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Reservoir computing (RC) is a framework that can extract features from a
temporal input into a higher-dimension feature space. The reservoir is followed
by a readout layer that can analyze the extracted features to accomplish tasks
such as inference and classification. RC systems inherently exhibit an advantage,
since the training is only performed at the readout layer, and therefore they are
able to compute complicated temporal data with a low training cost. Herein, a
physical reservoir computing system using diffusive memristor-based reservoir
and drift memristor-based readout layer is experimentally implemented. The
rich nonlinear dynamic behavior exhibited by a diffusive memristor due to Ag
migration and the robust in situ training of drift memristor arrays makes the
combined system ideal for temporal pattern classification. It is then demon-
strated experimentally that the RC system can successfully identify handwritten
digits from theModified National Institute of Standards and Technology (MNIST)
dataset, achieving an accuracy of 83%.

Artificial neural networks (ANNs) are biological neural networks
like computational models. They constitute the most important
information-processing technology in the fields of artificial intel-
ligence (AI) and machine learning. There has been dramatic
progress in the field of AI recently, which is expected to become
increasingly ubiquitous in our day-to-day lives in the near
future.[1]

ANNs are comprised of a network of neural nodes, which are
interconnected by weighted synapses. Architectures of ANNs are
classified into feedforward networks[2] and recurrent networks.[3]

These two networks excel at different types of computational
tasks. In feedforward networks, individual input data is proc-
essed independently, even though it could be provided sequen-
tially to the network. Hence, they are suitable for static or
non-temporal data processing. Recurrent neural networks
(RNNs) are able to embed temporal dependence of the inputs

into their dynamical behavior and hence
are capable of representing dynamical sys-
tems driven by sequential inputs due to
their feedback connections. Hence, RNNs
are suitable for dynamic (temporal) data
processing.

Initially, reservoir computing (RC) was
an RNN-based framework and hence is suit-
able for temporal/sequential information
processing.[4] RNNmodels of echo state net-
works (ESNs)[5] and liquid state machines
(LSMs)[6] were proposed independently.
These aforementioned models led to the
development of the unified computational
framework of RC.[7] The backpropagation
decorrelation (BPDC)[8] learning is also
viewed as a predecessor of RC.

The input data is transformed into spatio-
temporal patterns in a high-dimensional
space by an RNN in the reservoir (Figure 1a).

Subsequently, the spatiotemporal patterns generated are ana-
lyzed for a matching pattern in the readout. The input weights
and the weights of the recurrent connections in the reservoir are
fixed. The only weights that need to be trained are the weights in
the readout layer. This can be done using a simple algorithm-like
linear regression. This offers an inherent advantage, since such
simple and fast training reduces the computational cost of learn-
ing compared with standard RNNs.[9] RC models have been used
for various computational problems such as temporal pattern
classification, prediction, and generation. However, to maximize
the effectiveness of a certain RC system, it is necessary to appro-
priately represent sample data and optimize the design of the
RNN-based reservoir.[7]

Specifically, the role of the reservoir is to nonlinearly trans-
form sequential inputs into a high-dimensional space such that
the features of the inputs can be read out efficiently using a sim-
ple learning algorithm. Hence, instead of traditional RNNs, other
nonlinear dynamical systems can also play the role of reservoirs.
Physical RC systems using reservoirs are in vogue at this time
with multiple research communities reporting such physical
RC systems.[10,11] One of the motivations for this interest in phys-
ical RC systems is to realize fast information processing systems
with low learning cost. Traditional hardware implementations of
reservoirs that require training the readout layer often demanded
power-hungry neuromorphic hardware.[12,13] On the contrary,
physical implementation of reservoirs can be achieved using a
variety of physical phenomena in the real world, because a mech-
anism for adaptive changes for training is not necessary.

