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ABSTRACT31

Nanoscale zero-valent iron (nZVI) is highly promising for oxidative removal of32

micropollutants by initiating advanced oxidation processes, but its vulnerability to deactivation33

due to the surface oxidation is challenging. In this study, we propose Fe0@Fe3O4 core-shell34

nanowires (CSNWs) as a novel activator to generate radicals for atrazine, a representative35

micropollutant, degradation via the activation of peroxymonosulfate (PMS). Fe0@Fe3O436

CSNWs with a shell thickness of around 5 nm were synthesized using a facile chemical37

reduction approach and were comprehensively characterized using a series of surface sensitive38

techniques. The results showed that the Fe0@Fe3O4 CSNW had great reactivity for atrazine39

degradation via the activation of PMS; near complete degradation of atrazine was achieved40

after reaction for only 2 min. Under identical conditions, the pseudo-first order rate constant41

with Fe0@Fe3O4 was more than 36 times greater than that with nano Fe3O4. The surface42

activation of PMS contributed only a small proportion to the overall degradation. Instead, the43

iron released from Fe0@Fe3O4 CSNWs primarily activated PMS to generate SO4
∙−  that44

degraded atrazine. The Fe0@Fe3O4 CSNWs were stable and no deactivation was observed after45

exposing Fe0@Fe3O4 CSNWs to air for 3 months. The results from this study demonstrate a46

stable nZVI for oxidative removal of organic contaminants.47

48
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1. Introduction50

The widely occurrence of trace levels of microorganic contaminants in various environmental51

matrices requires the development of highly efficient remediation technologies [1, 2]. Sulfate52

radical (SO4
∙−)-mediated treatments, recently emerged as a novel advanced oxidation process53

(AOP), have shown great promise in the degradation of various kinds of organic contaminants,54

such as antibiotics [3, 4] and endocrine disrupting chemicals [5, 6]. The generation of SO4
∙−55

depends on the activation of either peroxymonosulfate (PMS) or peroxydisulfate (PDS), and56

many activation technologies that rely on UV irradiation, heating, base, or transition metals57

have been proposed [7-9]. Of these activation technologies reported, the activation of PMS58

(PDS) by transition metals through an one-electron transfer mechanism (Eq. 1) [10-13] is very59

promising for practical environmental remediation applications, because such techniques do60

not require external energy and many of the transition metals are ubiquitous in soil and aquifers.61

Mn + HSO5
− → Mn+1 + SO4

∙− + OH−                                                                                     (1)62

63

Iron is an environmentally friendly and low-cost material. However, dissolved iron (e.g., Fe2+,64

Fe3+) [14] and iron oxides (e.g., Fe2O3 and Fe3O4) [15, 16] are relatively low efficient for SO4
∙−-65

mediated AOPs due to the thermodynamically unfavorable reduction of Fe3+ by persulfates and66

the strong scavenging effect of Fe2+ toward SO4
∙−  (4.6 × 109 M−1 s−1, Eq. 2) [17-19]. To67

accelerate the regeneration of Fe2+, many strategies, such as UV irradiation and addition of68

reducing agents [14, 20], have been reported. To mitigate the scavenging effect of Fe2+, we69

have previously used structural ferrous iron-containing minerals, such as pyrite [21] and70

siderite [22], as sources of Fe2+. However, the release of sulfate ions and bicarbonate ions may71

be a concern when high dosages of pyrite and siderite are used; bicarbonate ions are strong72

radical scavengers (𝑘HCO3−, SO4∙− = (9.1 ± 0.4) × 106 M−1 s−1) [23] and the resulting carbonate73

radical (CO3
∙−; E0 = 1.57 V) [24] is less oxidizing than SO4

∙− (E0 = 2.5-3.1 V) [25].74
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Fe2+ + SO4
∙− → Fe3+ + SO4

2−                                                                                                 (2)75

76

Nanoscale zero-valent iron (nZVI) has been used as an activator in AOPs, particularly hydroxyl77

radical (·OH)-mediated processes [26, 27]. For the generation of SO4
∙− via persulfate activation,78

nZVI has also been studied [28, 29]. Although both nZVI-PDS and nZVI-PMS combinations79

can degrade a serious of organic contaminants, the scavenging effect of excess nZVI has been80

reported [30, 31]. In addition, the high surface energy of nZVI rends it easily aggregate and81

passivate in AOPs [32-34], in which dissolved oxygen is ubiquitously present. To solve these82

problems, we here propose to use Fe0@Fe3O4 core-shell nanowires (CSNWs) to activate PMS.83

