

1 Sulfate Radical-Induced Destruction of Emerging Contaminants Using Traces

2 of Cobalt Ions as Catalysts

3 Yong Feng^{1,2}, Guang-Guo Ying^{1,2}, Zequn Yang³, Kaimin Shih^{3,*}, Hailong Li⁴, Deli Wu⁵

4 ¹SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical
5 Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of
6 Environment, South China Normal University, Guangzhou 510006, China

⁷ ²School of Environment, South China Normal University, University Town, Guangzhou
⁸ 510006, China

9 ³Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong,
10 China

11 ⁴School of Energy Science and Engineering, Central South University, Changsha 410083,
12 China

13 ⁵State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental
14 Science & Engineering, Tongji University, Shanghai 200092, China

15

16 *Submitted to Chemosphere*

17 Contacts:

18 Dr. Yong Feng (fengy@scnu.edu.cn)

19 Prof. Kaimin Shih (kshih@hku.hk)

20

21 *Corresponding author:

22 Professor Kaimin Shih

23 Phone: +852-2859-1973

24 Fax: +852-2559-5337

25 E-mail: kshih@hku.hk

26 WORD COUNTs:

27 Text about 4735 w

28 Acknowledgements) + 6 Figures = 6535 words

29 **ABSTRACT**

30 Cobalt is part of vitamin B12, which is essential to maintain human health, and trace levels of
31 cobalt ions are ubiquitous in water and soil environments. In this study, the destruction of 1,4-
32 dioxane (1,4-D) by peroxyomonosulfate (PMS) under the catalysis of trace levels of Co^{2+} was
33 investigated under buffered conditions. The results showed that near 100% removal of 1,4-D
34 was achieved after reaction for 6 and 10 min with 50 and 25 $\mu\text{g/L}$ Co^{2+} , respectively, in the
35 presence of 5 mM phosphate ions. Mechanism studies revealed that radicals mediated the
36 destruction of 1,4-D and sulfate radicals were the primary reactive species. The traces of Co^{2+}
37 had the greatest reactivity for the catalysis of PMS in neutral environments (pH 7.0). However,
38 pH 5.5 was observed to be the best condition for 1,4-D destruction, which was probably caused
39 by the involvement of phosphate radicals. Common water components including chloride ions
40 and bicarbonate ions were observed to have promoting and inhibiting effects, respectively, on
41 the removal of 1,4-D. To further demonstrate the potential of Co^{2+} -PMS in practical
42 applications, we explored the simultaneous degradation of 20 antibiotics using trace levels of
43 Co^{2+} . The results showed that all the investigated antibiotics, except for lomefloxacin, could
44 be efficiently degraded by Co^{2+} -PMS with removal rates of greater than 97%. The findings
45 from this study demonstrate the promise of using trace levels of cobalt for environmental
46 remediation applications, even when high concentrations of phosphate ions are co-present.

47

48

49

50

51

52 **Keywords:** 1,4-Dioxane; Antibiotics; Sulfate radicals; Degradation; Persulfate; Emerging
53 contaminants

54 **1. Introduction**

55 1,4-Dioxane (1,4-D), a cyclic compound, is widely employed as an organic solvent in many
56 industrial products. It is also commonly used to stabilize chlorinated solvents, particularly
57 1,1,1-trichloroethane, and is generated as a by-product in a wide range of consumer products
58 (Mohr et al., 2010; Milavec et al., 2019). Due to the improper treatment of industrial wastes
59 and organic solvents, leakage of 1,4-D into the environment has been documented (Mohr et al.,
60 2010). 1,4-D is resistant to microbial treatment and has a very low soil sorption partition
61 coefficient, which renders itself highly mobile in environmental matrices (Adamson et al.,
62 2015). 1,4-D is miscible in water and has a low octanol–water partition coefficient (K_{ow} , $10^{0.27}$)
63 and low vapor pressure (37 mmHg, 25 °C), which makes itself difficult to be removed by
64 conventional physical purification technologies, such as adsorption and air stripping (Sekar
65 and DiChristina, 2014). In addition, traditional oxidants having a standard reduction potential
66 of lower than 2.0 V are generally considered ineffective for the treatment of 1,4-D (Eberle et
67 al., 2016). Although this substance has been recognized as a drinking water contaminant since
68 1978, a very recent study showed that the 1,4-D level in the drinking water of near 30 million
69 people in the United States exceeds the health-based reference regulation (McElroy et al., 2019).

70

71 1,4-D has been classified as a carcinogen (Class 2B) and listed as an emerging contaminant by
72 the U.S. EPA (Patton et al., 2016). Advanced oxidation processes (AOPs), particularly those
73 relying on strong oxidizing radicals, such as hydroxyl radicals ($\cdot OH$, $E^0 (\cdot OH/OH^-) = 1.8-2.7$
74 V) and sulfate radicals (SO_4^{2-} , $E^0 (SO_4^{2-}/SO_4^{2-}) = 2.5-3.1$ V) (Buxton et al., 1988) (Neta et al.,
75 1988), are compelling technologies for the treatment of recalcitrant contaminants and have
76 been investigated to degrade 1,4-D. To generate $\cdot OH$ for 1,4-D degradation, sonication (Son et
77 al., 2006), Fenton reagents (Merayo et al., 2014), photocatalysis (Barndők et al., 2016), and
78 UV-assisted Fenton-like reactions (Patton et al., 2018) have been studied. Although $\cdot OH$ is

79 highly reactive toward 1,4-D $[(1.1\text{-}2.4) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}]$ (Adams et al., 1994), the application
80 of $\cdot\text{OH}$ -based AOPs in practical applications suffers from known scavenging problems due to
81 the ubiquitous presence of radical scavengers (Hodges et al., 2018). Compared with $\cdot\text{OH}$ ($t_{1/2}$
82 $= 10^{-3} \mu\text{s}$), $\text{SO}_4^{\cdot-}$ is more selective and has a significantly longer lifetime ($t_{1/2} = 30\text{-}40 \mu\text{s}$).
83 However, the later reactive species is significantly less investigated for 1,4-D removal
84 (Cashman et al., 2019). The generation of $\text{SO}_4^{\cdot-}$ usually depends on the activation of either
85 peroxydisulfate (PDS) or peroxymonosulfate (PMS) (Wang et al., 2014). Among the persulfate
86 technologies reported for 1,4-D degradation, iron is the most commonly used material.
87 Different forms of iron, such as Fe^{2+} (Zhao et al., 2014), zero-valent iron (Pang et al., 2019),
88 iron oxides (Zhong et al., 2015), and iron minerals (Feng et al., 2018a), have been tested.
89 Although decent performance was achieved, iron does not demonstrate true catalytic activity
90 in these studies; the regeneration of ferrous iron is thermodynamically unfavourable and iron
91 sludge is accumulated after neutralization (Hou et al., 2017).

94
95 Since its first-time application in pollutant removal (Anipsitakis and Dionysiou, 2003), the
96 combination of PMS with Co^{2+} has been known for its powerful oxidizing capability. A similar
97 performance could be achieved between the combinations of Co^{2+} -PMS and Fe^{2+} - H_2O_2 even if
98 the concentration of Co^{2+} is 100 times lower than that of the Fe^{2+} (Bandala et al., 2007). This
99 is not only because of the efficient activation of PMS by Co^{2+} to generate $\text{SO}_4^{\cdot-}$ (Eq. 1), but also
100 because of the thermodynamic feasible reduction of Co^{3+} [$E^0(\text{Co}^{3+}/\text{Co}^{2+}) = 1.92 \text{ V}$] by PMS
101 (Eq. 2) [$E^0(\text{HSO}_5^-/\text{SO}_4^{2-}) = 1.75 \text{ V}$] (Anipsitakis and Dionysiou, 2004). In addition, aqueous
102 Co^{2+} ions are stable under aerobic conditions; the oxidation of Co^{2+} by dissolved molecular
103 oxygen is extremely slow ($10^{-20.8} \text{ M}^{-1} \text{ s}^{-1}$) (Rosso and Morgan, 2002). Although Co^{2+} can serve

