
RESEARCH ARTICLE
◥

CORONAVIRUS

Substantial undocumented infection
facilitates the rapid dissemination of novel
coronavirus (SARS-CoV-2)
Ruiyun Li1*, Sen Pei2*†, Bin Chen3*, Yimeng Song4, Tao Zhang5, Wan Yang6, Jeffrey Shaman2†

Estimation of the prevalence and contagiousness of undocumented novel coronavirus [severe acute
respiratory syndrome–coronavirus 2 (SARS-CoV-2)] infections is critical for understanding the overall
prevalence and pandemic potential of this disease. Here, we use observations of reported infection
within China, in conjunction with mobility data, a networked dynamic metapopulation model, and
Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV-2, including the
fraction of undocumented infections and their contagiousness. We estimate that 86% of all infections
were undocumented [95% credible interval (CI): 82–90%] before the 23 January 2020 travel restrictions.
The transmission rate of undocumented infections per person was 55% the transmission rate of documented
infections (95% CI: 46–62%), yet, because of their greater numbers, undocumented infections were
the source of 79% of the documented cases. These findings explain the rapid geographic spread
of SARS-CoV-2 and indicate that containment of this virus will be particularly challenging.

T
he novel coronavirus that emerged in
Wuhan, China, at the end of 2019, severe
acute respiratory syndrome–coronavirus 2
(SARS-CoV-2), quickly spread toallChinese
provinces and, as of 1 March 2020, to 58

other countries (1, 2). Efforts to contain the
virus are ongoing; however, given the many
uncertainties regarding pathogen transmis-
sibility and virulence, the effectiveness of these
efforts is unknown.
The fraction of undocumented but infec-

tious cases is a critical epidemiological charac-
teristic that modulates the pandemic potential
of an emergent respiratory virus (3–6). These
undocumented infections oftengounrecognized
owing tomild, limited, or lack of symptoms and
thus, depending on their contagiousness and
numbers, can expose a far greater portion of the
population to the virus than would otherwise
occur. Here, to assess the full epidemic poten-
tial of SARS-CoV-2, we use a model-inference
framework to estimate the contagiousness
and proportion of undocumented infections

in China during the weeks before and after
the shutdown of travel in and out of Wuhan.
We developed a mathematical model that

simulates the spatiotemporal dynamics of
infections among 375 Chinese cities (see sup-
plementary materials). In the model, we di-
vided infections into two classes: (i) documented
infected individuals with symptoms severe
enough to be confirmed, i.e., observed infec-
tions; and (ii) undocumented infected indi-
viduals. These two classes of infection have
separate rates of transmission: b, the trans-
mission rate due to documented infected in-
dividuals; and mb, the transmission rate due to
undocumented individuals, which is b reduced
by a factor m.
Spatial spread of SARS-CoV-2 across cities is

captured by the daily number of people trav-
eling from city j to city i and a multiplicative
factor. Specifically, daily numbers of travelers
between 375 Chinese cities during the Spring
Festival period (“Chunyun”) were derived from
human mobility data collected by the Tencent
location-based service during the 2018 Chunyun
period (1 February–12March 2018) (7). Chunyun
is a period of 40 days—15 days before and
25 days after the Lunar New Year—during
which there are high rates of travel within
China. To estimate humanmobility during the
2020 Chunyun period, which began 10 January,
we aligned the 2018 Tencent data on the ba-
sis of relative timing to the Spring Festival.
For example, we used mobility data from
1 February 2018 to represent human move-
ment on 10 January 2020, as these days were
similarly distant from the Lunar New Year.
During the 2018 Chunyun, 1.73 billion travel
events were captured in the Tencent data,

whereas 2.97 billion trips were reported by the
Ministry of Transport of the People’s Republic
of China (7). To compensate for underreport-
ing and reconcile these two numbers, a travel
multiplicative factor, q, which is greater than 1,
is included (see supplementary materials).
To infer SARS-CoV-2 transmission dynam-