Memristors are two terminal devices having the capability to
change their resistance when subjected to a voltage bias.[14,15]
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Memristors can be broadly classified into volatile and non-volatile
memristors based on whether they are able to maintain their resis-
tive state upon the removal of the electrical bias.[16] A memristor’s
resistance is governed by the ion configuration inside the dielectric
and/or dielectric/electrode interfaces.[15,17] The internal redistribu-
tion of oxygen ions or metal cations inside the device leads to
change in the resistivity and the overall device resistance. The
compact device structure and the ability to both store and process
information at the same physical locations make memristors and
memristor crossbar arrays attractive candidates for neuromorphic
computing applications. Recently, several synaptic functions
of a biological synapse have been emulated by memristor-based
synapses. These functions include, but are not limited to, paired
pulse facilitation/paired pulse depression (PPF/PPD),[18]long-
term potentiation/long-term depression (LTP/LTD),[18–20] and
spike time dependent plasticity (STDP).[18,20] Recently, there have
also been several reports of novel artificial neurons based on
metal-insulator-transition (MIT, e.g., Nb2O5,

[21]VO2
[22]), ferromag-

netic,[23] phase change materials,[24] as well as diffusive memris-
tors.[25] Accordingly, memristor-based neural networks have been
built following the tenets of ANN[26–29] and a few that can be clas-
sified as SNN.[30–33]

Very interestingly, memristors have also been used for build-
ing a physical RC system.[34] It was used to demonstrate Modified

National Institute of Standards and Technology (MNIST) hand-
written digit classification with an accuracy of 88% on a reduced
MNIST dataset of 14 000 training samples and 2000 test samples.
In this interesting demonstration, the readout was still imple-
mented in software. In addition, although the memristors used
in this study had short-term memory effects, they had a long
decay time, which resulted in a longer pattern-to-pattern period
and thus an extra time cost. A volatile and yet faster device might
be better suited for an RC system. There are several memristors
that are inherently volatile and nonlinear[35] and are hence suit-
able naturally to serve the role of a reservoir.

In this article, we discuss a physical implementation of a RC
system where a diffusive memristor-based reservoir was equipped
with drift memristor-based 1T1R (1 Transistor 1 Memristor) read-
out layer. The input to the reservoir was provided in the form of
bitstreams. These bitstreams were provided in the form of engi-
neered waveforms, which took advantage of the rich short-term
dynamics of the device. The readout system was in situ trained
to classify the temporal-version of MNIST handwritten digits.
An accuracy of 83% for the complete MNIST dataset was achieved
using hardware drift memristor-based 1T1R readout layer.

In this work, the short-term dynamics of a volatile memristor
are harnessed to build the reservoir of our RC system. Diffusive
memristors are a class of volatile memristors whose switching is

Figure 1. Reservoir computing system based on diffusive memristor: a) Schematic of an RC system, showing the reservoir with internal dynamics and a
readout function. The weight matrix connecting the reservoir state and the output needs to be trained. b) Equivalent schematic of a simplified system
where the reservoir is populated with nodes with recurrent connections having a magnitude less than 1. c) The conductivity of the diffusive memristor is
influenced by the periodic voltage stimulation that is provided on its top electrode (þ) while grounding the bottom electrode (�). In the top panel, in two
consecutive time slots, a voltage stimulus is provided. This results in a continuous Ag filament and high conductivity when the device state is analyzed in
the fourth time slot. In the middle panel, in three consecutive time slots, a voltage stimulus is applied resulting in a much thicker filament and even higher
conductivity when the device state is analyzed in the fourth time slot. In case of the bottom panel, a voltage stimulus is applied only in the first time slot.
When the device state is evaluated in the fourth time slot, the filament has already broken down resulting in very low conductivity. This is because the
device has enough time to relax back to its initial high resistance state, owing to its volatile nature. The diffusive memristor is analogous to a node with a
recurrent connection having a weight less than 1. Hence, it is always decaying its state in every time frame unless a sufficiently large input is provided to
counteract the effect of the feedback.
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governed by fast diffusive species (e.g., Ag).[18,35,36] We use a SiOx