104 as a real catalyst, its remanence in water solutions after treatment is a concern because of the
105 potential toxicity of elevated levels of cobalt ions, which greatly limits its practical application.
106 To this end, various solid Co-containing activators, such as cobalt oxides (Pang et al., 2020),
107 cobalt bimetallic oxides (Ren et al., 2015), and Co-doped carbonaceous materials (Li et al.,
108 2016), have been prepared and tested for PMS activation. However, trace levels of cobalt ions
109 are still leached out even from stable Co-doped carbonaceous materials. For example, around
110 230 $\mu\text{g/L}$ of cobalt ions were leached out from a highly efficient cobalt-graphene material (Li
111 et al., 2018b). As the leaching seems inevitable, the purpose of this study was to examine the
112 oxidative capability of PMS under the catalysis of trace levels of Co^{2+} ($\leq 50 \mu\text{g/L}$) with 1,4-D
113 and antibiotics as the target emerging contaminants. Antibiotics are widely used and frequently
114 detected in the environments (Zhang et al., 2015), which is a great health concern. The
115 concentration of Co^{2+} investigated in this study is lower than the level of Co^{2+} (usually greater
116 than 100 $\mu\text{g/L}$) used to homogeneously catalyse PMS in literatures (Chen et al., 2019) and is
117 comparable with the actual cobalt concentrations in various environmental matrices,
118 particularly in soils and sediments (Collins and Kinsela, 2010; Izah et al., 2016).
119

120 **2. Experimental section**

121 **2.1 Chemicals**

123 PMS (Oxone ($2\text{KHSO}_5 \cdot \text{KHSO}_4 \cdot \text{K}_2\text{SO}_4$))), anhydrous 1,4-D (99.8%), sodium bicarbonate (99.5-
124 100.5%), sodium thiosulfate ($\geq 99\%$), nitrobenzene (99%), and sodium chloride ($\geq 99.8\%$)
125 were supplied by Sigma-Aldrich (St. Louis, MO, USA). *tert*-Butanol (99.5%) and 2,4-
126 dinitrophenylhydrazine (98%) were obtained from Aladdin Corp. (Shanghai, China).
127 Potassium iodide (99.8%) and sulfuric acid (98%) were purchased from BDH Chemicals
128 (Poole, UK). Cobalt(II) nitrate hexahydrate (99%) and liquid chromatography (LC)-mass
129 spectrometry (MS)-grade acetonitrile (methanol) were obtained from Merck Corp. (Darmstadt,

130 Germany). Twenty antibiotics with high purity (Table S1) were supplied by Dr. Ehrenstorfer
131 GmbH (Germany).

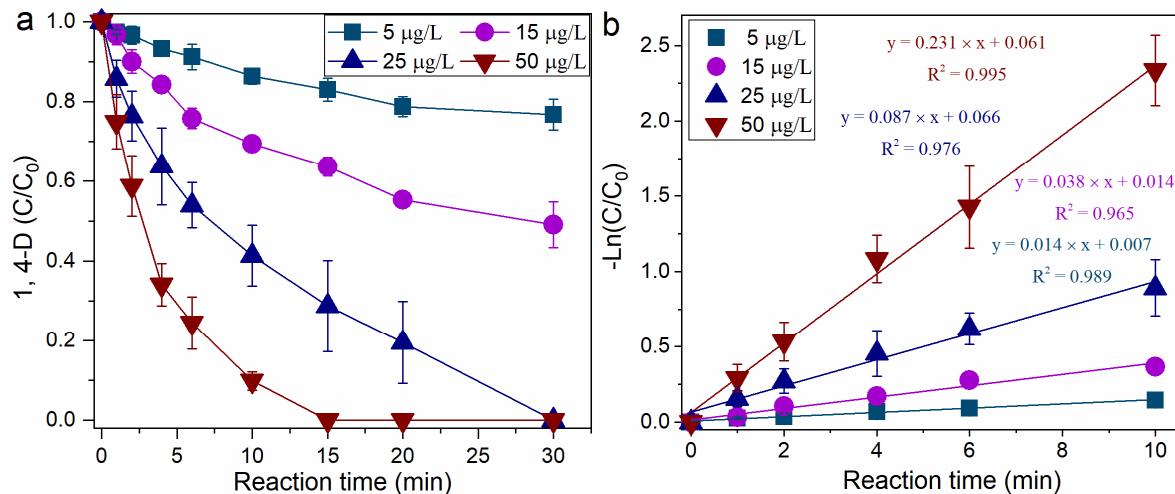
132

133 2.2 Catalytic and degradation experiments

134 All the catalytic destruction reactions were conducted in 200-mL glass reactors at ambient
135 temperature (25 ± 1 °C). The stock solutions of PMS (0.5 M), Co^{2+} (0.1 M), and 1,4-D (10 g/L)
136 were prepared in advance by dissolving desired doses of Oxone, $\text{Co}(\text{NO}_3)_2$ powders, and
137 anhydrous 1,4-D, respectively, in ultrapure water. Typically, ultrapure water (100 mL) was
138 transferred to the reactor, followed by the addition of 1,4-D, PMS, and phosphate buffer. The
139 pH value of the resulting solution was adjusted when necessary using diluted NaOH and H_2SO_4
140 solutions. To initiate catalytic and destruction reactions, Co^{2+} ($\text{Co}(\text{NO}_3)_2$ solution) was then
141 added to the system. Liquid samples (1 mL) were collected using a pipette, transferred to LC
142 auto-sampler vials (2 mL), and quenched immediately using excess sodium thiosulfate. The
143 resulting samples were analysed within 30 min.

144

145 During the study of antibiotics, a stock solution containing 20 antibiotics (2 mg/L for each
146 antibiotic) was prepared by dissolving desired amounts of chemical powders in LC-MS-grade
147 methanol. To investigate their degradation by Co^{2+} -PMS, the antibiotic stock solution was then
148 dried under nitrogen flow and redissolved in ultrapure water to achieve a target concentration
149 of 50 $\mu\text{g/L}$ for each compound. Before the analysis, the samples withdrawn were diluted with
150 LC-MS-grade methanol and ultrapure water for 50 times (the diluted samples contained 50%
151 of methanol (v/v)). Other steps were the same as that for the catalytic removal of 1,4-D.


152

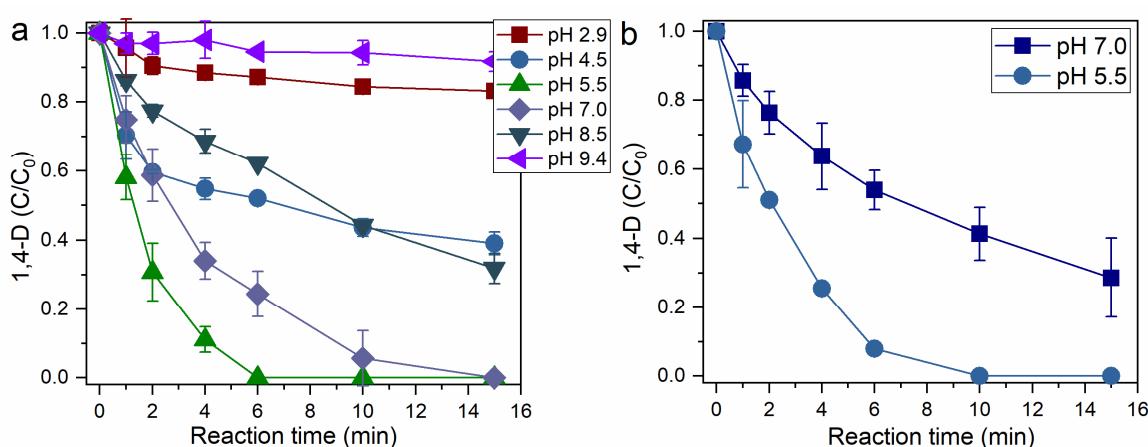
153 2.3 Analysis of chemicals

154 1,4-D was measured using an Agilent 1260 Infinity II high-performance LC (HPLC) system
155 equipped with a diode array detector (DAD) and an auto-sampler. A ZORBAX Eclipse XDB-
156 C18 column (4.6 × 150 mm, 5 μ m) was used for the separation. HPLC-grade acetonitrile and
157 ultrapure water (10:90, v/v) were used as the mobile phase with a flow rate of 1 mL/min at a
158 column temperature of 30 °C. The DAD wavelength was set at 190 nm. The retention time of
159 1,4-D was around 2.4 min and the detection limit of 1,4-D was lower than 0.2 mg/L. PMS was
160 quantified spectrometrically using an iodometric approach (Liang et al., 2008). The total
161 organic carbon (TOC) was quantified using a TOC analyser (Shimadzu TOC-L series) via the
162 combustion catalytic oxidation approach. Formaldehyde (HCHO) was quantified after reaction
163 with 2,4-dinitrophenylhydrazine, details of which can be found in our previous publication
164 (Feng et al., 2017a).