ics during the early stage of the outbreak, we
simulated observations during 10–23 January
2020 (i.e., the period before the initiation
of travel restrictions) (fig. S1) using an iter-
ated filter-ensemble adjustment Kalman fil-
ter framework (8–10). With this combined
model-inference system, we estimated the
trajectories of four model state variables (Si,
Ei, Iri , and Iui : the susceptible, exposed, doc-
umented infected, and undocumented in-
fected subpopulations in city i, respectively)
for each of the 375 cities, while simultaneously
inferring six model parameters (Z, D, m, b, a,
and q: the average latency period, the average
duration of infection, the transmission reduc-
tion factor for undocumented infections, the
transmission rate for documented infections,
the fraction of documented infections, and the
travel multiplicative factor, respectively).
Details of model initialization, including the

initial seeding of exposed and undocumented
infections, are provided in the supplementary
materials. To account for delays in infection
confirmation, we also defined a time-to-event
observation model using a gamma distribu-
tion (see supplementary materials). Specifical-
ly, for each new case in group Iri , a reporting
delay td (in days) was generated froma gamma
distribution with a mean value of Td. In fitting
both synthetic and the observed outbreaks,
we performed simulations with the model-
inference system using different fixed values
of Td (6 days ≤ Td ≤ 10 days) and different max-
imum seeding, Seedmax (1500 ≤ Seedmax ≤ 2500)
(see supplementarymaterials) (fig. S2). The best-
fitting model-inference posterior was identified
by log likelihood.

Validation of the model-inference framework

We first tested the model-inference framework
versus alternate model forms and using syn-
thetic outbreaks generated by themodel in free
simulation. These tests verified the ability of
the model-inference framework to accurately
estimate all six target model parameters simul-
taneously (see supplementary methods and
figs. S3 to S14). The system could identify a
variety of parameter combinations and dis-
tinguish outbreaks generated with high a
and low m from those generated with low a
and high m. This parameter identifiability is
facilitated by the assimilation of observed case
data frommultiple (375) cities into the model-
inference system and the incorporation of hu-
manmovement into the mathematical model
structure (see supplementary methods and
figs. S15 and S16).
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Epidemiological characteristics during
10–23 January 2020
We next applied the model-inference frame-
work to the observed outbreak before the travel
restrictions imposed on 23 January 2020—a
total of 801 documented cases throughout
China, as reported by 8 February (1). Figure 1,
A to C, shows simulations of reported cases
generated using the best-fitting model pa-
rameter estimates. The distribution of these
stochastic simulations captures the range of
observed cases well. In addition, the best-fitting
model captures the spread of infections with
the novel coronavirus disease 2019 (COVID-19)
to other cities in China (fig. S17). Our median
estimate of the effective reproductive num-
ber, Re—equivalent to the basic reproductive
number,R0, at the beginning of the epidemic—is
2.38 [95% credible interval (CI): 2.03−2.77],
indicating that COVID-19 has a high capacity
for sustained transmission (Table 1 and Fig.
1D). This finding aligns with other recent es-

timates of the reproductive number for this
time period (6, 11–15). In addition, the median
estimates for the latency and infectious pe-
riods are ~3.69 and 3.47 days, respectively. We
also find that, during 10–23 January, only 14%
(95% CI: 10–18%) of total infections in China
were reported. This estimate reveals a very

high rate of undocumented infections: 86%.
This finding is independently corroborated
by the infection rate among foreign nationals
evacuated from Wuhan (see supplementary
materials). These undocumented infections
are estimated to have been half as contagious
per individual as reported infections (m = 0.55;

Li et al., Science 368, 489–493 (2020) 1 May 2020 2 of 5

0

Fig. 1. Best-fit model and sensitivity analysis. Simulation of daily reported cases
in all cities (A), Wuhan city (B), and Hubei province (C). The blue box and whiskers
show the median, interquartile range, and 95% CIs derived from 300 simulations
using the best-fit model (Table 1). The red x’s are daily reported cases.
(D) The distribution of estimated Re. (E) The impact of varying a and m on Re with all
other parameters held constant at Table 1 mean values. The black solid line indicates
parameter combinations of (a,m) yielding Re = 2.38. The estimated parameter

combination a = 0.14 and m = 0.55 is indicated by the red x; the dashed box indicates
the 95% credible interval of that estimate. (F) Log likelihood for simulations with
combinations of (a,m) and all other parameters held constant at Table 1 mean values.
For each parameter combination, 300 simulations were performed. The best-fit
estimated parameter combination a = 0.14 and m = 0.55 is indicated by the red x
(the x is plotted at the lower-left corner of its respective heat map pixel, i.e., the pixel
with the highest log likelihood); the dashed box indicates the 95% CI of that estimate.