(doped with Ag)-based diffusive memristor to build our reservoir.
The temporal dynamics of this device has been investigated
through the demonstration of short-term plasticity (STP).[18] In
the STP demonstration, it had been shown that when several
pulses are applied at short intervals, the resistance will gradually
drop, whereas if there is a long time interval between consecutive
pulses, the device resistance increases during this time. An inter-
esting corollary of the former observation is that when the device is
being programmed, the state of the device does not only depend
on the programming pulse itself but also on whether other pro-
gramming pulses have been applied in the past. Thus, pulses that
were applied closer to the present time will have a stronger effect
compared to those that were applied in the far past. There is a
threshold to this effect as if the pulses were applied sufficiently
long time before the arrival of the next pulse pattern, then the
device will have enough time to return to its initial high resistance
state. It is hence reasonable to compare a diffusivememristor with
a neuron having a recurrent connection with a weight less than 1
(Figure 1b). Such a recurrent node would continuously decay its
state if not provided with an input. More specifically, the diffusive
memristor will have a thicker filament or a higher conductivity if it
is continuously subjected to pulses, whereas if sufficiently long
time is spent before the application of a new pulse, the filament
breaks down (Figure 1c).

If we refer to Figure 1c and analyze the state of the diffusive
memristor on the application of a pulse train, we find that when
we apply two pulses (top panel) in the first and second time frames
consecutively and check the state of the memristor at the fourth
time frame, the memristor still has an intact filament and the con-
ductivity is relatively high. When we apply three pulses (middle
panel) in the first, second, and third time frames, respectively,
the memristor has a thicker filament, indicating a higher conduc-
tivity than the former case. On the contrary, when we apply only
one pulse (bottom panel) during the first time frame and consider
the state of the memristor in the fourth time frame, we find that
the filament has broken down and conductivity of the device is very
low. These scenarios are akin (considering that all input pulses are
identical) to what will happen in case of a recurrent node with a
recurrent weight having a magnitude less than 1. In the first case,
by the fourth time frame, the state of the node would decrease
twice. In the second case, by the fourth time frame, the state of
the node would decrease once. In the third case, by the fourth time
frame, the state of the node would decrease thrice.

Physically, a single diffusive memristor populates the reser-
voir of our RC system. Thus, the state of the reservoir is decided
by the resistance state of the device. Once the bit-coded pulse
streams are applied to the reservoir input, the state of the reser-
voir is dependent on the input patterns and can be used to ana-
lyze the input. When a pulse is applied, the conductance of the
device will increase. If many pulses are applied within a short
interval, a large increase in conductance can be achieved;
whereas if the inter-pulse distance is sufficiently large, the device
relaxes back to its initial high-resistance state.

We devised our experiments based on these aforementioned
observations. We have specifically tested the response of our res-
ervoir to 16 4-bit patterns. The 4-bit patterns were encoded into a
pulse stream where the high bits are represented by a high pulse
and low bits are represented by 0 voltage (Figure 2a,b). The state

of the diffusive memristor is read after the application of the
encoded pulse stream through a read pulse (0.1 V).

A set of three experiments were devised to investigate the effect
of waveform design on the filament evolution of the diffusive
memristor. In the first set of experiments, we had applied pulses
of 200 μs with 100 μs inter-pulse distance (Figure S1b, Supporting
Information). In the second set of experiments, we had applied
pulses of 100 μs with 100 μs inter-pulse distance (Figure 2a). The
first set of experiments led to a random distribution of the read
currents (Figure S1a, Supporting Information), whereas the
second set of experiments led tomore uniform distribution of read
currents (Figure 2c). This can be explained by the fact that the
complete rupture of the filament in the diffusivememristor is sub-
stantially random, whereas the thinning of the filament is more
predictable. This happened because in the first set of experiments
the state of the memristor was read hundreds of microseconds
after the bit pattern was applied, whereas in the second case
the state of the memristor was read 5 μs after the bit pattern
was applied. Hence, the first set of experiments allowed the device
to relax more (filament got ruptured) than the second set of experi-
ments and that led to more nonuniform read currents.

