

1 Activation of Peroxymonosulfate by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ Core-Shell Nanowires for
2 Sulfate Radical Generation: Electron Transfer and Transformation Products
3 Yong Feng^{1,2}, Jie Zhong^{1,2}, Liyuan Zhang³, Yiang Fan³, Zequn Yang³, Kaimin Shih^{3*},
4 Hailong Li⁴, Deli Wu⁵, Bo Yan^{1,2*}

5 ¹SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical
6 Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of
7 Environment, South China Normal University, Guangzhou 510006, China

8 ²School of Environment, South China Normal University, University Town, Guangzhou
9 510006, China

10 ³Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong,
11 China

12 ⁴School of Energy Science and Engineering, Central South University, Changsha 410083,
13 China

14 ⁵State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental
15 Science & Engineering, Tongji University, Shanghai 200092, China

16

17 *Manuscript submitted to Separation and Purification Technology*

18

19 Contacts:

20 Dr. Yong Feng (fengy@scnu.edu.cn)

21 Prof. Kaimin Shih (kshih@hku.hk)

22

23

24

25 *To whom correspondence should be addressed:

26 Professor Kaimin Shih

27 Phone: +852-2859-1973

28 Fax: +852-2559-5337

29 E-mail: kshih@hku.hk

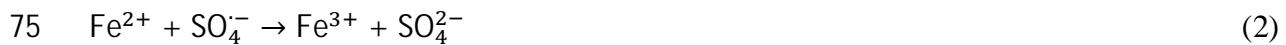
30

31 **ABSTRACT**

32 Nanoscale zero-valent iron (nZVI) is highly promising for oxidative removal of
33 micropollutants by initiating advanced oxidation processes, but its vulnerability to deactivation
34 due to the surface oxidation is challenging. In this study, we propose $\text{Fe}^0@\text{Fe}_3\text{O}_4$ core-shell
35 nanowires (CSNWs) as a novel activator to generate radicals for atrazine, a representative
36 micropollutant, degradation via the activation of peroxymonosulfate (PMS). $\text{Fe}^0@\text{Fe}_3\text{O}_4$
37 CSNWs with a shell thickness of around 5 nm were synthesized using a facile chemical
38 reduction approach and were comprehensively characterized using a series of surface sensitive
39 techniques. The results showed that the $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNW had great reactivity for atrazine
40 degradation via the activation of PMS; near complete degradation of atrazine was achieved
41 after reaction for only 2 min. Under identical conditions, the pseudo-first order rate constant
42 with $\text{Fe}^0@\text{Fe}_3\text{O}_4$ was more than 36 times greater than that with nano Fe_3O_4 . The surface
43 activation of PMS contributed only a small proportion to the overall degradation. Instead, the
44 iron released from $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs primarily activated PMS to generate $\text{SO}_4^{\cdot-}$ that
45 degraded atrazine. The $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs were stable and no deactivation was observed after
46 exposing $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs to air for 3 months. The results from this study demonstrate a
47 stable nZVI for oxidative removal of organic contaminants.

48

49 **Keywords:** Zero-valent iron; $\text{Fe}^0@\text{Fe}_3\text{O}_4$; core-shell nanowires; atrazine; peroxymonosulfate


50 **1. Introduction**

51 The widely occurrence of trace levels of microorganic contaminants in various environmental
52 matrices requires the development of highly efficient remediation technologies [1, 2]. Sulfate
53 radical ($\text{SO}_4^{\cdot-}$)-mediated treatments, recently emerged as a novel advanced oxidation process
54 (AOP), have shown great promise in the degradation of various kinds of organic contaminants,
55 such as antibiotics [3, 4] and endocrine disrupting chemicals [5, 6]. The generation of $\text{SO}_4^{\cdot-}$
56 depends on the activation of either peroxymonosulfate (PMS) or peroxydisulfate (PDS), and
57 many activation technologies that rely on UV irradiation, heating, base, or transition metals
58 have been proposed [7-9]. Of these activation technologies reported, the activation of PMS
59 (PDS) by transition metals through an one-electron transfer mechanism (Eq. 1) [10-13] is very
60 promising for practical environmental remediation applications, because such techniques do
61 not require external energy and many of the transition metals are ubiquitous in soil and aquifers.

63

64 Iron is an environmentally friendly and low-cost material. However, dissolved iron (e.g., Fe^{2+} ,
65 Fe^{3+}) [14] and iron oxides (e.g., Fe_2O_3 and Fe_3O_4) [15, 16] are relatively low efficient for $\text{SO}_4^{\cdot-}$ -
66 mediated AOPs due to the thermodynamically unfavorable reduction of Fe^{3+} by persulfates and
67 the strong scavenging effect of Fe^{2+} toward $\text{SO}_4^{\cdot-}$ ($4.6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, Eq. 2) [17-19]. To
68 accelerate the regeneration of Fe^{2+} , many strategies, such as UV irradiation and addition of
69 reducing agents [14, 20], have been reported. To mitigate the scavenging effect of Fe^{2+} , we
70 have previously used structural ferrous iron-containing minerals, such as pyrite [21] and
71 siderite [22], as sources of Fe^{2+} . However, the release of sulfate ions and bicarbonate ions may
72 be a concern when high dosages of pyrite and siderite are used; bicarbonate ions are strong
73 radical scavengers ($k_{\text{HCO}_3^-, \text{SO}_4^{\cdot-}} = (9.1 \pm 0.4) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) [23] and the resulting carbonate
74 radical ($\text{CO}_3^{\cdot-}$; $E^0 = 1.57 \text{ V}$) [24] is less oxidizing than $\text{SO}_4^{\cdot-}$ ($E^0 = 2.5\text{-}3.1 \text{ V}$) [25].

76

77 Nanoscale zero-valent iron (nZVI) has been used as an activator in AOPs, particularly hydroxyl
78 radical ($\cdot\text{OH}$)-mediated processes [26, 27]. For the generation of $\text{SO}_4^{\cdot-}$ via persulfate activation,
79 nZVI has also been studied [28, 29]. Although both nZVI-PDS and nZVI-PMS combinations
80 can degrade a serious of organic contaminants, the scavenging effect of excess nZVI has been
81 reported [30, 31]. In addition, the high surface energy of nZVI rends it easily aggregate and
82 passivate in AOPs [32-34], in which dissolved oxygen is ubiquitously present. To solve these
83 problems, we here propose to use $\text{Fe}^0@\text{Fe}_3\text{O}_4$ core-shell nanowires (CSNWs) to activate PMS.
84 A $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNW consists of a Fe^0 core and a surrounding thin shell of Fe_3O_4 . $\text{Fe}^0@\text{Fe}_3\text{O}_4$
85 CSNWs provide an efficient interface for electron transport. The Fe_3O_4 shell can be considered
86 as an n-type semiconductor, which mediates the electrons transfer from the Fe^0 core to the
87 surface adsorbed contaminants [35, 36]. Therefore, the potential synergy between Fe^0 and
88 Fe_3O_4 may aid the circulation of iron at different valent states and thus improve the activation
89 of PMS.

90

91 In this study, $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs were synthesized using a facile reduction approach and were
92 used, for the first time, to activate PMS for the degradation of target contaminant atrazine,
93 which is a widely used herbicide and has been frequently detected in various environmental
94 matrices [37]. The nanowires prepared were fully characterized using various surface-sensitive
95 techniques and their reactivity was tested under varied experimental conditions. To explore the
96 activation mechanism, classical scavenging experiments and kinetic studies were carried out.
97 Finally, the transformation product of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs was studied, and the electron
98 transfer associated with the activation process was proposed.