A Fe0@Fe3O4 CSNW consists of a Fe0 core and a surrounding thin shell of Fe3O4. Fe0@Fe3O484

CSNWs provide an efficient interface for electron transport. The Fe3O4 shell can be considered85

as an n-type semiconductor, which mediates the electrons transfer from the Fe0 core to the86

surface adsorbed contaminants [35, 36]. Therefore, the potential synergy between Fe0 and87

Fe3O4 may aid the circulation of iron at different valent states and thus improve the activation88

of PMS.89

90

In this study, Fe0@Fe3O4 CSNWs were synthesized using a facile reduction approach and were91

used, for the first time, to activate PMS for the degradation of target contaminant atrazine,92

which is a widely used herbicide and has been frequently detected in various environmental93

matrices [37]. The nanowires prepared were fully characterized using various surface-sensitive94

techniques and their reactivity was tested under varied experimental conditions. To explore the95

activation mechanism, classical scavenging experiments and kinetic studies were carried out.96

Finally, the transformation product of Fe0@Fe3O4 CSNWs was studied, and the electron97

transfer associated with the activation process was proposed.98

99
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2. Experimental section100

2.1 Chemicals101

OXONE, monopersulfate compound (KHSO5·0.5KHSO4·0.5K2SO4), ferrous sulfate102

heptahydrate (≥99.0%), sodium borohydride, sodium thiosulfate, nitrobenzene, and Pluronic103

F-127 were obtained from Sigma-Aldrich (St. Louis, MO, USA). Atrazine (97%) was supplied104

by TCI Ltd. (Shanghai, China). tert-Butanol (99.5%) was purchased from Aladdin Corp.105

(Shanghai, China). High-performance liquid chromatography (HPLC) grade methanol and106

sulfuric acid (2 M) were supplied by Fisher Scientific (Pittsburgh, PA, USA). Ultrapure water107

(18.0 MΩ · cm) for preparing experimental solutions was prepared using a Millipore water108

purification system.109

110

2.2 Synthesis and characterization of Fe0@Fe3O4 CSNWs111

Fe0@Fe3O4 CSNWs were synthesized using a facile reduction method. In a typical procedure,112

6 g of ferrous sulfate heptahydrate, 4.1 g of sodium borohydride, and 1 g of Pluronic F-127113

were dissolved in 50 mL, 10 mL, and 40 mL of ultrapure water, respectively. The resulting114

ferrous sulfate solution was then mixed with the F-127 solution, followed by the dropwise115

addition of the sodium borohydride solution to produce black powders. The black powders116

obtained were washed with pure ethanol and deoxygenated water to remove impurities. The117

resulting products were put in a freeze-drying device and dried for 12 h. The mechanism118

underling the formation of Fe3O4 layer on nano Fe0 cores is described by Eqs.3 and 4 [38].119

Nano Fe3O4 was synthesized using a solvothermal approach [39].120

2Fe0 + O2 → 2FeO                                                                                                                (3)121

6FeO + O2 → 2Fe3O4                                                                                                            (4)122

The purity and crystallinity of the synthesized sample were characterized using a D8 Advance123

X-ray diffractometer (Bruker, Karlsruhe, Germany) with a Cu X-ray tube at 40 mA and 40 kV.124
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The valent state of iron on the material surface was characterized using an ESCALAB 250XI125

X-ray photoelectron spectrometer (Thermo, Waltham, MA, USA) with Al−Kα radiation. The126

morphology was examined using a Hitachi S-4800 scanning electron microscope and a FEI127

Tecnai G2 20 S-TWIN transmission electron microscope. The measurement of128

Brunauer−Emmett−Teller specific surface area was carried out via N2 adsorption at 77 K using129

an ASAP 2460 surface area analyzer (Micromeritics, Norcross, GA, USA). The Fourier-130

transform infrared (FT-IR) spectra were recorded on a Spectrum 100 FT-IR spectrometer131

(PerkinElmer, Waltham, MA, USA). The Zeta potential was measured using a Malvern Zeta132

potential analyzer (Malvern, UK), and the point of zero charge (pHpzc) was estimated to be133

around 6.8.134

135

2.3 Degradation experiments136

Unless otherwise stated, all degradation reactions were conducted at room temperature (25 ± 1137