Although the read current distribution of the second set
of experiments was relatively more uniform compared with
the first set, there were several outliers in the data that needed
to be removed to make this data suitable for further application.
A third set of experiments were devised where we used an initial
excitatory pulse (0.8 V, 700 μs). This long relatively low voltage
pulse excited the device to a partially conductive state after
which the aforementioned coded pulse patterns were applied
(Figure 2b). This set of experiments yielded a much more
uniform set of read currents as shown (Figure 2d). The device
conductance was read at two points. One was in the 30 μs read
voltage window that was applied right after the bit pattern termi-
nated, and another point was in a 200 μs read voltage window
that was applied hundreds of microseconds after the bit pattern
terminated. The conductivity of the device was less uniform in
the read window that was applied later compared to the former.
This can be explained again using the rationale that relaxation of
the device is stochastic in nature and the relaxation dynamics of
the device dominate the current distribution relatively to a higher
extent in the latter read window. The filament is not completely
ruptured but just thinned.

We then used the read current data that we had gathered from
our initial set of experiments for the purpose of MNIST handwrit-
ten digit classification. The recorded read currents from the afore-
mentioned experiments can be thought of as responses of the
reservoir to a combination of black and white pixels. The white
and black pixels are represented by a high write pulse (1.25 V,
50 μs) and no pulse (0 V amplitude), respectively. Each MNIST
handwritten digit image has 28� 28 pixels. Each image is cropped
to 22� 20 pixels and then binarized in a software program
(Figure 3a). The columns are then divided into five sets of four
columns each and then joined one above the other to form a
110(22� 5)� 4 matrix. All these 4-bit rows in this matrix are a
subset of the 4-bit patterns that have been applied to the diffusive
memristor-based RC system. The corresponding currents for each
row are extracted in a randommanner from a set of 100 measured
read current values (for a certain bit pattern). These current values
are then applied to the input of 220 (110� 2 memristor per
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differential pair)� 10 Fully Connected Neural Network
(Figure 3b), where each differential pair represents a single signed
weight of the 1T1R network. The fully connected layer serves the
role of the readout where the classification is performed. During
readout, the output neurons of the fully connected 1T1R crossbar
applied softmax activations to the dot product of the 220 inputs
and the weights associated with each output neuron. The readout
layer is trained in a supervised fashion based on error backpropa-
gation that uses RMS prop method to minimize a cross-entropy
loss (see Experimental Section) that updates the conductance of
1T1R every mini-batch. This process is repeated with two epochs
of passing all the 60 000 handwritten digits from the MNIST

training data set, and it is then tested with 10 000 digits from
the MNIST test set.

The 1T1R readout layer quickly learns the classification with
temporal feature maps in the experimental testing. The experi-
mental accuracy/loss curve tightly follows the simulation that
uses software reservoir neurons and software readout, or software
readout alone (Figure 4a,b), indicating robust in situ learning of
the 1T1R array using a one-shot blind weight update.[37–39] After
the training, the network could correctly classify �83% of the
MNIST test set. The misclassifications were mainly with identi-
fying digit “5” or “8” as “3,” which are also hard to be distin-
guished by human beings at the 20� 16 resolution (Figure 4c).