99

100 **2. Experimental section**

101 **2.1 Chemicals**

102 OZONE, monopersulfate compound ($\text{KHSO}_5 \cdot 0.5\text{KHSO}_4 \cdot 0.5\text{K}_2\text{SO}_4$), ferrous sulfate
103 heptahydrate ($\geq 99.0\%$), sodium borohydride, sodium thiosulfate, nitrobenzene, and Pluronic
104 F-127 were obtained from Sigma-Aldrich (St. Louis, MO, USA). Atrazine (97%) was supplied
105 by TCI Ltd. (Shanghai, China). *tert*-Butanol (99.5%) was purchased from Aladdin Corp.
106 (Shanghai, China). High-performance liquid chromatography (HPLC) grade methanol and
107 sulfuric acid (2 M) were supplied by Fisher Scientific (Pittsburgh, PA, USA). Ultrapure water
108 (18.0 $\text{M}\Omega \cdot \text{cm}$) for preparing experimental solutions was prepared using a Millipore water
109 purification system.

110

111 **2.2 Synthesis and characterization of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs**

112 $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs were synthesized using a facile reduction method. In a typical procedure,
113 6 g of ferrous sulfate heptahydrate, 4.1 g of sodium borohydride, and 1 g of Pluronic F-127
114 were dissolved in 50 mL, 10 mL, and 40 mL of ultrapure water, respectively. The resulting
115 ferrous sulfate solution was then mixed with the F-127 solution, followed by the dropwise
116 addition of the sodium borohydride solution to produce black powders. The black powders
117 obtained were washed with pure ethanol and deoxygenated water to remove impurities. The
118 resulting products were put in a freeze-drying device and dried for 12 h. The mechanism
119 underling the formation of Fe_3O_4 layer on nano Fe^0 cores is described by Eqs.3 and 4 [38].
120 Nano Fe_3O_4 was synthesized using a solvothermal approach [39].

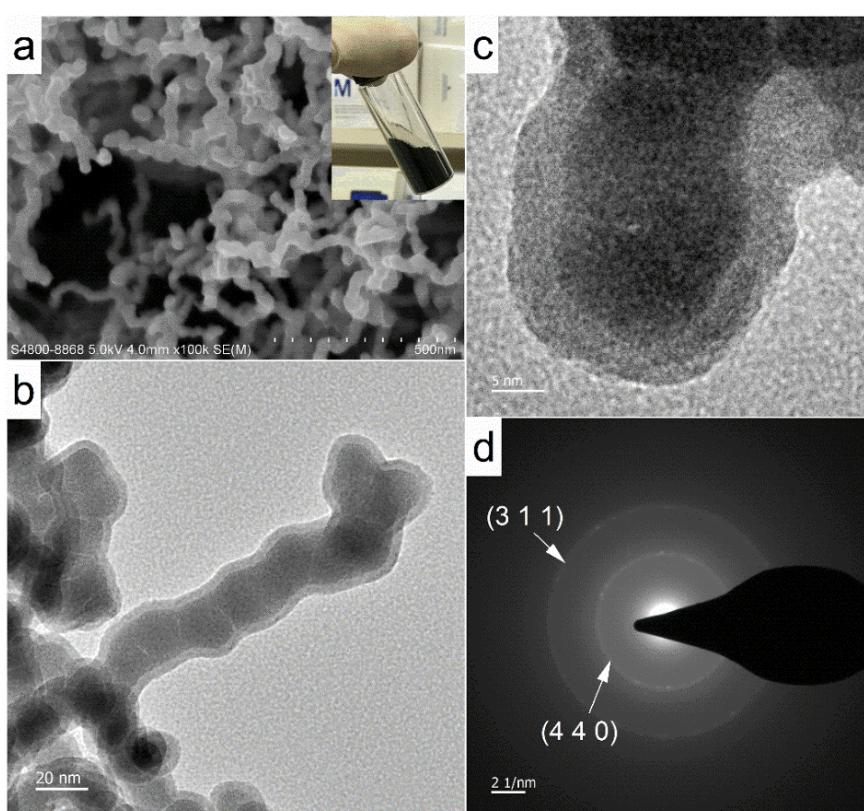
123 The purity and crystallinity of the synthesized sample were characterized using a D8 Advance
124 X-ray diffractometer (Bruker, Karlsruhe, Germany) with a Cu X-ray tube at 40 mA and 40 kV.

125 The valent state of iron on the material surface was characterized using an ESCALAB 250XI
126 X-ray photoelectron spectrometer (Thermo, Waltham, MA, USA) with Al-K α radiation. The
127 morphology was examined using a Hitachi S-4800 scanning electron microscope and a FEI
128 Tecnai G2 20 S-TWIN transmission electron microscope. The measurement of
129 Brunauer–Emmett–Teller specific surface area was carried out via N₂ adsorption at 77 K using
130 an ASAP 2460 surface area analyzer (Micromeritics, Norcross, GA, USA). The Fourier-
131 transform infrared (FT-IR) spectra were recorded on a Spectrum 100 FT-IR spectrometer
132 (PerkinElmer, Waltham, MA, USA). The Zeta potential was measured using a Malvern Zeta
133 potential analyzer (Malvern, UK), and the point of zero charge (pH_{pzc}) was estimated to be
134 around 6.8.

135

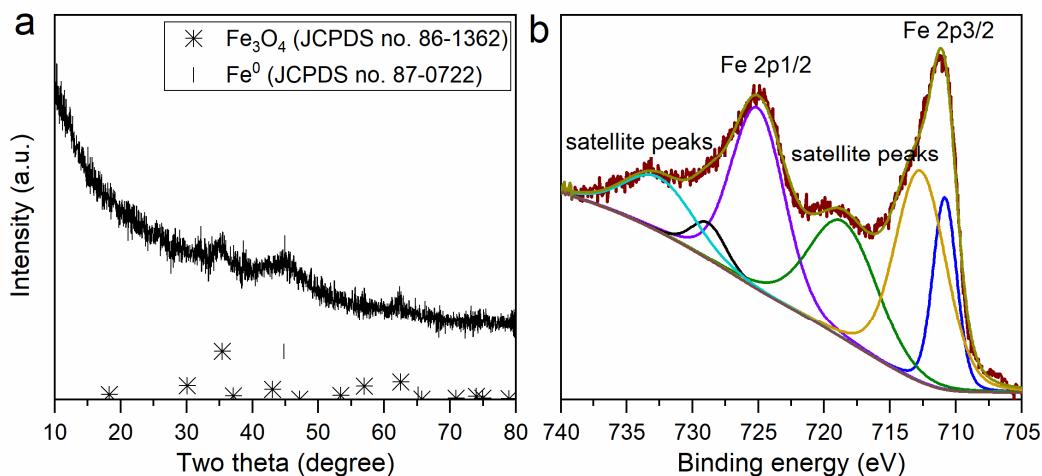
136 2.3 Degradation experiments

137 Unless otherwise stated, all degradation reactions were conducted at room temperature (25 ± 1
138 °C) in 200 mL glass reactors. In a typical test, 100 mL of atrazine solution (500 μ g/L) was
139 added to the glass reactor, followed by the addition of PMS solution. The original pH value of
140 the atrazine solution with PMS (1 mM) was around 3.0 and was further adjusted when
141 necessary using a diluted NaOH or H₂SO₄ solution. Fe⁰@Fe₃O₄ CSNWs were then added to
142 the solution to initiate activation and degradation reactions. Samples were withdrawn with
143 syringes, filtered with PTFE membrane filters (0.22 μ m), and transferred to autosampler vials
144 (2 mL) for HPLC analysis. To prevent the atrazine from further degradation, excess sodium
145 thiosulfate (10 μ L, 0.5 M) was spiked to the vials. After the degradation reaction, the solid
146 activators were recollected by vacuum filtration and dried in a freeze-drying device for further
147 use. The degradation of atrazine by PMS alone is described in Note S1.