Table 1. Best-fit model posterior estimates of key epidemiological parameters for simulation
with the full metapopulation model during 10–23 January 2020. Seedmax = 2000, Td = 9 days.

Parameter Median (95% CIs)

Transmission rate (b, days−1) 1.12 (1.06, 1.19)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Relative transmission rate (m) 0.55 (0.46, 0.62)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Latency period (Z, days) 3.69 (3.30, 3.96)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Infectious period (D, days) 3.47 (3.15, 3.73)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Reporting rate (a) 0.14 (0.10, 0.18)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Basic reproductive number (Re) 2.38 (2.03, 2.77)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Mobility factor (q) 1.36 (1.27, 1.45)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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95% CI: 0.46–0.62). Othermodel fittings made
using alternate values of Td and Seedmax or
different distributional assumptions produced
similar parameter estimates (figs. S18 to S22), as
did estimationsmade using an alternatemodel
structure with separate average infectious pe-
riods for undocumented and documented in-
fections (see supplementary methods, table S1).
Further sensitivity testing indicated that a and
m are uniquely identifiable given the model
structure and abundance of observations used
(see supplementary methods and Fig. 1, E and
F). In particular, Fig. 1F shows that the highest
log-likelihood fittings are centered in the 95%
CI estimates for a and m and drop off with dis-
tance from the best-fitting solution (a = 0.14
and m = 0.55).
Using the best-fitting model (Table 1 and

Fig. 1), we estimated 13,118 (95% CI: 2974–
23,435) new COVID-19 infections (documented
and undocumented combined) during 10–23

January in Wuhan city. Further, 86.2% (95%
CI: 81.5–89.8%) of all infections originated
from undocumented cases. Nationwide, the
number of infections during 10–23 January
was 16,829 (95% CI: 3797–30,271), with 86.2%
(95% CI: 81.6–89.8%) originating from un-
documented cases. To further examine the
impact of contagious, undocumented COVID-
19 infections on overall transmission and re-
ported case counts, we generated a set of
hypothetical outbreaks using the best-fitting
parameter estimates but with m = 0, i.e., the
undocumented infections are no longer con-
tagious (Fig. 2). We find that without trans-
mission from undocumented cases, reported
infections during 10–23 January are reduced
by 78.8% across all of China and by 66.1% in
Wuhan. Further, there are fewer cities with
more than 10 cumulative documented cases:
only one city with more than 10 documented
cases versus the 10 observed by 23 January

(Fig. 2C). This finding indicates that conta-
gious, undocumented infections facilitated
the geographic spread of SARS-CoV-2 within
China.

Epidemiological characteristics after
23 January 2020

Wealsomodeled the transmission of COVID-19
in China after 23 January, when greater con-
trol measures were effected. These control
measures included travel restrictions im-
posed between major cities and Wuhan, self-
quarantine and contact precautions advocated
by the government, andmore available rapid
testing for infection confirmation (11, 12).
These measures, along with changes in med-
ical care–seeking behavior due to increased
awareness of the virus and increased personal
protective behavior (e.g., wearing of facemasks,
social distancing, self-isolation when sick), like-
ly altered the epidemiological characteristics
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Fig. 2. Impact of undocumented infections on the transmission of SARS-CoV-2. Simulations generated using the parameters reported in Table 1 with m = 0.55
(red) and m = 0 (blue) showing daily documented cases in all cities (A), daily documented cases in Wuhan city (B), and the number of cities with ≥10 cumulative
documented cases (C). The box and whiskers show the median, interquartile range, and 95% CIs derived from 300 simulations.