165

166 Twenty antibiotics were measured using an Acquity ultra-performance LC (UPLC) I-Class
167 system coupled to a Xevo TQ-S triple quadrupole mass spectrometer (Waters Corp. Milford,
168 MA, USA) with electrospray ionization under a positive ionization mode (UPLC-(ESI⁺)-
169 MS/MS). The separation was conducted on an Acquity UPLC BEH C18 column (2.1 mm × 50
170 mm, 1.7 μ m). The quantification was carried out in multiple-reaction monitoring (MRM)
171 modes. Detailed MRM transitions and the retention time of antibiotics are listed in Table S1.
172 The injection volume of each sample was 2 μ L, and the column temperature was fixed at 40 °C.
173 The mobile phases consisted of ultrapure water (0.1% (v/v) formic acid, A) and methanol (B).
174 The gradient program of the mobile phase is listed in Table S2. Details of MS parameters
175 include a source temperature of 150 °C, a desolvation temperature of 500 °C, desolvation gas
176 flow of 1,000 L/h, and cone gas flow of 150 L/h. The quantification of limit for each antibiotic
177 was lower than 20 ng/L, and calibration curves were established with a series of concentrations
178 in the range of 20 to 1,000 ng/L.

179 **3. Results and discussion**180 **3.1 Catalytic destruction of 1,4-D**


181
182 **Figure 1. (a) Destruction of 1,4-D by PMS under the catalysis of different levels of Co^{2+} and**
183 **(b) the corresponding pseudo-first-order rate constants (slopes). Experimental conditions:**
184 **[PMS] = 2 mM, [1,4-D] = 5 mg/L, and 5 mM phosphate buffer at pH 7.0.**

185
186 PMS alone had no obvious capability to degrade 1,4-D (Feng et al., 2017a). The destruction of
187 1,4-D in Co^{2+} -PMS oxidation was investigated in the presence of different doses of Co^{2+} . As
188 shown in Fig. 1a, near 100% destruction of 1,4-D was achieved after reaction for 15 min with
189 50 $\mu\text{g}/\text{L}$ Co^{2+} and 2 mM PMS. When the concentration of Co^{2+} was reduced to 25 $\mu\text{g}/\text{L}$, similar
190 destruction performance was observed after reaction for 30 min. These phenomena suggest that
191 trace levels of Co^{2+} have great reactivity for 1,4-D destruction via the catalysis of PMS. The
192 destruction of 1,4-D by Co^{2+} -PMS was well modelled by the pseudo-first-order law (Fig. 1b).
193 By plotting $-\ln(\text{C}/\text{C}_0)$ versus reaction time (min), the pseudo-first-order rate constants with 5,
194 15, 25 and 50 $\mu\text{g}/\text{L}$ of Co^{2+} were calculated to be 0.014, 0.038, 0.087, and 0.231 min^{-1} (Fig.
195 1b), respectively.

196

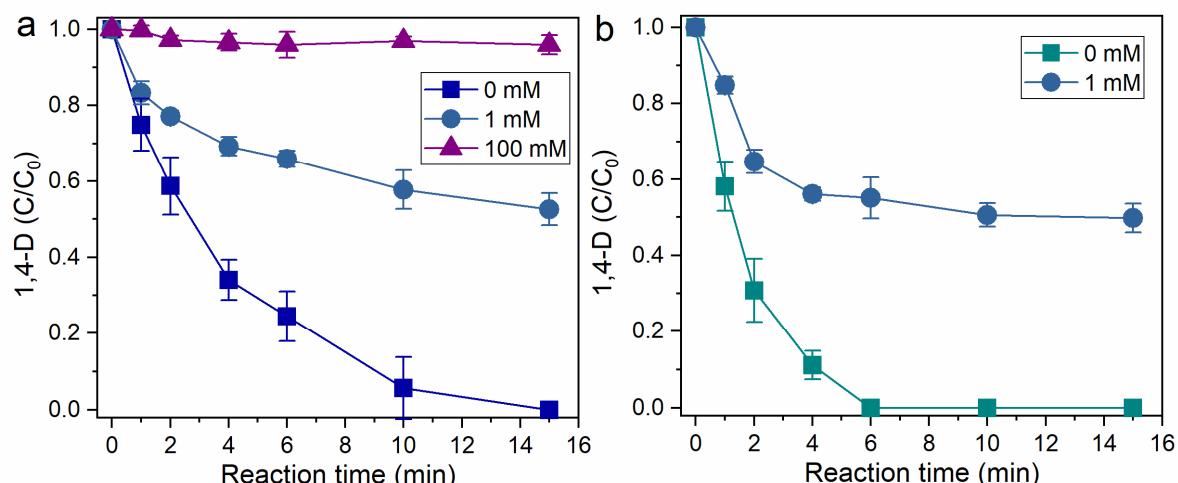
197

198

199 3.2 Effect of pH on Co^{2+} -PMS
200

201
202 **Figure 2.** (a) Reactivity of Co^{2+} -PMS under different pH values and (b) destruction of 1,4-D
203 by PMS under the catalysis of $25 \mu\text{g/L}$ Co^{2+} . Experimental conditions: $[\text{PMS}] = 2 \text{ mM}$, $[\text{Co}^{2+}]$
204 = (a) $50 \mu\text{g/L}$ and (b) $25 \mu\text{g/L}$, $[1,4\text{-D}] = 5 \text{ mg/L}$, 5 mM acetate buffer (pH 4.5), 5 mM phosphate
205 buffer (pH 5.5, 7.0, 8.5), and 5 mM boric buffer (pH 9.4).

206
207 Solution pH value is a key parameter in environmental redox chemistry. To fully demonstrate
208 the oxidative capability of Co^{2+} -PMS, we studied the destruction of 1,4-D under different pH
209 values. The results showed that both strongly acidic and alkaline environments were
210 detrimental to the destruction; overall removal rates of only around 13% and 9% were achieved
211 at the pH value of 2.9 and 9.4, respectively (Fig. 2a). The combination of Co^{2+} with PMS had
212 the best reactivity at pH 5.5; near 100% destruction of 1,4-D was observed after reaction for
213 only 6 min under the catalysis of $50 \mu\text{g/L}$ Co^{2+} . When $25 \mu\text{g/L}$ Co^{2+} was used, the reaction time
214 for completely removing 1,4-D at pH 5.5 was extended to 10 min (Fig. 2b). To reveal the
215 mineralization of 1,4-D, the removal of TOC was studied. The results demonstrated that only
216 around 14.5% of the TOC was removed after reaction for 15 min (Fig. S2). This removal rate
217 was significantly lower than the destruction rate of 1,4-D.