148

149

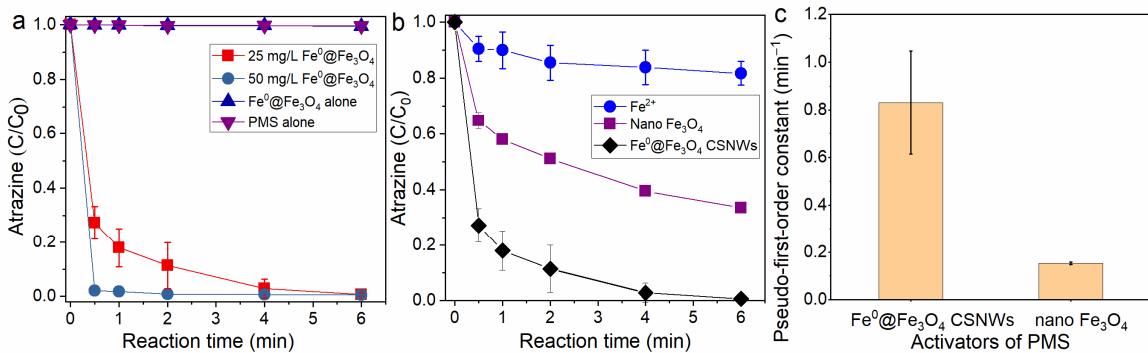
150 2.4 Chemical analysis
151 Atrazine was measured using an Agilent 1260 Infinity II HPLC system equipped with a diode
152 array detector (DAD) and an autosampler. The separation was carried out on a ZORBAX
153 Eclipse XDB-C18 column (4.6 × 150 mm, 5 μ m). A mobile phase consisted of HPLC-grade
154 methanol and ultrapure water (60:40) was used for the elution. The flow rate and column
155 temperature were fixed at 1 mL/min and 30 °C, respectively. The DAD wavelength was set at
156 222 nm. The retention time of atrazine was around 2.4 min. The solution pH was measured
157 using an Orion 2-Star benchtop pH meter. PMS was quantified using an iodometric method
158 [40], which is based on the quantification of I_3^- .


159
160 **3. Results and discussion**

161 3.1 Material characterization

162
163 Figure 1. (a) Scanning electron microscopy, (b) transmission electron microscopy, (c) high-
164 resolution transmission electron microscopy, and (d) selected area electron diffraction images
165 of $Fe^0@Fe_3O_4$ CSNWs. The inset in (a) shows the image of the synthesized $Fe^0@Fe_3O_4$
166 CSNWs.

167 The scanning electron microscopy image shows that the synthesized sample existed in
 168 nanowire structures with a length of 200 to 300 nm (Fig. 1a). The nanowires consisted of core-
 169 shell structures (Fig. 1b) with a shell thickness of around 5 nm (Fig. 1c). The composition of
 170 the shell layer was investigated using selected area electron diffraction and was found to be
 171 Fe_3O_4 (Fig. 1d). The transmission electron microscopy image of nano Fe_3O_4 is shown in Fig.
 172 S1, which reveals that the size of the nano Fe_3O_4 was generally in the range of 10 to 20 nm.


173
 174 Figure 2. (a) X-ray diffraction pattern and (b) X-ray photoelectron spectroscopy spectrum of
 175 fresh $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs.

176
 177 The X-ray diffraction pattern of the synthesized $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNW sample is shown in Fig.
 178 2a. A weak and broad peak at around 45° is observed, which is a characteristic peak of metallic
 179 Fe^0 (JCPDS no. 87-722) [41]. The average size of the particle can be measured according to
 180 the Scherrer equation $D = k(\lambda/\beta \cos(\theta))$. Where λ is the X-ray wavelength equal to 0.154 nm,
 181 θ is the half diffraction angle, k is a constant equal to 0.89, and β is the full width at half
 182 maximum. When θ was at around 45° , β was measured to be 3.226. Therefore, the size of the
 183 metallic Fe^0 (nZVI) was calculated to be around 17 nm, which is very close to the value
 184 observed in Fig. 1b. The X-ray diffraction pattern of nano Fe_3O_4 is shown in Fig. S2. This
 185 pattern confirms that pure nano Fe_3O_4 (JCPDS no. 19-0629) was successfully synthesized. The
 186 specific surface areas of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs and nano Fe_3O_4 were measured to be 56.2 and

187 20.7 m³/g, respectively. Other physical-chemical properties of the activators, such as pore size,
188 are listed in Table S1.

189
190 The valent state of iron on Fe⁰@Fe₃O₄ CSNWs was investigated using X-ray photoelectron
191 spectroscopy. The highly resolution X-ray photoelectron spectrum of Fe is shown in Fig. 2b.
192 Two bands with banding energies at around 711.2 and 725.1 eV were assigned to Fe 2p_{3/2} and
193 Fe 2p_{1/2} [42], respectively. These bands are the characteristic peaks of Fe(II) from FeO and
194 Fe(III) from Fe₃O₄ [16], which consistently suggests that the shell layer of the Fe⁰@Fe₃O₄
195 CSNWs is Fe₃O₄.

196
197 3.2 Reactivity of Fe⁰@Fe₃O₄ CSNWs

198
199 Figure 3. (a) Degradation of atrazine by Fe⁰@Fe₃O₄ CSNWs-activated PMS, (b) comparison
200 of different activators for atrazine degradation via the activation of PMS, and (c) pseudo-first-
201 order rate constants with different activators. Conditions: [PMS] = 1 mM, [atrazine] = 500
202 μ g/L, [Fe⁰@Fe₃O₄ CSNWs] = [nano Fe₃O₄] = 25 mg/L, [Fe²⁺] = 4 mg/L, and pH 3.0.

203
204 Only slight degradation of atrazine (<1%) occurred in the presence of PMS alone (pH 3–4; Fig.
205 S3), which is consistent with the fact that PMS has quite limited oxidative capability under
206 acidic conditions [43]. Fe⁰@Fe₃O₄ CSNWs alone also had no obvious reactivity to remove
207 atrazine (Fig. S4). When Fe⁰@Fe₃O₄ CSNWs were co-present with PMS, rapid degradation of
208 atrazine was observed; near complete degradation of atrazine was achieved after reaction for 2
209 min in the presence of 1 mM PMS and 50 mg/L Fe⁰@Fe₃O₄ CSNWs (Fig. 3a). This rapid

210 degradation of atrazine suggests the efficient reactivity of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs toward PMS
211 activation.