Figure 2. Waveform Design for the Reservoir: First set data can be found in Figure S1, Supporting Information. a) Schematic illustration of second set
waveforms. 100 μs, 1.25 V pulses signify 1, whereas 0 V pulse signifies 0. The 4-bit patterns are encoded in the form of four pulses. The first pulse in the
pattern signifies the most significant bit (MSB), whereas the last pulse in the pattern signifies the least significant bit (LSB). As an example, in the topmost
pulse pattern, the MSB is high or “1,” whereas the LSB is low or “0.” Pre-Read pulses are applied to ensure that the device is at its initial state before the
application of a new pulse. The horizontal dashed red line indicates the end of the bit pattern. After the application of the pulse pattern with a 4-bit pattern
encoded, the state of the memristor is read at two points. The first one is a fast read that is done around 5 μs after the pulse pattern ends, and the second
one is a slow read that is done around 300 μs after the pulse pattern ends. The top panel shows the pattern. The bottom three panels show the current
responses of the reservoir to the applied bit patterns. The applied bit patterns are (from top to bottom) 1110, 1001, and 0011. b) Schematic illustration of
third set waveforms. 100 μs, 1.25 V pulses signify 1, whereas 0 V pulse signifies 0. In this set of experiments, a 700 μs, 0.8 V excitatory pulse is applied at
the beginning of the pattern to ensure that the device is in an already low resistance state. The 4-bit patterns are encoded in the form of four pulses. The
first pulse in the pattern signifies the MSB or the most significant bit, whereas the last pulse in the pattern signifies the LSB or the least significant bit. As
an example, in the topmost pulse pattern, the MSB is high or “1,” whereas the LSB is low or “0.” Pre-Read pulses are applied to ensure that the device is at
its initial state before the application of a new pulse. The horizontal dashed red line indicates the end of the bit pattern. After the application of the pulse
pattern with a 4-bit pattern encoded, the state of the memristor is read at two points. The first one is a fast read that is done right after the pulse pattern
ends, and the second one is a slow read that is done around 300 μs after the pulse pattern ends. The top panel shows the pattern. The bottom three panels
show the current responses of the reservoir to the applied bit patterns. The applied bit patterns are (from top to bottom) 1110, 1001, and 0011. c) The
distribution of current responses of a diffusive memristor corresponding to all possible 4-bit inputs including those illustrated in panel (a). One hundred
measurements were experimentally conducted for each 4-bit input at the fast read. d) The distribution of current responses of a diffusive memristor
corresponding to all possible 4-bit inputs for this set of data including those shown in panel (b). One hundred measurements were experimentally
conducted for each 4-bit input at the fast read.
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The effect of the training is also reflected by the broadened quasi-
normal distribution of the weights of the readout layer (Figure 4d).

A significant advantage of using the RC system is the reduc-
tion of network size and training cost. A conventional neural net-
work for this task will have 440� 2 (22� 20� 2) inputs
corresponding to the 440 pixels (differential pairs) andminimum
10 outputs. Even without any hidden layers, that is, with the 440
inputs directly connected to the 10 outputs forming a 440� 10
network, 4440 weights need to be trained. This number will grow
very quickly if one or more hidden layers are used. In the RC
system, the spatial information is encoded in the temporal
domain so a smaller network (e.g., a 220� 10 readout function
with only 2200 weights) needs to be trained, while the reservoir
consisting of only one memristor does not need training.

In conclusion, we have developed an RC system by using a
diffusive memristor reservoir element. The rich dynamics of
the diffusive memristor empowers the reservoir to faithfully
extract critical features from the inputs. The extracted features
are inherently encoded in the form of currents that are then pro-
vided to a drift memristor-based 1T1R layer for classification. We
use this reservoir system for a MNIST handwritten digit classifi-
cation task. The entire training dataset of 60 000 images is used
to train the network, followed by which 10 000 images are used

for testing the network. An accuracy of 83% has been achieved
using our RC system.

Experimental Section

Fabrication: The diffusive memristor devices were fabricated on a p-type
(100) Si wafer with 100 nm thermal oxide. The bottom electrodes were
patterned by photolithography, followed by evaporation and liftoff of
�20/2 nm Pt/Ti. The �16 nm thick doped dielectric layer was deposited
at room temperature by reactively co-sputtering SiO2 and Ag in Ar. The
�25 nm Pd top electrodes were subsequently patterned by photolithogra-
phy, followed by evaporation and liftoff processes. Electrical contact pads of
the bottom electrodes were first patterned by photolithography and
then subjected to reactive ion etching with mixed CHF3 and O2 gases. The
synapses were built by integrating drift memristors with foundry-made tran-
sistor arrays using back-end-of-the-line (BEOL) processes. Each Pd/Ta2O5/
Ta memristor[40] was connected to a series n-type enhancement-mode
transistor. Figure 3c shows the detailed structure of a single 1T1R cell
and associated connections. When all the transistors are turned on, the
1T1R array works as a fully connected memristor crossbar.