218

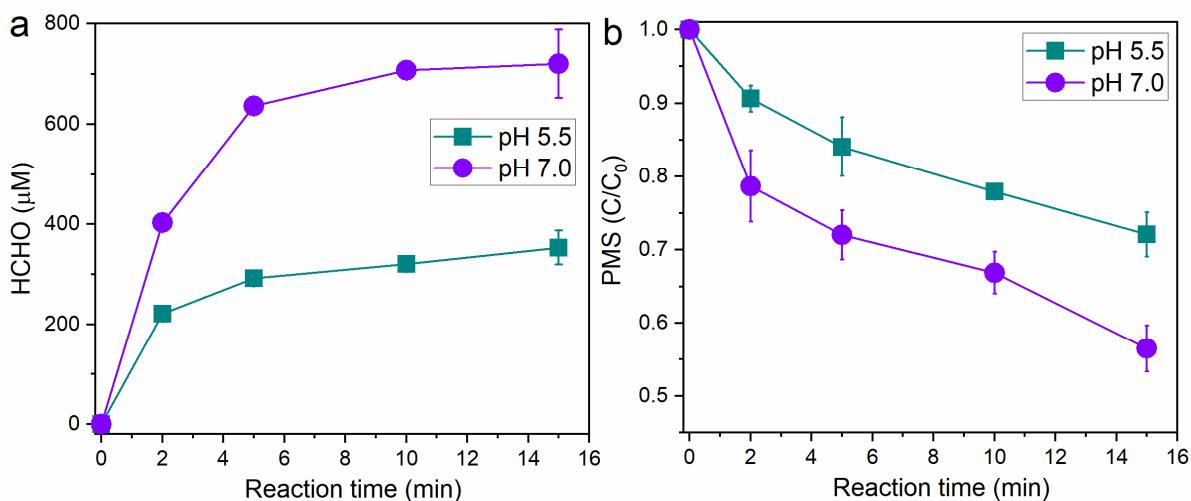
219 The $\text{p}K_{a,2}$ of PMS is around 9.4, and thus PMS primarily existed as HSO_5^- when the pH value
220 ranged from 2.9 to 8.5. 1,4-D has a $\text{p}K_a$ value of -2.92 (Perrin, 1972), which means that 1,4-D

221 existed as neutral molecules under the investigated pH conditions. The low reactivity at pH 2.9
 222 could be related to the stabilization effect of excess H^+ ions on the decomposition of PMS
 223 (Zhang et al., 2013). In the pH range of 5.5 to 8.5, the degradation obviously slowed down,
 224 which was probably caused by the variation in the speciation of cobalt ions.

225

226 3.3 Degradation mechanism and active species

227
 228 **Figure 3. Influence of methanol on the destruction of 1,4-D in Co^{2+} -PMS oxidation at pH (a)**
 229 **(b) 7.0 and (b) 5.5. Experimental conditions: $[\text{PMS}] = 2 \text{ mM}$, $[\text{Co}^{2+}] = 50 \mu\text{g/L}$, $[1,4\text{-D}] = 5 \text{ mg/L}$,**
 230 **and 5 mM phosphate buffer.**


231
 232 To examine the removal mechanism, the role of radicals in the degradation was investigated
 233 by conducting scavenging experiments. Methanol reacts rapidly with both $\text{SO}_4^{\cdot-}$ ($2.5 \pm 0.4 \times$
 234 $10^7 \text{ M}^{-1} \text{ s}^{-1}$) (Ross and Neta, 1979) and $\cdot\text{OH}$ ($9.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$) (Buxton et al., 1988), and thus
 235 this compound was used as a scavenger. The results revealed that the overall destruction rate
 236 of 1,4-D decreased from around 100% to 47% and 50% at pH 7.0 (Fig. 3a) and pH 5.5 (Fig.
 237 3b), respectively, in the presence of 1 mM methanol. When methanol was further increased to
 238 100 mM, near complete inhibition of the degradation was observed (Fig. 3a). In addition to
 239 radicals, singlet oxygen (${}^1\text{O}_2$) (Zhou et al., 2015), superoxide radicals ($\text{O}_2^{\cdot-}$), and
 240 peroxymonosulfate radical ($\text{SO}_5^{\cdot-}$) were proposed to be generated as reactive species during the

241 activated decomposition of PMS. However, $^1\text{O}_2$ -mediated oxidation cannot be quenched by
242 methanol (Zhou et al., 2015), and therefore, the involvement of $^1\text{O}_2$ can be excluded.
243 Meanwhile, the contribution of O_2^- ($E^0(\text{O}_2^-/\text{O}_2) = -0.33$ V) (Wardman, 1989) and SO_5^-
244 ($E^0(\text{SO}_5^-/\text{HSO}_5^-) = 1.1$ V) (Neta et al., 1988) to the degradation of organic contaminants in
245 homogeneous systems is usually negligible due to their low oxidation potential and rapid
246 transformation (Qin et al., 2018). Therefore, it can be concluded that radicals (SO_4^- , $\cdot\text{OH}$) were
247 key to the destruction of 1,4-D, which confirms the findings by Cashman et al. (Cashman et al.,
248 2019).

249

250 *tert*-Butanol, without an α -hydrogen in its structure, is usually the alcohol used to reveal the
251 contribution of SO_4^- . However, our experiments showed that *tert*-butanol had significant
252 interference in the analysis of 1,4-D, and therefore, nitrobenzene was instead used to further
253 differentiate the produced radicals. In our previous work, nitrobenzene has shown effectiveness
254 in the differentiation of SO_4^- and $\cdot\text{OH}$ (Feng et al., 2017b); nitrobenzene can be rapidly
255 oxidized by $\cdot\text{OH}$ ($3.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$), but is not very reactive toward $\text{SO}_4^- (< 10^6 \text{ M}^{-1} \text{ s}^{-1})$ (Neta
256 et al., 1977; Buxton et al., 1988). When Co^{2+} was absent, only 3.2% of the nitrobenzene was
257 removed by PMS alone (Fig. S1). When 50 $\mu\text{g/L}$ of Co^{2+} is co-present with PMS, 27.1% of the
258 nitrobenzene (0.1 mM) was degraded (Fig. S1). Under identical conditions, near 100% of the
259 1,4-D (5.68 μM) was removed by Co^{2+} -PMS (Fig. 3a). For the oxidation of 1,4-D and
260 nitrobenzene by radicals, SO_4^- has a relatively greater rate constant with 1,4-D [$(4.1-5.7) \times 10^7$
261 $\text{M}^{-1} \text{ s}^{-1}$] (Huie et al., 1991) and $\cdot\text{OH}$ is relatively more reactive toward nitrobenzene (3.9×10^9
262 $\text{M}^{-1} \text{ s}^{-1}$) (Buxton et al., 1988). Therefore, the greater degradation of 1,4-D than nitrobenzene
263 reveals that SO_4^- was the dominant radicals produced in Co^{2+} -PMS oxidation, which is in line
264 with Anipsitakis and Dionysiou's results (Anipsitakis and Dionysiou, 2003). However, the

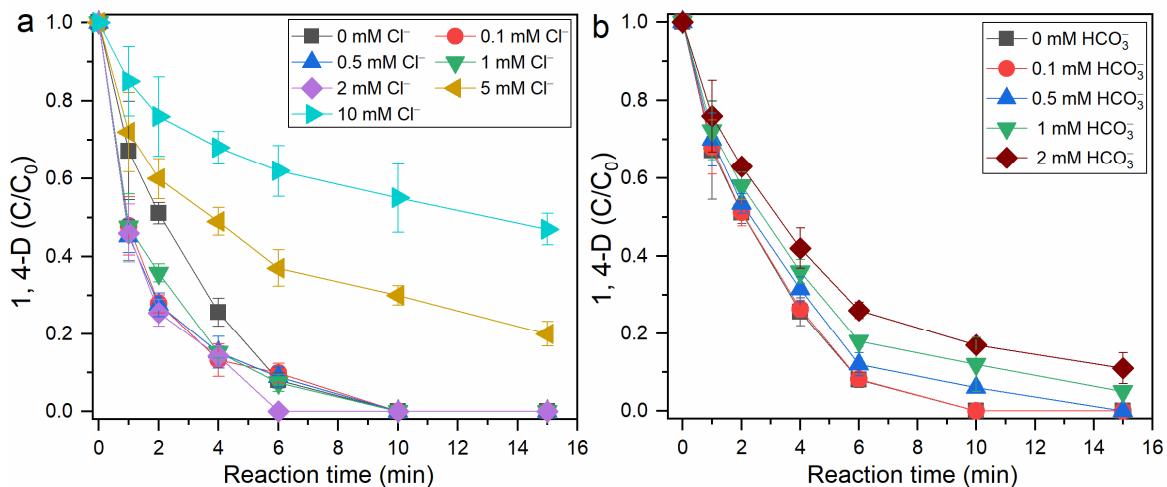
265 obvious degradation of nitrobenzene by Co^{2+} -PMS suggests that $\cdot\text{OH}$ was also involved, which
 266 was probably due to the interaction of $\text{SO}_4^{\cdot-}$ with OH^- . Meanwhile, the overall removal
 267 percentage of TOC was less than 15% (Fig. S2), which can be explained by the dominance of
 268 $\text{SO}_4^{\cdot-}$. Small-molecular carboxylic acids and esters were the major products of 1,4-D oxidation
 269 by $\text{SO}_4^{\cdot-}$ and $\cdot\text{OH}$ (Feng et al., 2017a), and in our previous work we have demonstrated that the
 270 degradation of ethers, such as ethylene glycol diformate, is much more difficult than that of
 271 1,4-D in $\text{SO}_4^{\cdot-}$ -mediated oxidation (Feng et al., 2017a). In addition, $\text{SO}_4^{\cdot-}$ is also relatively low
 272 reactive toward common carboxylic acids, such as acetic acid ($4.3 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) (Huie and
 273 Clifton, 1990).