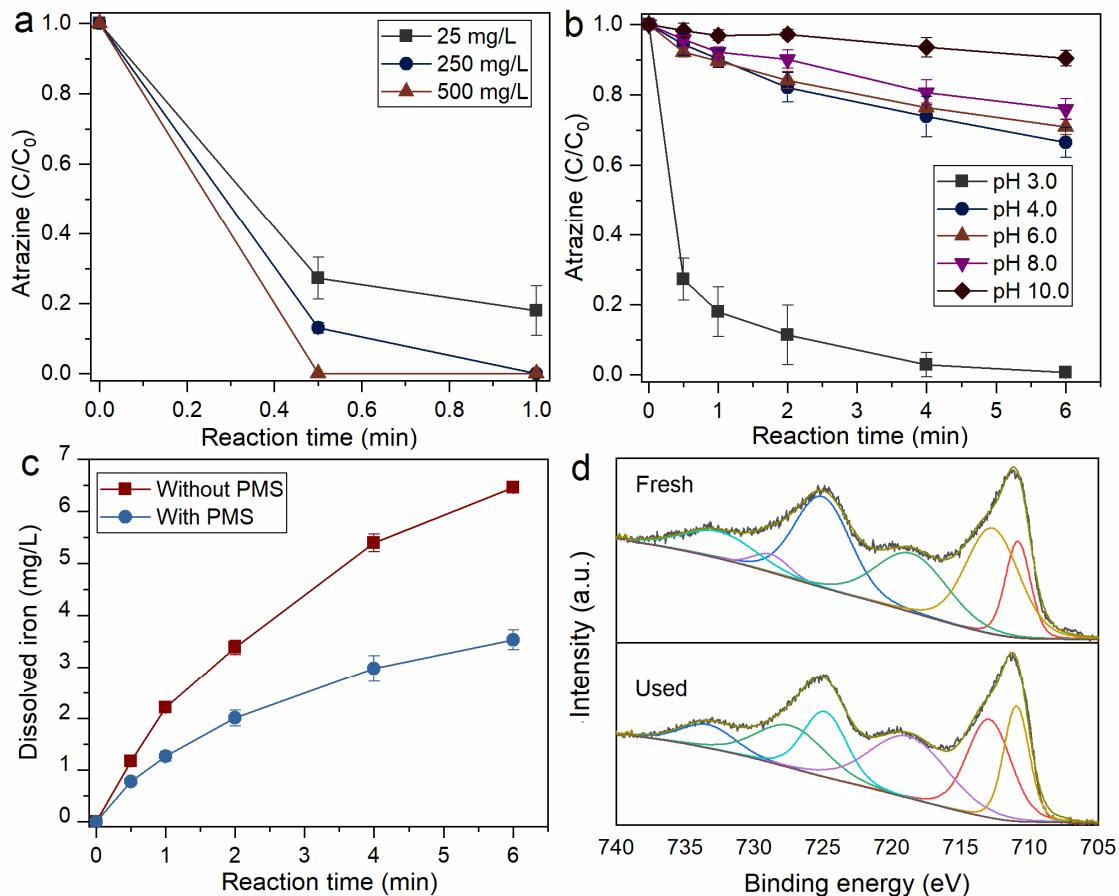
212

213 To reveal the potential synergy between the Fe^0 and Fe_3O_4 in $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs, we studied
214 the degradation of atrazine in the presence of the synthesized nano Fe_3O_4 . Under identical
215 conditions, $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs had significant greater reactivity than nano Fe_3O_4 (Fig. 3b);
216 approximately 100% degradation of atrazine was achieved with $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-PMS
217 after reaction for 6 min, while only 66% of the degradation was achieved with nano Fe_3O_4 -
218 PMS. Kinetics investigations revealed that the removal of atrazine followed pseudo-first-order
219 kinetics in the tested time range. The pseudo-first-order kinetic constant with $\text{Fe}^0@\text{Fe}_3\text{O}_4$
220 CSNWs-PMS was calculated to be around 0.216 min^{-1} , which was 36 times greater than that
221 with nano Fe_3O_4 -PMS (0.006 min^{-1}) (Fig. 3c). The reactivity of Fe^{2+} was also studied and
222 compared. The selection of the concentration of Fe^{2+} (4 mg/L) was based on the leaching result
223 of iron in the presence of PMS (Fig. 4c). The results show that an overall degradation rate of
224 less than 20% was achieved by Fe^{2+} -PMS (Fig. 3b). This value was significantly lower than
225 that obtained by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-PMS ($\sim 100\%$), suggesting that $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs had
226 much higher reactivity than Fe^{2+} .

227

228

229


230

231

232

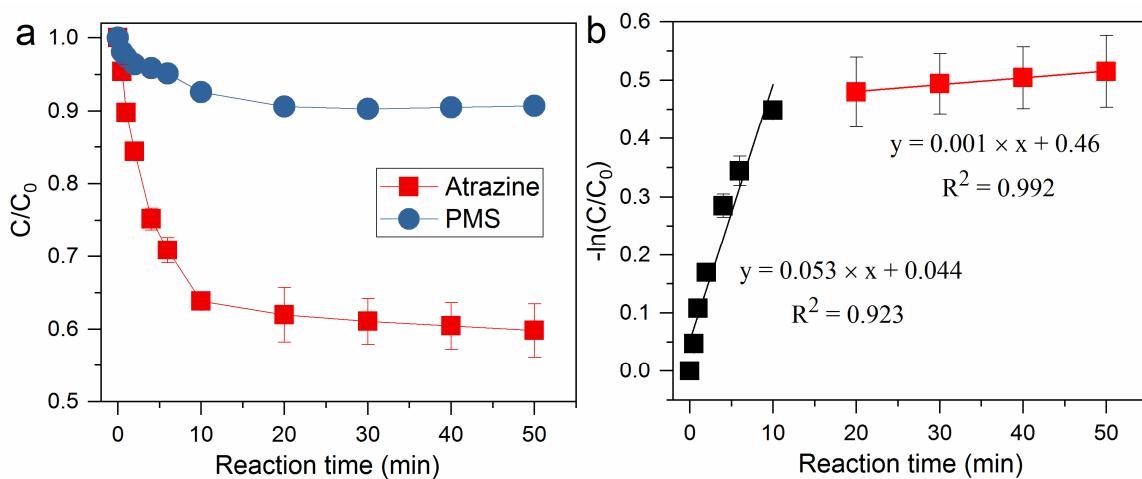
233

234

236
237 Figure 4. (a) Effects of Fe⁰@Fe₃O₄ CSNWs and (b) pH value on the degradation of atrazine.
238 (c) Iron leaching during the activation of PMS by Fe⁰@Fe₃O₄ CSNWs. (d) High resolution X-
239 ray photoelectron spectroscopy spectra of Fe 2p from fresh and used Fe⁰@Fe₃O₄ CSNWs.
240 Conditions: [PMS] = 1 mM, (b, c) [Fe⁰@Fe₃O₄ CSNWs] = 25 mg/L, and pH 3.0.

241
242 The degradation of atrazine increased with the increase of Fe⁰@Fe₃O₄ CSNW dosage from 25
243 to 500 mg/L, and no scavenging effect was observed (Fig. 4a). The effect of solution pH value
244 on the activation of PMS by Fe⁰@Fe₃O₄ CSNWs for atrazine degradation was studied. The
245 degradation performance decreased significantly when the pH value rose from 3.0 to 4.0 (Fig.
246 4b). Only slight change in the degradation occurred when the pH value was in the range of 4.0
247 to 8.0, but an obvious decrease in the degradation was noticed when the pH value was further
248 increased to 10.0. The significant decrease with the pH enhancement from 3.0 to 4.0 could be
249 ascribed to the limited availability of dissolved iron. The total dissolved iron (TDI) under both

250 pH conditions was measured. Around 3.6 mg/L of TDI was detected when $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs
251 reacted with PMS for 6 min at pH 3.0 (Fig. 4c). However, the overall TDI was measured to be
252 lower than 50 $\mu\text{g}/\text{L}$ at pH 4.0. Such a low level of TDI had a negligible effect on the activation
253 of PMS (Fig. S5). In the absence of PMS, the overall TDI was measured to be 6.5 mg/L, which
254 was much greater than the value (3.6 mg/L) measured in the presence of PMS. The adverse
255 effect of PMS on the leaching of iron was probably due to its adsorption onto the surface of
256 $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs, which hindered the interaction between H^+ and $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs. This
257 phenomenon was also observed in our previous study with siderite as the activator [22].


258

259 In the absence of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs, only 0.5% of the atrazine was degraded by PMS alone
260 (Fig. S3). However, the degradation rate increased to around 34% when $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs
261 was present, which reveals that the surface activation of PMS by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs also
262 occurred. Tan et al. [44] studied the activation of PMS by nanoscale Fe_3O_4 under different pH
263 values, and they found that an increase in the acidity has an inhibitory effect. For such a reason,
264 the contribution of the surface activation to the overall degradation performance at pH 3.0
265 should be much smaller than that at pH 4.0. Therefore, the heterogeneous activation of PMS
266 by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNW surfaces occurred but should not be the key mechanism for the efficient
267 degradation of atrazine. Instead, the dissolved iron was the major species for PMS activation.
268 In addition, atrazine has a $\text{p}K_a$ value of around 1.6 [45], which suggests that atrazine existed
269 mainly as neutral molecules in the tested pH range. Thus, the low performance at pH 10 was
270 not caused by static interaction. Instead, the dominance of SO_5^{2-} over HSO_5^- was probably the
271 controlling factor. PMS has a second ionization constant of around 9.4 [46]; PMS exited mainly
272 in form of SO_5^{2-} at pH 10.0. Compared with HSO_5^- , SO_5^{2-} is much more difficult to activate [15,
273 47]. As the pH_{pzc} of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs was around 6.8, their surfaces were negatively
274 charged when the pH value of the reacting solution was in the range of 8.0 to 10.0. The

negatively charged surfaces were not electrostatically favorable to react with SO_5^{2-} . In addition, some PMS decomposed under alkaline conditions to generate nonradical species, which also probably contributed to the low performance [48, 49]. The high-resolution X-ray photoelectron spectroscopy spectra of Fe 2p from the fresh and used $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs were recorded (Fig. 4d). By comparing these spectra, it can be seen that only slight oxidation of the surface iron occurred after the activation reaction.