ºC) in 200 mL glass reactors. In a typical test, 100 mL of atrazine solution (500 μg/L) was138

added to the glass reactor, followed by the addition of PMS solution. The original pH value of139

the atrazine solution with PMS (1 mM) was around 3.0 and was further adjusted when140

necessary using a diluted NaOH or H2SO4 solution. Fe0@Fe3O4 CSNWs were then added to141

the solution to initiate activation and degradation reactions. Samples were withdrawn with142

syringes, filtered with PTFE membrane filters (0.22 µm), and transferred to autosampler vials143

(2 mL) for HPLC analysis. To prevent the atrazine from further degradation, excess sodium144

thiosulfate (10 μL, 0.5 M) was spiked to the vials. After the degradation reaction, the solid145

activators were recollected by vacuum filtration and dried in a freeze-drying device for further146

use. The degradation of atrazine by PMS alone is described in Note S1.147

148

149
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2.4 Chemical analysis150

Atrazine was measured using an Agilent 1260 Infinity II HPLC system equipped with a diode151

array detector (DAD) and an autosampler. The separation was carried out on a ZORBAX152

Eclipse XDB-C18 column (4.6 × 150 mm, 5 µm). A mobile phase consisted of HPLC-grade153

methanol and ultrapure water (60:40) was used for the elution. The flow rate and column154

temperature were fixed at 1 mL/min and 30 ºC, respectively. The DAD wavelength was set at155

222 nm. The retention time of atrazine was around 2.4 min. The solution pH was measured156

using an Orion 2-Star benchtop pH meter. PMS was quantified using an iodometric method157

[40], which is based on the quantification of I3−.158

159
3. Results and discussion160

3.1 Material characterization161

162
Figure 1. (a) Scanning electron microscopy, (b) transmission electron microscopy, (c) high-163

resolution transmission electron microscopy, and (d) selected area electron diffraction images164

of Fe0@Fe3O4 CSNWs. The inset in (a) shows the image of the synthesized Fe0@Fe3O4165

CSNWs.166
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The scanning electron microscopy image shows that the synthesized sample existed in167

nanowire structures with a length of 200 to 300 nm (Fig. 1a). The nanowires consisted of core-168

shell structures (Fig. 1b) with a shell thickness of around 5 nm (Fig. 1c). The composition of169

the shell layer was investigated using selected area electron diffraction and was found to be170

Fe3O4 (Fig. 1d). The transmission electron microscopy image of nano Fe3O4 is shown in Fig.171

S1, which reveals that the size of the nano Fe3O4 was generally in the range of 10 to 20 nm.172

173
Figure 2. (a) X-ray diffraction pattern and (b) X-ray photoelectron spectroscopy spectrum of174

fresh Fe0@Fe3O4 CSNWs.175

176

The X-ray diffraction pattern of the synthesized Fe0@Fe3O4 CSNW sample is shown in Fig.177

2a. A weak and broad peak at around 45º is observed, which is a characteristic peak of metallic178

Fe0 (JCPDS no. 87-722) [41]. The average size of the particle can be measured according to179

the Scherrer equation D = k(λ/β cos(θ)). Where λ is the X-ray wavelength equal to 0.154 nm,180

θ is the half diffraction angle, k is a constant equal to 0.89, and β is the full width at half181

maximum. When θ was at around 45º, β was measured to be 3.226. Therefore, the size of the182

metallic Fe0 (nZVI) was calculated to be around 17 nm, which is very close to the value183

observed in Fig. 1b. The X-ray diffraction pattern of nano Fe3O4 is shown in Fig. S2. This184

pattern confirms that pure nano Fe3O4 (JCPDS no. 19-0629) was successfully synthesized. The185

specific surface areas of Fe0@Fe3O4 CSNWs and nano Fe3O4 were measured to be 56.2 and186
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20.7 m3/g, respectively. Other physical-chemical properties of the activators, such as pore size,187

are listed in Table S1.188

189

The valent state of iron on Fe0@Fe3O4 CSNWs was investigated using X-ray photoelectron190

spectroscopy. The highly resolution X-ray photoelectron spectrum of Fe is shown in Fig. 2b.191

Two bands with banding energies at around 711.2 and 725.1 eV were assigned to Fe 2p3/2 and192