274
 275 **Figure 4.** (a) Generation of HCHO from methanol oxidation by Co^{2+} -PMS under different pH
 276 values and (b) the corresponding decomposition of PMS. Conditions: $[\text{PMS}] = 2 \text{ mM}$, $[\text{Co}^{2+}]$
 277 = 50 $\mu\text{g/L}$, $[\text{methanol}] = 0.25 \text{ M}$, and 5 mM phosphate buffer.

278
 279 To further examine the catalysis of PMS by Co^{2+} , we quantified the produced reactive species
 280 using excess methanol as a substrate. Under the attack of radicals, methanol is oxidized to
 281 HCHO (Feng et al., 2017a). The results showed that HCHO was generated at both pH values,
 282 but the overall HCHO produced at pH 7.0 (720.1 μM) was much greater than that produced at
 283 pH 5.5 (349.5 μM , Fig. 4). Correspondingly, more rapid decomposition of PMS occurred at
 284 pH 7.0. According to Eq. 3, the stoichiometric efficiencies at pH 7.0 and 5.5 were calculated

285 to be around 83% and 63%, respectively. The generation of one mole of $\text{SO}_4^{\cdot-}$ and regeneration
286 of Co^{2+} requires two moles of PMS (Eqs. 1 and 2), the high stoichiometric efficiencies recorded
287 in this study probably suggest the involvement of other species, such as $\text{CH}_2\text{OH}\cdot$, in the
288 reduction of Co^{3+} . In addition, high-valent metal complexes are proposed to be generated as
289 one of the oxidizing species during the interaction of some transition metals with PMS (Feng
290 et al., 2018b; Li et al., 2018a), and thus the possible formation of $\text{Co}^{\text{IV}}=\text{O}$ in Co^{2+} -PMS
291 oxidation needs to be explored in future studies (Brunschwig et al., 1983; Pfaff et al., 2011).

292 Stoichiometric efficiency = $\frac{\Delta[\text{HCHO}]}{\Delta[\text{PMS}]}$ (3)

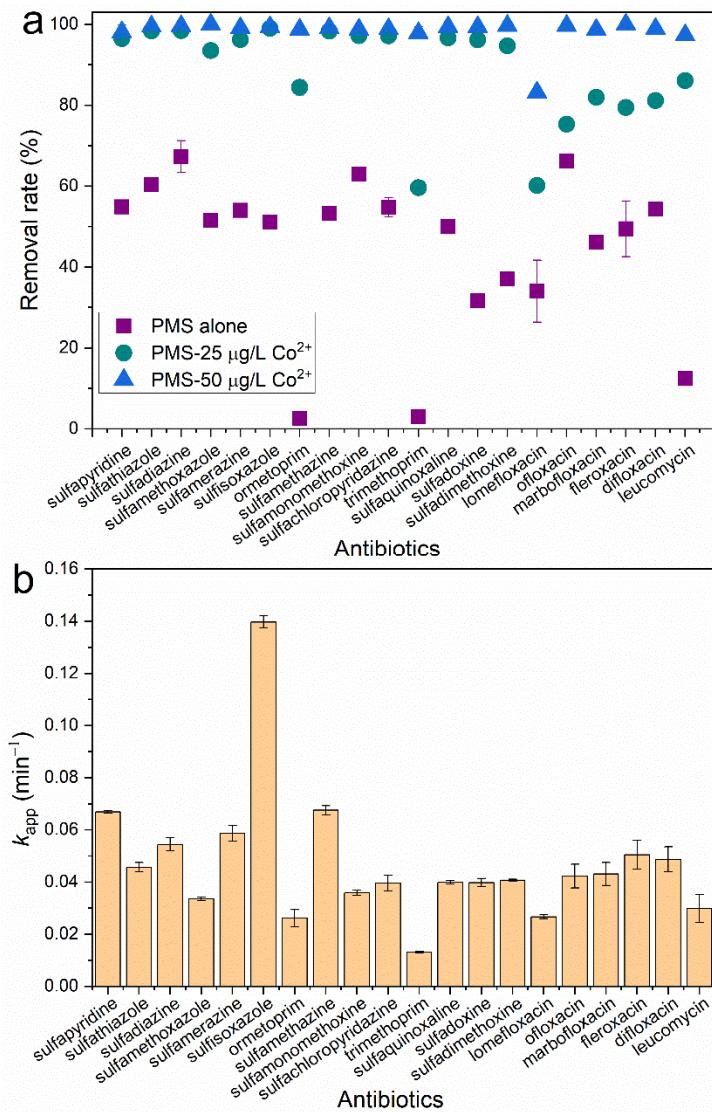

293
294 The much greater generation of HCHO at pH 7.0 seems contrary with the destruction of 1,4-
295 D observed in Fig. 2. As a relatively high level of phosphate buffer (5 mM, [phosphate
296 buffer]/[1,4-D] = 88) was present, this discrepancy probably resulted from the scavenging
297 effect of phosphate ions. The second-order rate constant between $\text{SO}_4^{\cdot-}$ and HPO_4^{2-} is $(1.2 \pm$
298 $0.3) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$, and the rate constant of $\text{SO}_4^{\cdot-}$ with 1,4-D is $(4.1\text{-}5.7) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$. Under
299 the attack of $\text{SO}_4^{\cdot-}$, phosphate ions were transferred to phosphate radicals. According to the fast
300 acid-base equilibria shown in Eq. 4 (Cencione et al., 1998), the primary phosphate radicals at
301 pH 5.5 and pH 7.0 were $\text{H}_2\text{PO}_4^{\cdot}$ and HPO_4^{\cdot} , respectively. The destruction of 1,4-D by $\text{SO}_4^{\cdot-}$
302 mainly proceeded via hydrogen abstraction (Huie et al., 1991). $\text{H}_2\text{PO}_4^{\cdot}$ may have similar
303 abstraction reactivity to $\text{SO}_4^{\cdot-}$, but the reactivity of HPO_4^{\cdot} and PO_4^{2-} are much weaker
304 (Maruthamuthu and Neta, 1978). For example, the rate constants for the oxidation of α , α , α -
305 trifluorotoluene by $\text{SO}_4^{\cdot-}$, $\text{H}_2\text{PO}_4^{\cdot}$, HPO_4^{\cdot} , and PO_4^{2-} were $(2 \pm 1) \times 10^7$, $(3.5 \pm 0.5) \times 10^7$, $(2.7$
306 $\pm 0.5) \times 10^6$, and $(9 \pm 1) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ (Rosso et al., 1999), respectively. When the pH value
307 rose from 5.5 to 7.0, the produced primarily phosphate radicals shifted from $\text{H}_2\text{PO}_4^{\cdot}$ to HPO_4^{\cdot} ,
308 which led to a decrease in the reactivity of the reaction system. However, the generation of
309 phosphate radicals could be ignored when a high level of methanol (0.25 M) was present.

310 Therefore, it can be concluded that the combination of Co^{2+} with PMS had the greatest
 311 reactivity at pH 7.0.

313

314 3.4 Effects of chloride and bicarbonate ions

315
 316 **Figure 5. Effects of (a) Cl^- and (b) HCO_3^- on the destruction of 1,4-D in Co^{2+} -PMS oxidation.**
 317 Experimental conditions: $[\text{PMS}] = 2 \text{ mM}$, $[\text{Co}^{2+}] = 25 \mu\text{g/L}$, $[1,4\text{-D}] = 5 \text{ mg/L}$, and 5 mM
 318 phosphate buffer (pH 5.5). The pH value of the 1,4-D solutions that contain phosphate buffer
 319 (5 mM), varied levels of bicarbonate, and PMS was adjusted to 5.5 before the spiking of Co^{2+}
 320 to initiate catalytic degradation.