281

282 3.4 Kinetics for atrazine degradation

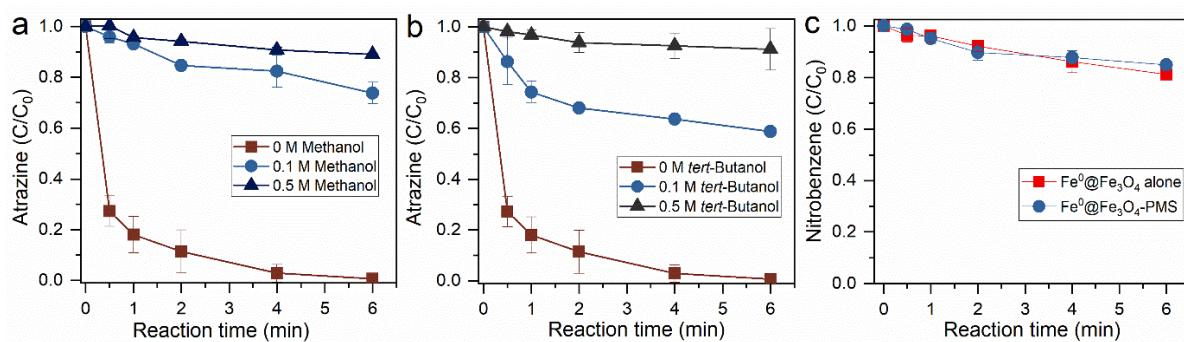
283
284 Figure 5. (a) Degradation of atrazine and decomposition of PMS. (b) Plot of $-\ln(C/C_0)$ versus
285 reaction time (min). Conditions: [atrazine] = 5 mg/L, $[\text{Fe}^0@\text{Fe}_3\text{O}_4\text{CSNWs}]$ = 25 mg/L, [PMS]
286 = 1 mM, and pH 3.0.

287
288 To investigate the kinetics, the degradation of atrazine with a relatively higher level of
289 concentration (5 mg/L) was explored. Rapid degradation of atrazine was observed in the first
290 10 min and the rate slowed down with the continuation of the reaction (Fig. 5a). Meanwhile,
291 relatively more rapid decrease in the concentration of PMS occurred in the first 10 min of
292 reaction. To measure the efficiency of the oxidant, we calculated the stoichiometric efficiency
293 (Eq. 5) [47]. Under the conditions of 5 mg/L atrazine and 1 mM PMS, the stoichiometric
294 efficiency was calculated to be around 10.3%.

295 Stoichiometric efficiency = $\frac{[\text{atrazine}]_0 - [\text{atrazine}]_{t=50\text{min}}}{[\text{PMS}]_0 - [\text{PMS}]_{t=50\text{min}}} \times 100\%$ (5)

296

297 In $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-PMS oxidation, the fate of atrazine can be expressed by a pseudo-first-order law with regard to the concentration of atrazine (Eq. 6). An integration of Eq. 6 yields
298 Eq. 7.

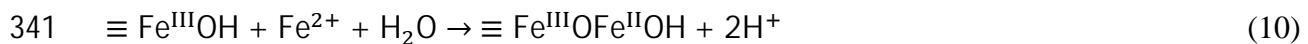

300 $-\frac{d[\text{atrazine}]}{dt} = k_{\text{app}} [\text{atrazine}]$ (6)

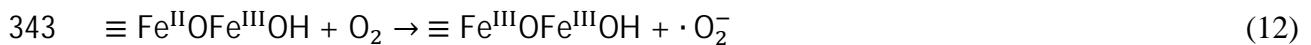
301 $-\ln\left(\frac{[\text{atrazine}]}{[\text{atrazine}]_0}\right) = k_{\text{app}} t$ (7)

302 As shown in Fig. 5b, there were two different reaction stages. Considering the transformation
303 product of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs, it is easy to conclude that these two reaction stages were
304 mainly mediated by the released Fe^{2+} and formed r- FeOOH . By plotting $-\ln[\text{atrazine}]/[\text{atrazine}]_0$ versus reaction time (Eq. 7), the pseudo-first-order kinetic rate
305 constants for atrazine degradation by Fe^{2+} -PMS and r- FeOOH -PMS were calculated to be
306 0.053 and 0.001 min^{-1} , respectively. The low reactivity of r- FeOOH toward PMS activation
307 could be explained by the difficulty in the regeneration of $\text{Fe}(\text{II})$ from $\text{Fe}(\text{III})$ reduction.
308

309

310 3.5 Activation and degradation mechanisms



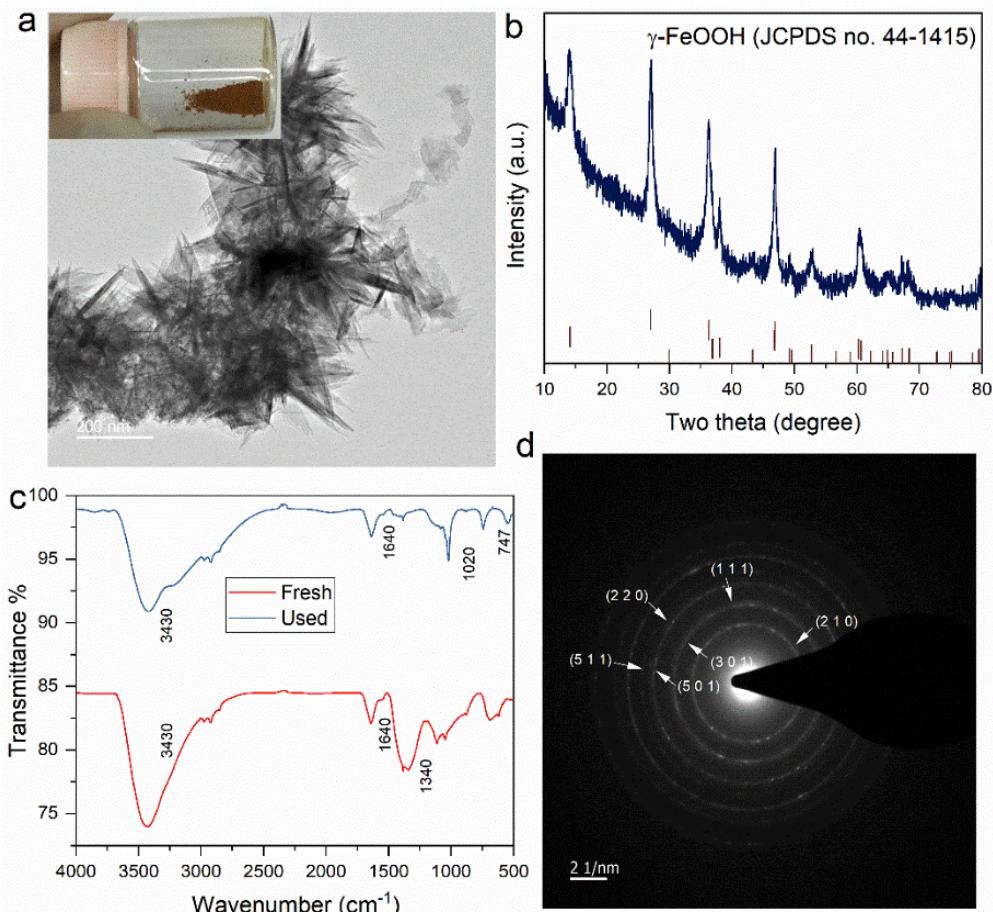



311
312 Figure 6. (a) Effects of methanol and (b) *tert*-butanol on the degradation of atrazine by
313 $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-activated PMS. (c) Degradation of nitrobenzene by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-
314 activated PMS. Conditions: $[\text{atrazine}] = 500 \mu\text{g/L}$ ($2.3 \mu\text{M}$), $[\text{Fe}^0@\text{Fe}_3\text{O}_4 \text{ CSNWs}] = 25 \text{ mg/L}$,
315 $[\text{PMS}] = 1 \text{ mM}$, and $[\text{nitrobenzene}] = 2.3 \mu\text{M}$.
316