Fe 2p1/2 [42], respectively. These bands are the characteristic peaks of Fe(II) from FeO and193

Fe(III) from Fe3O4 [16], which consistently suggests that the shell layer of the Fe0@Fe3O4194

CSNWs is Fe3O4.195

196

3.2 Reactivity of Fe0@Fe3O4 CSNWs197

198
Figure 3. (a) Degradation of atrazine by Fe0@Fe3O4 CSNWs-activated PMS, (b) comparison199

of different activators for atrazine degradation via the activation of PMS, and (c) pseudo-first-200

order rate constants with different activators. Conditions: [PMS] = 1 mM, [atrazine] = 500201

µg/L, [Fe0@Fe3O4 CSNWs] = [nano Fe3O4] = 25 mg/L, [Fe2+] = 4 mg/L, and pH 3.0.202

203

Only slight degradation of atrazine (<1%) occurred in the presence of PMS alone (pH 3–4; Fig.204

S3), which is consistent with the fact that PMS has quite limited oxidative capability under205

acidic conditions [43]. Fe0@Fe3O4 CSNWs alone also had no obvious reactivity to remove206

atrazine (Fig. S4). When Fe0@Fe3O4 CSNWs were co-present with PMS, rapid degradation of207

atrazine was observed; near complete degradation of atrazine was achieved after reaction for 2208

min in the presence of 1 mM PMS and 50 mg/L Fe0@Fe3O4 CSNWs (Fig. 3a). This rapid209
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degradation of atrazine suggests the efficient reactivity of Fe0@Fe3O4 CSNWs toward PMS210

activation.211

212

To reveal the potential synergy between the Fe0 and Fe3O4 in Fe0@Fe3O4 CSNWs, we studied213

the degradation of atrazine in the presence of the synthesized nano Fe3O4. Under identical214

conditions, Fe0@Fe3O4 CSNWs had significant greater reactivity than nano Fe3O4 (Fig. 3b);215

approximately 100% degradation of atrazine was achieved with Fe0@Fe3O4 CSNWs-PMS216

after reaction for 6 min, while only 66% of the degradation was achieved with nano Fe3O4-217

PMS. Kinetics investigations revealed that the removal of atrazine followed pseudo-first-order218

kinetics in the tested time range. The pseudo-first-order kinetic constant with Fe0@Fe3O4219

CSNWs-PMS was calculated to be around 0.216 min−1, which was 36 times greater than that220

with nano Fe3O4-PMS (0.006 min−1) (Fig. 3c). The reactivity of Fe2+ was also studied and221

compared. The selection of the concentration of Fe2+ (4 mg/L) was based on the leaching result222

of iron in the presence of PMS (Fig. 4c). The results show that an overall degradation rate of223

less than 20% was achieved by Fe2+-PMS (Fig. 3b). This value was significantly lower than224

that obtained by Fe0@Fe3O4 CSNWs-PMS (~100%), suggesting that Fe0@Fe3O4 CSNWs had225

much higher reactivity than Fe2+.226

227

228

229

230

231

232

233

234
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3.3 Effects of experimental parameters and active sites235

236
Figure 4. (a) Effects of Fe0@Fe3O4 CSNWs and (b) pH value on the degradation of atrazine.237

(c) Iron leaching during the activation of PMS by Fe0@Fe3O4 CSNWs. (d) High resolution X-238

ray photoelectron spectroscopy spectra of Fe 2p from fresh and used Fe0@Fe3O4 CSNWs.239

Conditions: [PMS] = 1 mM, (b, c) [Fe0@Fe3O4 CSNWs] = 25 mg/L, and pH 3.0.240

241

The degradation of atrazine increased with the increase of Fe0@Fe3O4 CSNW dosage from 25242

to 500 mg/L, and no scavenging effect was observed (Fig. 4a). The effect of solution pH value243

on the activation of PMS by Fe0@Fe3O4 CSNWs for atrazine degradation was studied. The244

degradation performance decreased significantly when the pH value rose from 3.0 to 4.0 (Fig.245