321
 322 Chloride ions (Cl^-) are ubiquitous in various water bodies and are common scavengers for
 323 radicals, particularly for $\text{SO}_4^{\cdot-}$. Excess Cl^- ions react rapidly with $\text{SO}_4^{\cdot-}$ ($3.1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$) to
 324 generate chloride radicals [$\text{Cl}_2^{\cdot-}, E^0(\text{Cl}_2^{\cdot-}/2\text{Cl}^-) = 2.09 \text{ V}$] and $\text{Cl}_2^{\cdot-}$ is less reactive than $\text{SO}_4^{\cdot-}$
 325 [$E^0(\text{SO}_4^{\cdot-}/\text{SO}_4^{2-}) = (2.5 - 3.1) \text{ V}$]. In previous publications, both promoting and inhibition
 326 effects of Cl^- on $\text{SO}_4^{\cdot-}$ -mediated oxidation have been reported (Chan and Chu, 2009; Feng et
 327 al., 2018c). To demonstrate the capability of Co^{2+} -PMS for practical applications, the influence
 328 of Cl^- on the destruction of 1,4-D was studied. The results showed that Cl^- with concentrations
 329 in the range of 0.1 to 2 mM had no inhibitory effect on the degradation (Fig. 5a). Instead, a
 330 slight promoting effect, particularly in the presence of 2 mM Cl^- , was observed. As discussed

331 above, H_2PO_4^- probably contributed to the degradation. The slight promoting effect possibly
332 resulted from the reduced generation of H_2PO_4^- and the involvement of Cl_2^- . When the
333 concentration of Cl^- was further increased to 5 and 10 mM, significant inhibitory effects were
334 observed, which is consistent with our previous studies (Feng et al., 2017a; Feng et al., 2018a).
335 Although the active chlorine species (e.g., Cl_2^- and HClO) generated in the presence of chloride
336 ions are capable of oxidizing some organic contaminants and may even show promoting effects
337 (Yuan et al., 2011; Huang et al., 2017; Sheng et al., 2018; Yang et al., 2018), these species are
338 more selective than SO_4^{2-} and are relatively low reactive toward 1,4-D. Cl_2^- oxidizes 1,4-D at a
339 second-order rate constant of $(3.3 \pm 0.18) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ (Patton et al., 2016), and this value is
340 significantly lower than the constant between SO_4^{2-} and 1,4-D $[(4.1-5.7) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}]$.

341

342 In addition to Cl^- , HCO_3^- ions are usually expected to consume radicals significantly in natural
343 water. Meanwhile, HCO_3^- reacts with SO_4^{2-} $[(4.6 \pm 0.5) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}]$ (Shafirovich et al., 2001)
344 to generate less oxidizing carbonate radicals (CO_3^{2-} , $E^0 = (\text{CO}_3^{2-}/\text{CO}_3^{2-}) = 1.57 \text{ V}$) (Armstrong
345 et al., 2013). Therefore, the influence of HCO_3^- on the destruction of 1,4-D was also studied.
346 Results demonstrated that, in contrast to the promoting effect, the addition of HCO_3^- inhibited
347 the destruction of 1,4-D (Fig. 5b). When HCO_3^- was in the range of 0.1 to 2 mM, the inhibitory
348 extent was positively correlated with the concentration of HCO_3^- . These obvious scavenging
349 effects could be explained by the consumption of SO_4^{2-} and the much weaker oxidative
350 capability of CO_3^{2-} . The levels of Cl^- and HCO_3^- studied in this study are compatible with their
351 contents in groundwater and surface water (Yang et al., 2015).

352

353
354
355
356
357

Figure 6. (a) Simultaneous removal of 20 antibiotics by Co^{2+} -PMS and (b) their corresponding pseudo-first-order rate constants. Experimental conditions: $[\text{PMS}] = 1 \text{ mM}$, [each antibiotic] = $50 \mu\text{g/L}$, and reaction time = (a) 60 min and (b) 30 min. The initial pH value of the solution containing 20 antibiotics was not adjusted after the addition of PMS.

358
359
360
361
362
363
364

One characteristic with the pollution of antibiotics is their relatively low concentrations and coexistence of various categories with different properties. To further demonstrate the practical applicability, we investigated the simultaneous degradation of 20 antibiotics by Co^{2+} -PMS. The antibiotics investigated here are widely used in China (Zhang et al., 2015). The results showed that most of the antibiotics could be degraded by unactivated PMS, although the removal rates (35 to 70%, Fig. 6a) are not satisfying. Antibiotics including ormetoprim, trimethoprim, and

365 leucomycin were relatively more resistant to PMS oxidation. When Co^{2+} ions were added as
366 catalysts, the degradation of all the investigated antibiotics was significantly increased. The
367 overall degradation rates of ormetoprim, trimethoprim, and leucomycin were increased from
368 2.5%, 3.1%, and 12.4% to 84.4%, 59.7%, and 86.0%, respectively, in the presence of 25 $\mu\text{g/L}$
369 Co^{2+} . The degradation rates of all the antibiotics, except for lomefloxacin, were greater than
370 97% when the concentration of Co^{2+} further rose to 50 $\mu\text{g/L}$. Kinetic investigations
371 demonstrated that the destruction of antibiotics followed pseudo-first-order kinetics at the
372 beginning 30 min. The obtained pseudo-first-order constants reveal that sulfisoxazole and
373 trimethoprim were the easiest and most difficult compounds, respectively, to be degraded by
374 Co^{2+} -PMS (Fig. 6b).

375

376 **4. Conclusions**

377 Trace levels of Co^{2+} were used as catalysts for PMS decomposition to degrade 1,4-D. The
378 combination of PMS with Co^{2+} had a wide effective pH range (4.5 to 8.5); the pH value is
379 typically found in the terrestrial environment. On the basis of the experimental observations,
380 some conclusions can be drawn as follows:

381 (1) PMS could not obviously oxidize 1,4-D, and therefore unactivated PMS is inefficient to
382 degrade 1,4-D;

383 (2) Rapid destruction of 1,4-D was observed when PMS co-presented with trace levels of Co^{2+} ;
384 almost complete destruction was observed after reaction for only 6 min under the catalysis
385 of 50 $\mu\text{g/L}$ Co^{2+} ;

386 (3) Although trace levels of Co^{2+} could rapidly remove 1,4-D via catalysing PMS, their
387 reactivity is quite limited during the mineralization;

388 (4) The destruction of 1,4-D was mediated by radicals, and $\text{SO}_4^{\cdot-}$ was the dominant reactive
389 species;

390 (5) Although pH 5.5 was the optimum condition for 1,4-D degradation, the best pH condition
391 for the activation of PMS by Co²⁺ was 7.0;
392 (6) Compared with the other antibiotics investigated, ormetoprim, trimethoprim, and
393 leucomycin were relatively more difficult to be oxidized by unactivated PMS;
394 (7) Of the investigated antibiotics, lomefloxacin was the compound most difficult to be
395 degraded by Co²⁺-PMS. The overall degradation rates of all the other antibiotics were
396 greater than 97%.

397

398 **Acknowledgements**

399 This study was funded by the Research Grants Council of Hong Kong (Projects 106180082,
400 C7044-14G, and T21-711/16R) and the start-up fund from South China Normal University
401 (Project 8S0597).

402

403 **References**

404 Adams, C.D., Scanlan, P.A., Secrist, N.D., 1994. Oxidation and biodegradability enhancement of 1,4-
405 dioxane using hydrogen peroxide and ozone. *Environ. Sci. Technol.* 28, 1812-1818.

406 Adamson, D.T., Anderson, R.H., Mahendra, S., Newell, C.J., 2015. Evidence of 1,4-dioxane attenuation
407 at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. *Environ. Sci.*
408 *Technol.* 49, 6510-6518.