317 To examine the degradation mechanism of atrazine, classical scavenging experiments were
318 carried out to study the role of radicals. The scavenging experiments were based on the great
319 difference in the reaction rate constants of alcohols (methanol and *tert*-butanol) with oxygen-
320 bearing radicals. Methanol reacts rapidly with both $\cdot\text{OH}$ ($9.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$) [50] and $\text{SO}_4^{\cdot-}$ (1.0
321 $\times 10^7 \text{ M}^{-1} \text{ s}^{-1}$) [51]. *tert*-Butanol is reactive for $\cdot\text{OH}$ ($3.3 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$), but highly inert for
322 $\text{SO}_4^{\cdot-}$ ($4.1\text{--}9.0 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$). The results show that the degradation of atrazine was significantly
323 inhibited in the presence of 0.1 M of methanol, and the inhibitory extent was increased with
324 the further enhancement of methanol dose; the overall degradation rate was decreased from
325 around 99% to 10% when 0.5 M methanol was present (Fig. 6a). Significant inhibitory effects
326 were also observed when different levels of *tert*-butanol presented as a scavenger; the overall
327 degradation rate was decreased from around 99% to 9% when 0.5 M of *tert*-butanol was present
328 (Fig. 6b). The significant scavenging effects of both methanol and *tert*-butanol suggest the
329 dominance of radicals in the degradation.

330

331 To further examine the radical species produced, the degradation of nitrobenzene by
332 $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-PMS was investigated. Nitrobenzene reacts quite slowly with $\text{SO}_4^{\cdot-}$ ($<10^6$
333 $\text{M}^{-1} \text{ s}^{-1}$), but interacts rapidly with $\cdot\text{OH}$ ($3.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) [50]. Our previous work has shown
334 the effectiveness of using nitrobenzene in the identification of $\text{SO}_4^{\cdot-}$ [52]. Less than 20% of the
335 nitrobenzene was removed by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs alone and no obvious change in the removal
336 performance was observed when PMS was further added (Fig. 6c). This observation suggests
337 that the combination of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs with PMS had no obvious oxidizing capability
338 toward nitrobenzene, and therefore $\text{SO}_4^{\cdot-}$ was the dominant active species.



346 Previous studies reported that $\cdot \text{OH}$ could be generated via the activation of dissolved
347 molecular oxygen by nZVI (Eqs. 8 and 9) [53, 54]. However, the dominance of SO_4^{2-} in
348 $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-PMS oxidation suggests that the contribution of this mechanism to the
349 degradation was negligible. The significant greater reactivity of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs over
350 Fe_3O_4 could be ascribed to the accelerated regeneration of both structural Fe(II) and dissolved
351 Fe^{2+} . First, the $\equiv \text{Fe}^{\text{III}}\text{OH}$ on $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs formed a complex ($\equiv \text{Fe}^{\text{III}}\text{OFe}^{\text{II}}\text{OH}$) with
352 the released Fe^{2+} (Eq. 10). Second, electron transfer occurred in the complex and resulted in
353 the formation of $\equiv \text{Fe}^{\text{II}}\text{OFe}^{\text{III}}\text{OH}$ (Eq. 11), which then activated dissolved molecular oxygen
354 to produce superoxide radicals ($\cdot \text{O}_2^-$; Eq. 12). Finally, the produced $\cdot \text{O}_2^-$ along with the Fe^0
355 core reduced Fe^{3+} to Fe^{2+} (Eqs. 13 and 14) [41, 55]. In addition to the facilitate the regeneration
356 of Fe^{2+} , the Fe_3O_4 shell well prevented the Fe^0 core from deactivation. To further reveal this
357 protection, we exposed the $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs in air for three months and then compared their
358 reactivity for PMS activation with fresh $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs. The results show that no obvious
359 difference in the degradation of atrazine was observed with the two kinds of $\text{Fe}^0@\text{Fe}_3\text{O}_4$
360 CSNWs (Fig. S6).

361

362 The morphology of the $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs after its extended reaction with PMS was
363 investigated. The emission scanning microscopy image shows that needle-like products were
364 formed during the transformation of $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs (Fig. 7a). The X-ray diffraction
365 characterization showed that sharp crystalline peaks were recorded and lepidocrocite (r-
366 FeOOH ; JCPDS no. 44-1415) was the major oxidation product (Fig. 7b). This finding was

367 further supported by the FT-IR studies (Fig. 7c) and selected area electron diffraction pattern
 368 (Fig. 7d). The generation of r-FeOOH as the major product of nZVI oxidation is consistent
 369 with previous reports [33, 56].

370
 371 Figure 7. (a) Transmission electron microscopy image, (b) X-ray diffraction pattern, (c) FT-IR
 372 spectra, and (d) selected area electron diffraction pattern of the Fe⁰@Fe₃O₄ CSNWs after an
 373 extended reaction with PMS. The inset in (a) shows the image of the used Fe⁰@Fe₃O₄ CSNWs.
 374

375 **4 Conclusions**

376 Although iron-based core-shell structures have previously been studied in ·OH-mediated AOPs,
 377 they are rarely investigated in SO₄²⁻-mediated processes, particularly through the activation of
 378 PMS. In this study, Fe⁰@Fe₃O₄ CSNWs were synthesized and demonstrated to be a highly
 379 efficient activator of PMS for atrazine removal from water solutions. Some conclusions can be
 380 drawn as follows:

381 (1) $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs with a shell layer thickness of 5 nm was successfully synthesized using
382 the facile reduction approach;
383 (2) $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs had high reactivity for atrazine degradation via the activation of PMS;
384 near 100% removal of atrazine was achieved after reaction for 2 min in the presence of 1
385 mM PMS and 50 mg/L $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs;
386 (3) $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs had significantly greater reactivity than nano Fe_3O_4 . The rate constant
387 with $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs was calculated to be around 0.216 min^{-1} , which was 36 times
388 that with nano Fe_3O_4 (0.006 min^{-1});
389 (4) The surface activation of PMS by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs occurred, but this mechanism
390 contributed only a small proportion to the degradation of atrazine. Instead, the iron released
391 from $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs primarily activated PMS to generate $\text{SO}_4^{\cdot-}$ that degraded atrazine;
392 (5) Two reaction stages were observed in the activation of PMS by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs, which
393 was found to be caused by the generation of r- FeOOH from $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNW oxidation;
394 (6) The $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs are highly stable in air, which suggests convenience during the
395 transportation and storage in practical remediation applications.
396 (7) A low stoichiometric efficiency (10.3%) was recorded, which reveals that the majority of
397 the PMS was invalidly consumed during the activation process.

398

399 **Acknowledgements**

400 This study was funded by the Research Grants Council of Hong Kong (Projects 106180082,
401 C7044-14G, and T21-711/16R), the start-up fund from South China Normal University
402 (8S0597), and the Guangdong Basic and Applied Basic Research Fund.