4b). Only slight change in the degradation occurred when the pH value was in the range of 4.0246

to 8.0, but an obvious decrease in the degradation was noticed when the pH value was further247

increased to 10.0. The significant decrease with the pH enhancement from 3.0 to 4.0 could be248

ascribed to the limited availability of dissolved iron. The total dissolved iron (TDI) under both249
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pH conditions was measured. Around 3.6 mg/L of TDI was detected when Fe0@Fe3O4 CSNWs250

reacted with PMS for 6 min at pH 3.0 (Fig. 4c). However, the overall TDI was measured to be251

lower than 50 μg/L at pH 4.0. Such a low level of TDI had a negligible effect on the activation252

of PMS (Fig. S5). In the absence of PMS, the overall TDI was measured to be 6.5 mg/L, which253

was much greater than the value (3.6 mg/L) measured in the presence of PMS. The adverse254

effect of PMS on the leaching of iron was probably due to its adsorption onto the surface of255

Fe0@Fe3O4 CSNWs, which hindered the interaction between H+ and Fe0@Fe3O4 CSNWs. This256

phenomenon was also observed in our previous study with siderite as the activator [22].257

258

In the absence of Fe0@Fe3O4 CSNWs, only 0.5% of the atrazine was degraded by PMS alone259

(Fig. S3). However, the degradation rate increased to around 34% when Fe0@Fe3O4 CSNWs260

was present, which reveals that the surface activation of PMS by Fe0@Fe3O4 CSNWs also261

occurred. Tan et al. [44] studied the activation of PMS by nanoscale Fe3O4 under different pH262

values, and they found that an increase in the acidity has an inhibitory effect. For such a reason,263

the contribution of the surface activation to the overall degradation performance at pH 3.0264

should be much smaller than that at pH 4.0. Therefore, the heterogeneous activation of PMS265

by Fe0@Fe3O4 CSNW surfaces occurred but should not be the key mechanism for the efficient266

degradation of atrazine. Instead, the dissolved iron was the major species for PMS activation.267

In addition, atrazine has a pKa value of around 1.6 [45], which suggests that atrazine existed268

mainly as neutral molecules in the tested pH range. Thus, the low performance at pH 10 was269

not caused by static interaction. Instead, the dominance of SO5
2− over HSO5

− was probably the270

controlling factor. PMS has a second ionization constant of around 9.4 [46]; PMS exited mainly271

in form of SO5
2− at pH 10.0. Compared with HSO5

−, SO5
2− is much more difficult to activate [15,272

47]. As the pHpzc of Fe0@Fe3O4 CSNWs was around 6.8, their surfaces were negatively273

charged when the pH value of the reacting solution was in the range of 8.0 to 10.0. The274
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negatively charged surfaces were not electrostatically favorable to react with SO5
2−.In addition,275

some PMS decomposed under alkaline conditions to generate nonradical species, which also276

probably contributed to the low performance [48, 49]. The high-resolution X-ray photoelectron277

spectroscopy spectra of Fe 2p from the fresh and used Fe0@Fe3O4 CSNWs were recorded (Fig.278

4d). By comparing these spectra, it can be seen that only slight oxidation of the surface iron279

occurred after the activation reaction.280

281

3.4 Kinetics for atrazine degradation282

283
Figure 5. (a) Degradation of atrazine and decomposition of PMS. (b) Plot of -ln(C/C0) versus284

reaction time (min). Conditions: [atrazine] = 5 mg/L, [Fe0@Fe3O4 CSNWs] = 25 mg/L, [PMS]285

= 1 mM, and pH 3.0.286

287

To investigate the kinetics, the degradation of atrazine with a relatively higher level of288

concentration (5 mg/L) was explored. Rapid degradation of atrazine was observed in the first289

10 min and the rate slowed down with the continuation of the reaction (Fig. 5a). Meanwhile,290

relatively more rapid decrease in the concentration of PMS occurred in the first 10 min of291

reaction. To measure the efficiency of the oxidant, we calculated the stoichiometric efficiency292

(Eq. 5) [47]. Under the conditions of 5 mg/L atrazine and 1 mM PMS, the stoichiometric293

efficiency was calculated to be around 10.3%.294
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Stoichiometric efficiency = [atrazine]0−[atrazine]t=50min
[PMS]0−[PMS]t=50min

× 100%                                                     (5)295

296

In Fe0@Fe3O4 CSNWs-PMS oxidation, the fate of atrazine can be expressed by a pseudo-first-297

order law with regard to the concentration of atrazine (Eq. 6). An integration of Eq. 6 yields298