409 Anipsitakis, G.P., Dionysiou, D.D., 2003. Degradation of organic contaminants in water with sulfate
410 radicals generated by the conjunction of peroxymonosulfate with cobalt. *Environ. Sci. Technol.*
411 37, 4790-4797.

412 Anipsitakis, G.P., Dionysiou, D.D., 2004. Radical generation by the interaction of transition metals with
413 common oxidants. *Environ. Sci. Technol.* 38, 3705-3712.

414 Armstrong, D.A., Huie, R.E., Lymar, S., Koppenol, W.H., Merényi, G., Neta, P., Stanbury, D.M.,
415 Steenken, S., Wardman, P., 2013. Standard electrode potentials involving radicals in aqueous
416 solution: inorganic radicals. *BioInorganic Reaction Mechanisms* 9, 59-61.

417 Bandala, E.R., Peláez, M.A., Dionysiou, D.D., Gelover, S., Garcia, J., Macías, D., 2007. Degradation
418 of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process.
419 *J. Photochem. Photobiol. A. Chem.* 186, 357-363.

420 Barndők, H., Hermosilla, D., Han, C., Dionysiou, D.D., Negro, C., Blanco, Á., 2016. Degradation of
421 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO₂
422 composite with monodisperse TiO₂ nanoparticles. *Appl. Catal., B* 180, 44-52.

423 Brunschwig, B.S., Chou, M.H., Creutz, C., Ghosh, P., Sutin, N., 1983. Mechanisms of water oxidation
424 to oxygen: Cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. *J. Am. Chem.*
425 *Soc.* 105, 4832-4833.

426 Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for
427 reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ($\cdot\text{OH}/\cdot\text{O}^-$) in aqueous
428 solution. *J. Phys. Chem. Ref. Data* 17, 513-886.

429 Cashman, M.A., Kirschenbaum, L., Holowachuk, J., Boving, T.B., 2019. Identification of hydroxyl and
430 sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate
431 oxidant. *J. Hazard. Mater.* 380, 120875.

432 Cencione, S.S., Gonzalez, M.C., Martíre, D.O., 1998. Reactions of phosphate radicals with substituted
433 benzenes. A structure-reactivity correlation study. *J. Chem. Soc., Faraday Trans.* 94, 2933-2937.

434 Chan, K., Chu, W., 2009. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate:
435 Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic
436 heterogeneous process. *Water Res.* 43, 2513-2521.

437 Chen, M., Zhu, L., Liu, S., Li, R., Wang, N., Tang, H., 2019. Efficient degradation of organic pollutants
438 by low-level Co^{2+} catalyzed homogeneous activation of peroxyomonosulfate. *J. Hazard. Mater.* 371,
439 456-462.

440 Collins, R.N., Kinsela, A.S., 2010. The aqueous phase speciation and chemistry of cobalt in terrestrial
441 environments. *Chemosphere* 79, 763-771.

442 Eberle, D., Ball, R., Boving, T.B., 2016. Peroxone activated persulfate treatment of 1, 4-dioxane in the
443 presence of chlorinated solvent co-contaminants. *Chemosphere* 144, 728-735.

444 Feng, Y., Lee, P.H., Wu, D., Shih, K., 2017a. Surface-bound sulfate radical-dominated degradation of
445 1,4-dioxane by alumina-supported palladium ($\text{Pd}/\text{Al}_2\text{O}_3$) catalyzed peroxyomonosulfate. *Water Res.*
446 120, 12-21.

447 Feng, Y., Li, H.L., Lin, L., Kong, L.J., Li, X.Y., Wu, D.L., Zhao, H.Y., Shih, K., 2018a. Degradation
448 of 1,4-dioxane via controlled generation of radicals by pyrite-activated oxidants: Synergistic
449 effects, role of disulfides, and activation sites. *Chem. Eng. J.* 336, 416-426.

450 Feng, Y., Liao, C., Kong, L., Wu, D., Liu, Y., Lee, P.H., Shih, K., 2018b. Facile synthesis of highly
451 reactive and stable Fe-doped $\text{g-C}_3\text{N}_4$ composites for peroxyomonosulfate activation: A novel
452 nonradical oxidation process. *J. Hazard. Mater.* 354, 63-71.

453 Feng, Y., Wu, D., Zhou, Y., Shih, K., 2017b. A metal-free method of generating sulfate radicals through
454 direct interaction of hydroxylamine and peroxyomonosulfate: Mechanisms, kinetics, and
455 implications. *Chem. Eng. J.* 330, 906-913.

456 Feng, Y., Wu, D.L., Li, H.L., Bai, J.F., Hu, Y.B., Liao, C.Z., Li, X.Y., Shih, K., 2018c. Activation of
457 persulfates using siderite as a source of ferrous ions: Sulfate radical production, stoichiometric
458 efficiency, and implications. *ACS Sustain. Chem. Eng.* 6, 3624-3631.

459 Hodges, B.C., Cates, E.L., Kim, J.H., 2018. Challenges and prospects of advanced oxidation water
460 treatment processes using catalytic nanomaterials. *Nat. Nanotechnol.* 13, 642.

461 Hou, X., Huang, X., Jia, F., Ai, Z., Zhao, J., Zhang, L., 2017. Hydroxylamine promoted goethite surface
462 Fenton degradation of organic pollutants. *Environ. Sci. Technol.* 51, 5118-5126.

463 Huang, Y., Yang, F., Ai, L., Feng, M., Wang, C., Wang, Z., Liu, J., 2017. On the kinetics of organic
464 pollutant degradation with Co^{2+} /peroxyomonosulfate process: When ammonium meets chloride.
465 *Chemosphere* 179, 331-336.

466 Huie, R.E., Clifton, C.L., 1990. Temperature dependence of the rate constants for reactions of the sulfate
467 radical, SO_4^\cdot , with anions. *J. Phys. Chem.* 94, 8561-8567.

468 Huie, R.E., Clifton, C.L., Kafafi, S.A., 1991. Rate constants for hydrogen abstraction reactions of the
469 sulfate radical, SO_4^\cdot : Experimental and theoretical results for cyclic ethers. *J. Phys. Chem.* 95,
470 9336-9340.

471 Izah, S.C., Chakrabarty, N., Srivastav, A.L., 2016. A review on heavy metal concentration in potable
472 water sources in Nigeria: Human health effects and mitigating measures. *Exposure and Health* 8,
473 285-304.

474 Li, H., Shan, C., Pan, B., 2018a. Fe(III)-doped g-C₃N₄ mediated peroxyomonosulfate activation for
475 selective degradation of phenolic compounds via high-valent iron-oxo species. Environ. Sci.
476 Technol. 52, 2197-2205.

477 Li, X., Huang, X., Xi, S., Miao, S., Ding, J., Cai, W., Liu, S., Yang, X., Yang, H., Gao, J., Wang, J.,
478 Huang, Y., Zhang, T., Liu, B., 2018b. Single cobalt atoms anchored on porous N-doped graphene
479 with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 140, 12469-12475.

480 Li, X.N., Ao, Z.M., Liu, J.Y., Sun, H.Q., Rykov, A.I., Wang, J.H., 2016. Topotactic transformation of
481 metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient Fenton-
482 like catalysts. ACS Nano 10, 11532-11540.

483 Liang, C., Huang, C., Mohanty, N., Kurakalva, R.M., 2008. A rapid spectrophotometric determination
484 of persulfate anion in ISCO. Chemosphere 73, 1540-1543.

485 Maruthamuthu, P., Neta, P., 1978. Phosphate radicals. Spectra, acid-base equilibriums, and reactions
486 with inorganic compounds. J. Phys. Chem. 82, 710-713.

487 McElroy, A.C., Hyman, M.R., Knappe, D.R.U., 2019. 1,4-Dioxane in drinking water: Emerging for 40
488 years and still unregulated. Current Opinion in Environmental Science & Health 7, 117-125.

489 Merayo, N., Hermosilla, D., Cortijo, L., Blanco, Á., 2014. Optimization of the Fenton treatment of 1,4-
490 dioxane and on-line FTIR monitoring of the reaction. J. Hazard. Mater. 268, 102-109.

