. (6). For a
fixed disorder strength W, such as in the case shown in
Fig. 1(a), these conditions lead to four critical values of tx
and ty, resulting in a rectangular shaped phase boundary in
the phase diagram. With varying disorder strength, on the
other hand, the two conditions lead directly to the two
phase boundary lines demonstrated in Fig. 1(b). Specifi-
cally, we plot the solutions to the equations t̄x ¼ 1 and
t̄y ¼ 1 as the dot-dashed lines in black and in purple,
respectively. Both lines coincide very well with the phase
boundaries obtained from numerically calculating qxy as
discussed in previous sections, until the two lines intersect.
Localization-delocalization-localization transitions at

open boundaries.—The higher-order topological phase
transitions generically show no signatures in terms of
the bulk energy spectrum but instead are accompanied
by LDL transitions at the open boundaries of the system. To
demonstrate this in disordered systems, we perform a finite
size scaling analysis based on localization length calculated
from the numerical transfer matrix method [54,65–67].
Specifically, we compare the localization length (at zero
energy) along quasi-one-dimensional ribbons of our model
system with different width, longitudinal orientations, and
transverse boundary conditions. The dependence of the
localization length on the ribbon width, in a specific
orientation and boundary condition setting, indicates the
presence or absence of delocalized bulk or boundary states
in the thermodynamic limit. We focus on the parameter
space close to the phase boundaries identified in the
previous sections. With a periodic boundary condition in
the transverse dimension, we found that the localization
length (upon normalization by the width) decrease mono-
tonically with increasing width in the entire parameter
ranges of our interest, regardless of the orientation along
the ribbon [54]. This indicates that there is no occurrence of
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delocalized bulk states during the phase transitions—the
bulk of the system remains insulating. In contrast, when an
open boundary condition is considered, the localization
length along certain longitudinal orientation can exhibit
monotonic increase with increasing width, signifying a
divergence in the thermodynamic limit, around a topo-
logical phase transition point, as exemplified in Figs. 2(a)
and 2(b). The divergence of the localization length at a
critical value of the disorder strength, which occurs only
with an open boundary condition and along certain ori-
entation, indicates the existence of delocalized states at the
corresponding boundaries, despite strong disorder, at the
critical point. We note that the LDL transitions discussed
here are similar to the topological phase transitions across
Landau levels in the quantum Hall effect [68], in the fact
that the delocalized states occur only at the exact critical
points.
The boundary LDL transitions established above by a

finite-size scaling analysis can be further understood with
an effective boundary theory [54], where the (boundary)
spectrum around a critical point is controlled by an effective
mass, given by mx ¼ 1 − tx − Re½Σ4ðWÞ� for the

boundaries along x, or my ¼ 1 − ty − Re½Σ2ðWÞ� for the
boundaries along y. The critical points are associated with
the conditionsmx;y ¼ 0, which coincide with the conditions
that we have derived earlier from the bulk phase transitions.
By using the SCBA method, the effective mass values and
corresponding signs are obtained and shown in Figs. 2(c)
and 2(d), which agree with the finite-size scaling results.
The LDL transitions along each open boundary orienta-

tion also enable us to establish the two types of phase
boundaries discussed previously in the context of bulk
topology. This is shown in Figs. 2(e) and 2(f) with
calculated localization length corresponding to Figs. 2(a)
and 2(b). The full agreement between this approach and the
bulk invariant approach manifests the close interconnection
between the boundary and the bulk descriptions of the
higher-order topological phase transitions.
Charge density redistribution at boundaries and

corners.—A hallmark of QEQIs is the presence of fractional
charges at the corners which consist in the quantized electric
quadrupole. In this section we demonstrate how the disorder-
driven topological phase transitions lead to the redistribution
of the charge density towards (or away from) the fractional
corner charges. For clarity and simplicity, let us focus on
three representative points in the phase diagram, marked by
A, B, andC in Fig. 1(b). These three phase points correspond
to a fixed tx (we choose tx ¼ 1.1) but varying disorder
strength W, such that A and C sit on the two types of phase
boundaries respectively, whereas B sits in the nontrivial
QEQI phase. The calculated charge densities for these points
are shown in Fig. 3. At the critical point AðCÞ, the charge
density extends only along the xðyÞ boundaries, as enabled
by the occurrence of delocalized states thereat, and exhibits a
continuous bipolar form with opposite polarities (offset by
the mean values) on opposite boundaries; at the B point, the
charge density displays a more symmetric quadrupolar form
that is deformed from the dipoles in A or C. The charge
density in the B point shows clear localization at the corners
owing to the topological bulk-corner correspondence, and
upon integration over each quadrant sums to the fractional
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value �1=2 with high accuracy when the system size is
sufficiently large.
Conclusion.—In short, we have presented a comprehen-

sive description of the disorder-induced topological phase
transitions in quantized electric quadrupole insulators. It is
proved rigorously that the quantization of the electric
quadrupole moment qxy can be protected by the chiral
symmetry even in the presence of strong disorder. We have
also uncovered disorder-driven phase transitions from
trivial to higher-order topological phases, which are sig-
nified by localization-delocalization-localization transi-
tions at certain open boundaries with the system bulk
remaining insulating. We expect this exotic disorder effect
can be experimentally demonstrated in, e.g., photonic
crystals [39–41] or electric circuits [37,38] by taking
advantage of their high controllability.
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