403

404

List of Contents in SI

405 **Note S1.** Degradation of atrazine by PMS alone.406 **Table S1.** Physical-chemical properties of different iron-based activators.407 **Figure S1.** Transmission electron microscopy image of the synthesized nano Fe_3O_4 particles.408 **Figure S2.** X-ray diffraction pattern of the synthesized nano Fe_3O_4 . The peaks match well with
409 those of a Fe_3O_4 standard (JCPDS no. 19-0629).410 **Figure S3.** Degradation of atrazine by PMS alone. Conditions: [atrazine] = 0.5 mg/L, [PMS]
411 = 1 mM, and [buffers] = 10 mM (pH 4, acetate buffer; pH 6, phosphate buffer; pH 8, phosphate
412 buffer; pH 10, boric buffer).413 **Figure S4.** Removal of atrazine by $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs alone. Condition: [atrazine] = 500
414 $\mu\text{g/L}$, $[\text{Fe}^0@\text{Fe}_3\text{O}_4 \text{CSNWs}] = 25 \text{ mg/L}$, and pH 3.0.415 **Figure S5.** Degradation of atrazine by PMS in the presence of 50 $\mu\text{g/L}$ of Fe^{2+} . Conditions:
416 [PMS] = 1 mM, [atrazine] = 500 $\mu\text{g/L}$, and pH 4.0.417 **Figure S6.** Degradation of atrazine by different $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs-activated PMS. Condition:
418 [atrazine] = 500 $\mu\text{g/L}$, $[\text{Fe}^0@\text{Fe}_3\text{O}_4 \text{CSNWs}] = 25 \text{ mg/L}$, and pH 3.0. The $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs
419 exposed represent the $\text{Fe}^0@\text{Fe}_3\text{O}_4$ CSNWs exposed to air for 3 months at room temperature.

420

421

422

423

424

425

426

427

428

429 **References**

430 [1] R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. Von Gunten,
431 B. Wehrli, The challenge of micropollutants in aquatic systems, *Science*, 313 (2006) 1072-
432 1077.

433 [2] P.J. Alvarez, C.K. Chan, M. Elimelech, N.J. Halas, D. Villagrán, Emerging opportunities
434 for nanotechnology to enhance water security, *Nat. Nanotechnol.*, 13 (2018) 634.

435 [3] W. Tian, H. Zhang, X. Duan, H. Sun, M.O. Tade, H.M. Ang, S. Wang, Nitrogen- and sulfur-
436 codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical
437 contaminants, *ACS Appl. Mater. Interfaces*, 8 (2016) 7184-7193.

438 [4] Y. Ji, Y. Fan, K. Liu, D. Kong, J. Lu, Thermo activated persulfate oxidation of antibiotic
439 sulfamethoxazole and structurally related compounds, *Water Res.*, 87 (2015) 1-9.

440 [5] X. Wang, Y. Qin, L. Zhu, H. Tang, Nitrogen-doped reduced graphene oxide as a
441 bifunctional material for removing bisphenols: Synergistic effect between adsorption and
442 catalysis, *Environ. Sci. Technol.*, 49 (2015) 6855-6864.

443 [6] G.X. Huang, C.Y. Wang, C.W. Yang, P.C. Guo, H.Q. Yu, Degradation of bisphenol A by
444 peroxymonosulfate catalytically activated with $Mn_{1.8}Fe_{1.2}O_4$ nanospheres: Synergism between
445 Mn and Fe, *Environ. Sci. Technol.*, 51 (2017) 12611-12618.

446 [7] B.T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its application in
447 decontamination technologies, *Crit. Rev. Environ. Sci. Technol.*, 45 (2015) 1756-1800.

448 [8] W.D. Oh, Z.L. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous
449 catalysis for organic contaminants removal: Current development, challenges and prospects,
450 *Appl. Catal.*, B, 194 (2016) 169-201.

451 [9] Y. Wang, D. Tian, W. Chu, M. Li, X. Lu, Nanoscaled magnetic $CuFe_2O_4$ as an activator of
452 peroxymonosulfate for the degradation of antibiotics norfloxacin, *Sep. Purif. Technol.*, 212
453 (2019) 536-544.

454 [10] G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition
455 metals with common oxidants, *Environ. Sci. Technol.*, 38 (2004) 3705-3712.

456 [11] P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on
457 heterogeneous catalysts and applications, *Appl. Catal.*, B, 181 (2016) 103-117.

458 [12] C. Su, X. Duan, J. Miao, Y. Zhong, W. Zhou, S. Wang, Z. Shao, Mixed conducting
459 perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: A
460 mechanistic study, *ACS Catalysis*, 7 (2017) 388-397.

461 [13] G. Chen, X. Zhang, Y. Gao, G. Zhu, Q. Cheng, X. Cheng, Novel magnetic
462 MnO₂/MnFe₂O₄ nanocomposite as a heterogeneous catalyst for activation of
463 peroxyomonosulfate (PMS) toward oxidation of organic pollutants, *Sep. Purif. Technol.*, 213
464 (2019) 456-464.

465 [14] J. Zou, J. Ma, L. Chen, X. Li, Y. Guan, P. Xie, C. Pan, Rapid acceleration of ferrous
466 iron/peroxyomonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with
467 hydroxylamine, *Environ. Sci. Technol.*, 47 (2013) 11685-11691.

468 [15] T. Zhang, H. Zhu, J.P. Croué, Production of sulfate radical from peroxyomonosulfate
469 induced by a magnetically separable CuFe₂O₄ spinel in water: Efficiency, stability, and
470 mechanism, *Environ. Sci. Technol.*, 47 (2013) 2784-2791.

471 [16] S. Zhang, Q. Fan, H. Gao, Y. Huang, X. Liu, J. Li, X. Xu, X. Wang, Formation of
472 Fe₃O₄@MnO₂ ball-in-ball hollow spheres as a high performance catalyst with enhanced
473 catalytic performances, *J. Mater. Chem. A.*, 4 (2016) 1414-1422.

474 [17] G.V. Buxton, T.N. Malone, G.A. Salmon, Reaction of SO₄²⁻ with Fe²⁺, Mn²⁺ and Cu²⁺ in
475 aqueous solution, *J. Chem. Soc., Faraday Trans.*, 93 (1997) 2893-2897.

476 [18] X. Xiong, B. Sun, J. Zhang, N. Gao, J. Shen, J. Li, X. Guan, Activating persulfate by Fe⁰
477 coupling with weak magnetic field: Performance and mechanism, *Water Res.*, 62 (2014) 53-
478 62.

479 [19] Y. Zhou, X.L. Wang, C.Y. Zhu, D.D. Dionysiou, G.C. Zhao, G.D. Fang, D.M. Zhou, New
480 insight into the mechanism of peroxyomonosulfate activation by sulfur-containing minerals:
481 Role of sulfur conversion in sulfate radical generation, *Water Res.*, 142 (2018) 208-216.

482 [20] X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Hydroxylamine promoted goethite
483 surface Fenton degradation of organic pollutants, *Environ. Sci. Technol.*, 51 (2017) 5118-5126.

484 [21] Y. Feng, H.L. Li, L. Lin, L.J. Kong, X.Y. Li, D.L. Wu, H.Y. Zhao, K. Shih, Degradation
485 of 1,4-dioxane via controlled generation of radicals by pyrite-activated oxidants: Synergistic
486 effects, role of disulfides, and activation sites, *Chem. Eng. J.*, 336 (2018) 416-426.

487 [22] Y. Feng, D.L. Wu, H.L. Li, J.F. Bai, Y.B. Hu, C.Z. Liao, X.Y. Li, K.M. Shih, Activation
488 of persulfates using siderite as a source of ferrous ions: Sulfate radical production,
489 stoichiometric efficiency, and implications, *ACS Sustain. Chem. Eng.*, 6 (2018) 3624-3631.

490 [23] A.B. Ross, P. Neta, Rate constants for reactions of inorganic radicals in aqueous solution,
491 US Department of Commerce, National Bureau of Standards Washington D. C, 1979.

492 [24] D.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M.
493 Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in
494 aqueous solution: inorganic radicals, *BioInorganic Reaction Mechanisms*, 9 (2013) 59-61.

495 [25] P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous
496 solution, *J. Phys. Chem. Ref. Data*, 17 (1988) 1027-1284.

497 [26] H.H. Kim, H. Lee, H.E. Kim, J. Seo, S.W. Hong, J.Y. Lee, C.H. Lee, Polyphosphate-
498 enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion
499 in the presence of oxygen: Yield and nature of oxidants, *Water Res.* 86 (2015) 66-73.

500 [27] M. Pirsahab, S. Moradi, M. Shahlaei, X. Wang, N. Farhadian, A new composite of nano
501 zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics
502 from water, *J. Clean. Prod.*, 209 (2019) 1523-1532.