Eq. 7.299

− d[atrazine]
dt

= kapp[atrazine]                                                                                                (6)300

− ln ቀ [atrazine]
[atrazine]0

ቁ = kappt                                                                                                        (7)301

As shown in Fig. 5b, there were two different reaction stages. Considering the transformation302

product of Fe0@Fe3O4 CSNWs, it is easy to conclude that these two reaction stages were303

mainly mediated by the released Fe2+ and formed r-FeOOH. By plotting -304

ln[atrazine]/[atrazine]0 versus reaction time (Eq. 7), the pseudo-first-order kinetic rate305

constants for atrazine degradation by Fe2+-PMS and r-FeOOH-PMS were calculated to be306

0.053 and 0.001 min−1, respectively. The low reactivity of r-FeOOH toward PMS activation307

could be explained by the difficulty in the regeneration of Fe(II) from Fe(III) reduction.308

309

3.5 Activation and degradation mechanisms310

311
Figure 6. (a) Effects of methanol and (b) tert-butanol on the degradation of atrazine by312

Fe0@Fe3O4 CSNWs-activated PMS. (c)  Degradation of nitrobenzene by Fe0@Fe3O4 CSNWs-313

activated PMS. Conditions: [atrazine] = 500 µg/L (2.3 µM), [Fe0@Fe3O4 CSNWs] = 25 mg/L,314

[PMS] = 1 mM, and [nitrobenzene] = 2.3 µM.315

316
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To examine the degradation mechanism of atrazine, classical scavenging experiments were317

carried out to study the role of radicals. The scavenging experiments were based on the great318

difference in the reaction rate constants of alcohols (methanol and tert-butanol) with oxygen-319

bearing radicals. Methanol reacts rapidly with both ·OH (9.7 × 108 M−1 s−1) [50] and SO4
∙− (1.0320

× 107 M−1 s−1) [51]. tert-Butanol is reactive for ·OH (3.3 × 109 M−1 s−1), but highly inert for321

SO4
∙− (4.1–9.0 × 105 M−1 s−1). The results show that the degradation of atrazine was significantly322

inhibited in the presence of 0.1 M of methanol, and the inhibitory extent was increased with323

the further enhancement of methanol dose; the overall degradation rate was decreased from324

around 99% to 10% when 0.5 M methanol was present (Fig. 6a). Significant inhibitory effects325

were also observed when different levels of tert-butanol presented as a scavenger; the overall326

degradation rate was decreased from around 99% to 9% when 0.5 M of tert-butanol was present327

(Fig. 6b). The significant scavenging effects of both methanol and tert-butanol suggest the328

dominance of radicals in the degradation.329

330

To further examine the radical species produced, the degradation of nitrobenzene by331

Fe0@Fe3O4 CSNWs-PMS was investigated. Nitrobenzene reacts quite slowly with SO4
∙− (<106332

M−1 s−1), but interacts rapidly with ·OH (3.9 × 109 M−1 s−1) [50]. Our previous work has shown333

the effectiveness of using nitrobenzene in the identification of SO4
∙− [52]. Less than 20% of the334

nitrobenzene was removed by Fe0@Fe3O4 CSNWs alone and no obvious change in the removal335

performance was observed when PMS was further added (Fig. 6c). This observation suggests336

that the combination of Fe0@Fe3O4 CSNWs with PMS had no obvious oxidizing capability337

toward nitrobenzene, and therefore SO4
∙− was the dominant active species.338

Fe0 + O2 + 2H+ → Fe2+ + H2O2                                                                                         (8)339

Fe2+ + H2O2 → Fe3+ + ∙ OH + OH−                                                                                    (9)340

≡ FeIIIOH + Fe2+ + H2O → ≡ FeIIIOFeIIOH + 2H+                                                          (10)341
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≡ FeIIIOFeIIOH → ≡ FeIIOFeIIIOH                                                                                      (11)342

≡ FeIIOFeIIIOH + O2 → ≡ FeIIIOFeIIIOH + ∙ O2
−                                                                (12)343

Fe0 + 2Fe3+ → 3Fe2+                                                                                                          (13)344

Fe3+ +∙ O2
− → Fe2+ + O2                                                                                                     (14)345

Previous studies reported that  ∙ OH  could be generated via the activation of dissolved346

molecular oxygen by nZVI (Eqs. 8 and 9) [53, 54]. However, the dominance of SO4
∙−  in347