Measurement Set-Up: An in-house measurement system was built to
electrically read and write the 1T1R chip.[41] The system featured
128þ 64þ 64-way concurrent analog voltage inputs (up to �10 V) with
a minimum pulse width of�100 ns and parallel current sensing capability.
Each row wire or gate wire of the 1T1R memristor array could be

Figure 3. Schematic of the diffusive memristor-based dynamic reservoir for classifying MNIST-based temporal sequences. a) The original 28� 28 image
is binarized and cropped to size 22� 20, before being divided into five columns and sequentially joined with each other. The resultant 110� 4 input is
then converted to 110 4-bit temporal voltage patterns as inputs to diffusive memristors. The current responses of the diffusive memristors are used to in
situ train the 1T1R crossbar array. b) Optical micrograph of the 128� 64 1-transistor 1-memristor (1T1R) crossbar with the probe card landed. The color
blocks illustrate the sub-array used for implementing the readout layer, consisting of 110� 20 devices using differential pairs. c) Scanning electron
micrograph of a single 1T1R cell in (b). 1T1R cells of the same row share the common bottom bit line, while those of the same column share the
common word line and memristor top electrode (TE) line. Scale bar: 20 μm.
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independently configured for voltage biasing, ground, or high-impedance.
For voltage biasing, each wire was driven by a channel of a digital-to-analog
converters (DAC) (LTC2668, Analog Devices). The DAC communicates with
the micro-controller unit (MCU) via digital I/O ports. A fast trigger pulse
controlled by the MCU allowed a minimum�100 ns DAC pulse generation.
Each column wire of the 1T1R memristor array could be independently con-
figured for voltage biasing, ground, high-impedance, or current sensing. The
voltage biasing was implemented in the same manner with the row or gate
wires. For current sensing, each column wire connected to one of the four
transimpedance amplifiers (TIAs) (LTC6268, Analog Devices) with different
gains. The voltage outputs of the TIAs were read by the analog-to-digital
converters (ADCs) (MAX11046, Maxim Integrated) and fetched by the
MCU via its digital I/O before being sent back to the computer.

For comparison, the same number (i.e., 110) of software non-leaky
integrator neurons was used. For the i-th software neuron with a 4-bit
input stream xit (where 1≤ t≤ 4), the neuron output was the sumP

1≤ t≤4x
i
t. Both experimental and software neuron outputs were normal-

ized to voltages that the maximum voltage of each kind was 0.1 V, before
being fed to the 1T1R array.

The voltage pulses applied to the diffusive memristors and the currents
across them were generated and measured with a Keysight B1530 wave-
form generation function measurement unit (WGFMU), which supports
concurrent voltage sourcing and current sensing. The Keysight B1530 was
controlled by a customized software that passes the data of measured cur-
rents to a customized MATLAB program that communicates with an MCU
via serial ports. The digital IOs of the MCU connected to the printed circuit
boards (PCB) comprising of DACs, ADCs, and TIAs, which drive the 1T1R
array via a probe card.

Basic Electrical Array Operations: The basic electrical operations of the
1T1R memristor array included potentiation programming, weight readout,
and vector matrix multiplication. All operations were performed by the mea-
surement system with the aid of the on-chip transistors. For potentiation
programming, the memristor array was programmed row by row.[42]

To program a selected row, all row wires was floated, except the selected
one, which was grounded. Each gate wire was assigned a different voltage
based on the targeted conductance of the associated memristor. All column
wires (TEs of memristors) were biased with the same SET voltages. Therefore,
this scheme programmed all memristors of the same row simultaneously.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Figure 4. In situ training of diffusive memristor reservoir with 1T1R fully connected array for MNIST classification. a) The in-batch accuracy along the
2-epoch in situ training. The experimental curve tightly follows the simulation. b) The loss along the training. c) The inference result on classifying the
MNIST test set. d) The distribution of the weights of the 1T1R fully connected layer prior to and after the training.
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