503 [28] C. Kim, J.Y. Ahn, T.Y. Kim, W.S. Shin, I. Hwang, Activation of persulfate by nanosized
504 zero-valent iron (nZVI): Mechanisms and transformation products of nZVI, *Environ. Sci.
505 Technol.*, 52 (2018) 3625-3633.

506 [29] Y. Wu, X. Chen, Y. Han, D. Yue, X. Cao, Y. Zhao, X. Qian, Highly efficient utilization
507 of nano-Fe (0) embedded in mesoporous carbon for activation of peroxydisulfate, *Environ. Sci.
508 Technol.*, 53 (2019) 9081-9090.

509 [30] Y.G. Kang, H. Yoon, W. Lee, E.J. Kim, Y.S. Chang, Comparative study of peroxide
510 oxidants activated by nZVI: Removal of 1,4-dioxane and arsenic(III) in contaminated waters,
511 *Chem. Eng. J.*, 334 (2018) 2511-2519.

512 [31] G. Barzegar, S. Jorfi, V. Zarezade, M. Khatebasreh, F. Mehdipour, F. Ghanbari, 4-
513 Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron:
514 Reusability, identification of degradation intermediates and potential application for real
515 wastewater, *Chemosphere*, 201 (2018) 370-379.

516 [32] J. Li, X. Zhang, Y. Sun, L. Liang, B. Pan, W. Zhang, X. Guan, Advances in sulfidation of
517 zerovalent iron for water decontamination, *Environ. Sci. Technol.*, 51 (2017) 13533-13544.

518 [33] Y. Mu, F. Jia, Z. Ai, L. Zhang, Iron oxide shell mediated environmental remediation
519 properties of nano zero-valent iron, *Environ. Sci. Nano*, 4 (2017) 27-45.

520 [34] H. Zhang, Y. Ruan, A. Liang, K. Shih, Z. Diao, M. Su, L.a. Hou, D. Chen, H. Lu, L. Kong,
521 Carbothermal reduction for preparing nZVI/BC to extract uranium: Insight into the iron species
522 dependent uranium adsorption behavior, *J. Clean. Prod.*, 239 (2019) 117873.

523 [35] T. Liu, X. Li, T.D. Waite, Depassivation of aged Fe^0 by divalent cations: correlation
524 between contaminant degradation and surface complexation constants, *Environ. Sci. Technol.*,
525 48 (2014) 14564-14571.

526 [36] X.Q. Li, W.X. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles a
527 study with high resolution X-ray photoelectron spectroscopy (HR-XPS), *J. Phys. Chem. C*, 111
528 (2007) 6939-6946.

529 [37] J. Guo, Z. Li, P. Ranasinghe, S. Bonina, S. Hosseini, M.B. Corcoran, C. Smalley, R.
530 Kaliappan, Y. Wu, D. Chen, Occurrence of atrazine and related compounds in sediments of
531 upper Great Lakes, *Environ. Sci. Technol.*, 50 (2016) 7335-7343.

532 [38] C.M. Wang, D.R. Baer, L.E. Thomas, J.E. Amonette, J. Antony, Y. Qiang, G. Duscher,
533 Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at
534 room temperature, *J. Appl. Phys.*, 98 (2005) 094308.

535 [39] J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Highly
536 water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate
537 groups, *Angew. Chem. Int. Ed.*, 48 (2009) 5875-5879.

538 [40] C. Liang, C. Huang, N. Mohanty, R.M. Kurakalva, A rapid spectrophotometric
539 determination of persulfate anion in ISCO, *Chemosphere*, 73 (2008) 1540-1543.

540 [41] Z. Ai, Z. Gao, L. Zhang, W. He, J.J. Yin, Core-shell structure dependent reactivity of Fe@
541 Fe₂O₃ nanowires on aerobic degradation of 4-chlorophenol, *Environ. Sci. Technol.*, 47 (2013)
542 5344-5352.

543 [42] L. Lu, Z. Ai, J. Li, Z. Zheng, Q. Li, L. Zhang, Synthesis and characterization of Fe-Fe₂O₃
544 core-shell nanowires and nanonecklaces, *Crystal growth & design*, 7 (2007) 459-464.

545 [43] Y. Zhou, J. Jiang, Y. Gao, S.-Y. Pang, J. Ma, J. Duan, Q. Guo, J. Li, Y. Yang, Oxidation
546 of steroid estrogens by peroxyomonosulfate (PMS) and effect of bromide and chloride ions:
547 Kinetics, products, and modeling, *Water Res.*, 138 (2018) 56-66.

548 [44] C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, Radical induced degradation of
549 acetaminophen with Fe₃O₄ magnetic nanoparticles as heterogeneous activator of
550 peroxyomonosulfate, *J. Hazard. Mater.*, 276 (2014) 452-460.

551 [45] H. Gallard, J. De Laat, Kinetic modelling of Fe (III)/H₂O₂ oxidation reactions in dilute
552 aqueous solution using atrazine as a model organic compound, *Water Res.*, 34 (2000) 3107-
553 3116.

554 [46] D.L. Ball, J.O. Edwards, The kinetics and mechanism of the decomposition of Caro's acid.
555 I, *J. Am. Chem. Soc.*, 78 (1956) 1125-1129.

556 [47] Y. Feng, P.H. Lee, D. Wu, K. Shih, Surface-bound sulfate radical-dominated degradation
557 of 1,4-dioxane by alumina-supported palladium (Pd/Al₂O₃) catalyzed peroxyomonosulfate,
558 *Water Res.*, 120 (2017) 12-21.

559 [48] F. Ghanbari, C.A. Martínez-Huitl, Electrochemical advanced oxidation processes
560 coupled with peroxyomonosulfate for the treatment of real washing machine effluent: A
561 comparative study, *J. Electroanal. Chem.*, 847 (2019) 113182.

562 [49] L. Hou, X. Li, Q. Yang, F. Chen, S. Wang, Y. Ma, Y. Wu, X. Zhu, X. Huang, D. Wang,
563 Heterogeneous activation of peroxyomonosulfate using Mn-Fe layered double hydroxide:
564 Performance and mechanism for organic pollutant degradation, *Sci. Total Environ.*, 663 (2019)
565 453-464.

566 [50] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants
567 for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ($\cdot\text{OH}/\cdot\text{O}^-$) in
568 aqueous solution, *J. Phys. Chem. Ref. Data*, 17 (1988) 513-886.

569 [51] C.L. Clifton, R.E. Huie, Rate constants for hydrogen abstraction reactions of the sulfate
570 radical, SO_4^- . *Alcohols, Int. J. Chem. Kinet.*, 21 (1989) 677-687.

571 [52] Y. Feng, D. Wu, Y. Zhou, K. Shih, A metal-free method of generating sulfate radicals
572 through direct interaction of hydroxylamine and peroxyomonosulfate: Mechanisms, kinetics,
573 and implications, *Chem. Eng. J.*, 330 (2017) 906-913.

574 [53] Z. Xiong, B. Lai, P. Yang, Y. Zhou, J. Wang, S. Fang, Comparative study on the reactivity
575 of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N_2 , air or
576 without aeration, *J. Hazard. Mater.*, 297 (2015) 261-268.

577 [54] C.R. Keenan, D.L. Sedlak, Factors affecting the yield of oxidants from the reaction of
578 nanoparticulatezero-valent iron and oxygen, *Environ. Sci. Technol.*, 42 (2008) 1262-1267.

579 [55] Y. Pang, Y. Ruan, Y. Feng, Z. Diao, K. Shih, L.a. Hou, D. Chen, L. Kong, Ultrasound
580 assisted zero valent iron corrosion for peroxyomonosulfate activation for Rhodamine-B
581 degradation, *Chemosphere*, 228 (2019) 412-417.

582 [56] A. Liu, J. Liu, J. Han, W.X. Zhang, Evolution of nanoscale zero-valent iron (nZVI) in
583 water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured
584 iron oxides, *J. Hazard. Mater.*, 322 (2017) 129-135.

585

586

587

588

589

590

591