Fe0@Fe3O4 CSNWs-PMS oxidation suggests that the contribution of this mechanism to the348

degradation was negligible. The significant greater reactivity of Fe0@Fe3O4 CSNWs over349

Fe3O4 could be ascribed to the accelerated regeneration of both structural Fe(II) and dissolved350

Fe2+. First, the ≡ FeIIIOH on Fe0@Fe3O4 CSNWs formed a complex (≡ FeIIIOFeIIOH) with351

the released Fe2+ (Eq. 10). Second, electron transfer occurred in the complex and resulted in352

the formation of ≡ FeIIOFeIIIOH (Eq. 11), which then activated dissolved molecular oxygen353

to produce superoxide radicals (∙ O2
−; Eq. 12). Finally, the produced ∙ O2

− along with the Fe0354

core reduced Fe3+ to Fe2+ (Eqs. 13 and 14) [41, 55]. In addition to the facilitate the regeneration355

of Fe2+, the Fe3O4 shell well prevented the Fe0 core from deactivation. To further reveal this356

protection, we exposed the Fe0@Fe3O4 CSNWs in air for three months and then compared their357

reactivity for PMS activation with fresh Fe0@Fe3O4 CSNWs. The results show that no obvious358

difference in the degradation of atrazine was observed with the two kinds of Fe0@Fe3O4359

CSNWs (Fig. S6).360

361

The morphology of the Fe0@Fe3O4 CSNWs after its extended reaction with PMS was362

investigated. The emission scanning microscopy image shows that needle-like products were363

formed during the transformation of Fe0@Fe3O4 CSNWs (Fig. 7a). The X-ray diffraction364

characterization showed that sharp crystalline peaks were recorded and lepidocrocite (r-365

FeOOH; JCPDS no. 44-1415) was the major oxidation product (Fig. 7b). This finding was366
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further supported by the FT-IR studies (Fig. 7c) and selected area electron diffraction pattern367

(Fig. 7d). The generation of r-FeOOH as the major product of nZVI oxidation is consistent368

with previous reports [33, 56].369

370
Figure 7. (a) Transmission electron microscopy image, (b) X-ray diffraction pattern, (c) FI-TR371

spectra, and (d) selected area electron diffraction pattern of the Fe0@Fe3O4 CSNWs after an372

extended reaction with PMS. The inset in (a) shows the image of the used Fe0@Fe3O4 CSNWs.373

374

4 Conclusions375

Although iron-based core-shell structures have previously been studied in ·OH-mediated AOPs,376

they are rarely investigated in SO4
∙− -mediated processes, particularly through the activation of377

PMS. In this study, Fe0@Fe3O4 CSNWs were synthesized and demonstrated to be a highly378

efficient activator of PMS for atrazine removal from water solutions. Some conclusions can be379

drawn as follows:380
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(1) Fe0@Fe3O4 CSNWs with a shell layer thickness of 5 nm was successfully synthesized using381

the facile reduction approach;382

(2) Fe0@Fe3O4 CSNWs had high reactivity for atrazine degradation via the activation of PMS;383

near 100% removal of atrazine was achieved after reaction for 2 min in the presence of 1384

mM PMS and 50 mg/L Fe0@Fe3O4 CSNWs;385

(3) Fe0@Fe3O4 CSNWs had significantly greater reactivity than nano Fe3O4. The rate constant386

with Fe0@Fe3O4 CSNWs was calculated to be around 0.216 min−1, which was 36 times387

that with nano Fe3O4 (0.006 min−1);388

(4) The surface activation of PMS by Fe0@Fe3O4 CSNWs occurred, but this mechanism389

contributed only a small proportion to the degradation of atrazine. Instead, the iron released390

from Fe0@Fe3O4 CSNWs primarily activated PMS to generate SO4
∙− that degraded atrazine;391

(5) Two reaction stages were observed in the activation of PMS by Fe0@Fe3O4 CSNWs, which392

was found to be caused by the generation of r-FeOOH from Fe0@Fe3O4 CSNW oxidation;393

(6) The Fe0@Fe3O4 CSNWs are highly stable in air, which suggests convenience during the394

transportation and storage in practical remediation applications.395

(7) A low stoichiometric efficiency (10.3%) was recorded, which reveals that the majority of396

the PMS was invalidly consumed during the activation process.397
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