491 Milavec, J., Tick, G.R., Brusseau, M.L., Carroll, K.C., 2019. 1,4-Dioxane cosolvency impacts on
492 trichloroethene dissolution and sorption. Environ. Pollut. 252, 777-783.

493 Mohr, T.K., Stickney, J.A., DiGuiseppi, W.H., 2010. Environmental investigation and remediation: 1,4-
494 Dioxane and other solvent stabilizers. CRC Press.

495 Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in aqueous
496 solution. J. Phys. Chem. Ref. Data 17, 1027-1284.

497 Neta, P., Madhavan, V., Zemel, H., Fessenden, R.W., 1977. Rate constants and mechanism of reaction
498 of sulfate radical anion with aromatic compounds. J. Am. Chem. Soc. 99, 163-164.

499 Pang, Y., Kong, L., Chen, D., Yuvaraja, G., Mehmood, S., 2020. Facilely synthesized cobalt doped
500 hydroxyapatite as hydroxyl promoted peroxyomonosulfate activator for degradation of Rhodamine
501 B. J. Hazard. Mater. 384, 121447.

502 Pang, Y., Ruan, Y., Feng, Y., Diao, Z., Shih, K., Hou, L.a., Chen, D., Kong, L., 2019. Ultrasound
503 assisted zero valent iron corrosion for peroxyomonosulfate activation for Rhodamine-B degradation.
504 Chemosphere 228, 412-417.

505 Patton, S., Li, W., Couch, K.D., Mezyk, S.P., Ishida, K.P., Liu, H., 2016. Impact of the ultraviolet
506 photolysis of monochloramine on 1, 4-dioxane removal: New insights into potable water reuse.
507 Environ. Sci. Technol. Lett. 4, 26-30.

508 Patton, S., Romano, M., Naddeo, V., Ishida, K.P., Liu, H., 2018. Photolysis of mono-and dichloramines
509 in UV/hydrogen peroxide: Effects on 1, 4-dioxane removal and relevance in water reuse. Environ.
510 Sci. Technol. 52, 11720-11727.

511 Perrin, D.D., 1972. Dissociation constants of organic bases in aqueous solution: supplement 1972.
512 Butterworths.

513 Pfaff, F.F., Kundu, S., Risch, M., Pandian, S., Heims, F., Pryjomska-Ray, I., Haack, P., Metzinger, R.,
514 Bill, E., Dau, H., Comba, P., Ray, K., 2011. An oxocobalt(IV) complex stabilized by lewis acid
515 interactions with scandium(III) ions. *Angew. Chem. Int. Ed.* 50, 1711-1715.

516 Qin, W., Fang, G., Wang, Y., Zhou, D., 2018. Mechanistic understanding of polychlorinated biphenyls
517 degradation by peroxymonosulfate activated with CuFe₂O₄ nanoparticles: Key role of superoxide
518 radicals. *Chem. Eng. J.* 348, 526-534.

519 Ren, Y., Lin, L., Ma, J., Yang, J., Feng, J., Fan, Z., 2015. Sulfate radicals induced from
520 peroxymonosulfate by magnetic ferrospinel MFe₂O₄ (M = Co, Cu, Mn, and Zn) as heterogeneous
521 catalysts in the water. *Appl. Catal., B* 165, 572-578.

522 Ross, A.B., Neta, P., 1979. Rate constants for reactions of inorganic radicals in aqueous solution. US
523 Department of Commerce, National Bureau of Standards Washington D. C.

524 Rosso, J.A., Allegretti, P.E., Martire, D.O., Gonzalez, M.C., 1999. Reaction of sulfate and phosphate
525 radicals with α, α, α -trifluorotoluene. *J. Chem. Soc. Perkin Trans. 2* 2, 205-210.

526 Rosso, K.M., Morgan, J.J., 2002. Outer-sphere electron transfer kinetics of metal ion oxidation by
527 molecular oxygen. *Geochim. Cosmochim. Acta* 66, 4223-4233.

528 Sekar, R., DiChristina, T.J., 2014. Microbially driven Fenton reaction for degradation of the widespread
529 environmental contaminant 1,4-dioxane. *Environ. Sci. Technol.* 48, 12858-12867.

530 Shafirovich, V., Dourandin, A., Huang, W., Geacintov, N.E., 2001. The carbonate radical is a site-
531 selective oxidizing agent of guanine in double-stranded oligonucleotides. *J. Biol. Chem.* 276,
532 24621-24626.

533 Sheng, B., Huang, Y., Wang, Z., Yang, F., Ai, L., Liu, J., 2018. On peroxymonosulfate-based treatment
534 of saline wastewater: when phosphate and chloride co-exist. *RSC Adv.* 8, 13865-13870.

535 Son, H.-S., Choi, S.-B., Khan, E., Zoh, K.D., 2006. Removal of 1,4-dioxane from water using sonication:
536 Effect of adding oxidants on the degradation kinetics. *Water Res.* 40, 692-698.

537 Wang, Z., Bush, R.T., Sullivan, L.A., Chen, C., Liu, J., 2014. Selective oxidation of arsenite by
538 peroxymonosulfate with high utilization efficiency of oxidant. *Environ. Sci. Technol.* 48, 3978-
539 3985.

540 Wardman, P., 1989. Reduction potentials of one-electron couples involving free radicals in aqueous
541 solution. *J. Phys. Chem. Ref. Data* 18, 1637-1755.

542 Yang, F., Huang, Y., Fang, C., Xue, Y., Ai, L., Liu, J., Wang, Z., 2018. Peroxymonosulfate/base process
543 in saline wastewater treatment: The fight between alkalinity and chloride ions. *Chemosphere* 199,
544 84-88.

545 Yang, Y., Jiang, J., Lu, X., Ma, J., Liu, Y., 2015. Production of sulfate radical and hydroxyl radical by
546 reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. *Environ. Sci.*
547 *Technol.* 49, 7330-7339.

548 Yuan, R., Ramjaun, S.N., Wang, Z., Liu, J., 2011. Effects of chloride ion on degradation of acid orange
549 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated
550 aromatic compounds. *J. Hazard. Mater.* 196, 173-179.

551 Zhang, Q.Q., Ying, G.G., Pan, C.G., Liu, Y.S., Zhao, J.L., 2015. Comprehensive evaluation of
552 antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling,
553 and linkage to bacterial resistance. *Environ. Sci. Technol.* 49, 6772-6782.

554 Zhang, T., Zhu, H., Croué, J.P., 2013. Production of sulfate radical from peroxyomonosulfate induced
555 by a magnetically separable CuFe₂O₄ spinel in water: Efficiency, stability, and mechanism.
556 *Environ. Sci. Technol.* 47, 2784-2791.

557 Zhao, L., Hou, H., Fujii, A., Hosomi, M., Li, F., 2014. Degradation of 1, 4-dioxane in water with heat-
558 and Fe²⁺-activated persulfate oxidation. *Environ. Sci. Pollut. Res.* 21, 7457-7465.

559 Zhong, H., Brusseau, M.L., Wang, Y., Yan, N., Quig, L., Johnson, G.R., 2015. In-situ activation of
560 persulfate by iron filings and degradation of 1, 4-dioxane. *Water Res.* 83, 104-111.

561 Zhou, Y., Jiang, J., Gao, Y., Ma, J., Pang, S.Y., Li, J., Lu, X.T., Yuan, L.P., 2015. Activation of
562 peroxyomonosulfate by benzoquinone: A novel nonradical oxidation process. *Environ. Sci. Technol.*
563 49, 12941-12950.

564

565

566

List of Contents in Supporting Information

568 **Table S1.** UPLC-(ESI⁺)-MS/MS conditions for the analysis of the selected antibiotics.

569 **Table S2.** Gradient program of the mobile phase.

570 **Figure S1.** Degradation of nitrobenzene by PMS alone or Co²⁺-PMS. Experimental conditions:

571 [nitrobenzene] = 0.1 mM, [PMS] = 2 mM. [Co²⁺] = 50 µg/L, and pH = 2.9 (original pH value).

572 **Figure S2.** Removal of TOC by Co²⁺-PMS. Experimental conditions: [1,4-D] = 5 mg/L, [PMS] = 2

573 mM, [Co²⁺] = 50 µg/L, and 5 mM phosphate buffer at pH 5.5.