Table 2. Best-fit model posterior estimates of key epidemiological parameters for simulation of the model during 24 January–3 February and
24 January–8 February. Seedmax = 2000 on 10 January, Td = 9 days before 24 January, and Td = 6 days between 24 January and 8 February. Travel to and
from Wuhan is reduced by 98%, and other intercity travel is reduced by 80%.

Parameter
24 January–3 February
[Median (95% CIs)]

24 January–8 February
[Median (95% CIs)]

Transmission rate (b, days−1) 0.52 (0.42, 0.72) 0.35 (0.28, 0.45)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Relative transmission rate (m) 0.50 (0.37, 0.69) 0.43 (0.31, 0.61)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Latency period (Z, days) 3.60 (3.41, 3.84) 3.42 (3.30, 3.65)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Infectious period (D, days) 3.14 (2.71, 3.72) 3.31 (2.96, 3.88)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Reporting rate (a) 0.65 (0.60, 0.69) 0.69 (0.65, 0.72)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Effective reproductive number (Re) 1.34 (1.10, 1.67) 0.98 (0.83, 1.16)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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of the outbreak after 23 January. To quan-
tify these differences, we reestimated the sys-
tem parameters using the model-inference
framework and city-level daily cases reported
between 24 January and 8 February. Given
that intercity mobility was restricted after
23 January, we tested two altered travel scenar-
ios: (i) scenario 1: a 98% reduction of travel in
and out of Wuhan and an 80% reduction in
travel between all other cities, as indicated by
changes in the Baidumobility index (16) (table
S2); and (ii) scenario 2: a complete stoppage of
intercity travel (i.e., q to 0) (see supplementary
methods for more details).
The results of inference for the 24 January–

8 February period are presented in Table 2,
figs. S23 to S26, and table S3. As control mea-
sures have continually shifted, we present esti-
mates for both 24 January–3 February (period 1)
and 24 January–8 February (period 2). For
both periods, the best-fitting model for sce-
nario 1 had a reduced reporting delay, Td, of
6 days (versus 9 days before 23 January),
consistent with more rapid confirmation of
infections. Estimates of both the latency and
infectious periods were similar to those made
for 10–23 January; however, a, b, and Re all
shifted considerably. The transmission rate of
documented cases, b, dropped to 0.52 (95% CI:
0.42–0.72) during period 1 and to 0.35 (95%CI:
0.28–0.45) during period 2, less than half the
estimated transmission rate prior to travel
restrictions (Table 2). The fraction of all in-
fections that were documented, a, was esti-
mated to be 0.65 (95%CI: 0.60–0.69), i.e., 65%of
infections were documented during period 1,
up from 14% before travel restrictions, and
remained nearly the same for period 2. The
reproductive number was 1.34 (95% CI: 1.10–
1.67) during period 1 and 0.98 (95% CI: 0.83–
1.16) during period 2, down from 2.38 prior to
travel restrictions. While the estimate for the
relative transmission rate, m, is lower than be-
fore 23 January, the contagiousness of undocu-
mented infections, represented by mb, was
substantially reduced, possibly reflecting that
only very mild, less contagious infections re-
main undocumented or that individual pro-
tective behavior and contact precautions have
proven effective. Similar parameter estimates
are derived under scenario 2 (no travel at all)
(table S3). These inference results for both
periods 1 and 2 should be interpreted with cau-
tion, as care-seeking behavior and controlmea-
sures were continually in flux at these times.

Outlook

Overall, our findings indicate that a large pro-
portion of COVID-19 infections were undocu-
mented prior to the implementation of travel
restrictions and other heightened control
measures in China on 23 January and that a
large proportion of the total force of infection
was mediated through these undocumented

infections (Table 1). This high proportion of
undocumented infections, many of which
were likely not severely symptomatic, appears
to have facilitated the rapid spread of the virus
throughout China. Indeed, suppression of the
infectiousness of these undocumented cases
in model simulations reduces the total num-
ber of documented cases and the overall spread
of SARS-CoV-2 (Fig. 2). In addition, the best-
fitting model has a reporting delay of 9 days
from initial infectiousness to confirmation;
in contrast, line-list data for the same 10–23
January period indicates an average 6.6-day
delay from initial manifestation of symptoms
to confirmation (17). This discrepancy suggests
that presymptomatic shedding may be typi-
cal among documented infections. The rela-
tive timing of onset and peak of viremia and
shedding versus onset and peak of symptoms
has been shown to potentially affect outbreak
control success (18).
Our findings also indicate that a radical

increase in the identification and isolation of
currently undocumented infections would be
needed to fully control SARS-CoV-2. Increased
news coverage and awareness of the virus
in the general population have likely already
prompted increased rates of seeking medi-
cal care for respiratory symptoms. In addi-
tion, awareness among health care providers
and public health officials and the availability
of viral identification assays suggest that ca-
pacity for identifying previously missed infec-
tions has increased. Further, general population
and government response efforts have in-
creased the use of face masks, restricted travel,
delayed school reopening, and isolated sus-
pected persons, all of which could addition-
ally slow the spread of SARS-CoV-2.
Combined, these measures are expected to

increase reporting rates, reduce the propor-
tion of undocumented infections, and decrease
the growth and spread of infection. Indeed, es-
timation of the epidemiological characteristics
of the outbreak after 23 January in China in-
dicates that government control efforts and
population awareness have reduced the rate of
virus spread (i.e., lower b, mb,Re), increased the
reporting rate, and lessened the burden on
already overextended health care systems.
The situation on the ground in China is

changing day to day. New travel restrictions
and control measures are being imposed on
populations in different cities, and these rap-
idly varying effects make certain estimation
of the epidemiological characteristics for the
outbreak difficult. Further, reporting inaccu-
racies and changing care-seeking behavior
add another level of uncertainty to our estima-
tions. Although the data and findings presented
here indicate that travel restrictions and con-
trol measures have reduced SARS-CoV-2 trans-
mission considerably, whether these controls
are sufficient for reducing Re below 1 for

the length of time needed to eliminate the
disease locally and prevent a rebound out-
break once control measures are relaxed is
unclear. Moreover, similar control measures
and travel restrictions would have to be im-
plemented outside China to prevent reintro-
duction of the virus.
The results for 10–23 January 2020 deline-

ate the characteristics of SARS-CoV-2 moving
through a developed country, China, without
major restrictions or control. These findings
provide a baseline assessment of the fraction
of undocumented infections and their relative
infectiousness for such an environment. How-
ever, differences in control activity, viral sur-
veillance and testing, and case definition and
reporting would likely affect rates of infection
documentation. Thus, the key findings, that
86%of infectionswent undocumented and that,
per person, theseundocumented infectionswere
55% as contagious as documented infections,
could shift in other countries with different
control, surveillance, and reporting practices.
Our findings underscore the seriousness of

SARS-CoV-2. The 2009 H1N1 pandemic influ-
enza virus also caused many mild cases, quickly
spreadglobally, andeventuallybecameendemic.
Presently, there are four endemic coronavirus
strains circulating in human populations (229E,
HKU1, NL63, and OC43). If the novel corona-
virus follows the pattern of 2009 H1N1 pan-
demic influenza, it will also spread globally and
become a fifth endemic coronavirus within the
human population.
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explain the lightning-fast spread of this virus around the world.

65% of cases were documented. These findings help to∼cases. Immediately after travel restrictions were imposed, 
80% of the documented∼However, because of their greater numbers, undocumented infections were the source for 

implemented, the transmission rate of undocumented infections was a little more than half that of the known cases.
undocumented before travel restrictions were put in place. Before travel restriction and personal isolation were 

86% of cases were∼model and Bayesian inference to analyze early spread within China. They estimate that 
Tencent, one of the world's largest social media and technology companies, with a networked dynamic metapopulation
early infections that went undetected and their contribution to virus spread. The researchers combined data from 

 used multiple sources to infer the proportion ofet al.spread from China to all around the world within 3 to 4 months? Li 
The virus causing coronavirus disease 2019 (COVID-19) has now become pandemic. How has it managed to

Undetected cases
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