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ABSTRACT

Nanoscale zero-valent iron (nZVI) is highly promising for oxidative removal of
micropollutants by initiating advanced oxidation processes, but its vulnerability to deactivation
due to the surface oxidation is challenging. In this study, we propose Fe°@Fe3O4 core-shell
nanowires (CSNWSs) as a novel activator to generate radicals for atrazine, a representative
micropollutant, degradation via the activation of peroxymonosulfate (PMS). Fe?@FesOq4
CSNWs with a shell thickness of around 5 nm were synthesized using a facile chemical
reduction approach and were comprehensively characterized using a series of surface sensitive
techniques. The results showed that the Fe?@Fes0. CSNW had great reactivity for atrazine
degradation via the activation of PMS; near complete degradation of atrazine was achieved
after reaction for only 2 min. Under identical conditions, the pseudo-first order rate constant
with Fe?@FesO4 was more than 36 times greater than that with nano FesOs. The surface
activation of PMS contributed only a small proportion to the overall degradation. Instead, the
iron released from Fe?@FesOs CSNWSs primarily activated PMS to generate SO, that
degraded atrazine. The Fe°@FesO4 CSNWs were stable and no deactivation was observed after
exposing Fe°?@Fes0s CSNWs to air for 3 months. The results from this study demonstrate a

stable nZV1 for oxidative removal of organic contaminants.

Keywords: Zero-valent iron; Fe?@Fes04; core-shell nanowires; atrazine; peroxymonosulfate
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1. Introduction

The widely occurrence of trace levels of microorganic contaminants in various environmental
matrices requires the development of highly efficient remediation technologies [1, 2]. Sulfate
radical (SO, )-mediated treatments, recently emerged as a novel advanced oxidation process
(AOP), have shown great promise in the degradation of various kinds of organic contaminants,
such as antibiotics [3, 4] and endocrine disrupting chemicals [5, 6]. The generation of SO,
depends on the activation of either peroxymonosulfate (PMS) or peroxydisulfate (PDS), and
many activation technologies that rely on UV irradiation, heating, base, or transition metals
have been proposed [7-9]. Of these activation technologies reported, the activation of PMS
(PDS) by transition metals through an one-electron transfer mechanism (Eq. 1) [10-13] is very
promising for practical environmental remediation applications, because such techniques do
not require external energy and many of the transition metals are ubiquitous in soil and aquifers.

M™ + HSO; — M™*1 + SO, + OH~ )

Iron is an environmentally friendly and low-cost material. However, dissolved iron (e.g., Fe?*,
Fe3*) [14] and iron oxides (e.g., Fe20s and Fe304) [15, 16] are relatively low efficient for SO, -
mediated AOPs due to the thermodynamically unfavorable reduction of Fe** by persulfates and
the strong scavenging effect of Fe?* toward SO, (4.6 x 10° M s™!, Eq. 2) [17-19]. To
accelerate the regeneration of Fe?*, many strategies, such as UV irradiation and addition of
reducing agents [14, 20], have been reported. To mitigate the scavenging effect of Fe?*, we
have previously used structural ferrous iron-containing minerals, such as pyrite [21] and
siderite [22], as sources of Fe?*. However, the release of sulfate ions and bicarbonate ions may
be a concern when high dosages of pyrite and siderite are used; bicarbonate ions are strong

radical scavengers (kpco; so; = (9.1 £0.4) x 10° M~* s™*) [23] and the resulting carbonate

radical (COj;; E® = 1.57 V) [24] is less oxidizing than SO, (E° = 2.5-3.1 V) [25].
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Fe?* + SO, — Fe3+ + S02- ()

Nanoscale zero-valent iron (nZV1) has been used as an activator in AOPs, particularly hydroxyl
radical (-OH)-mediated processes [26, 27]. For the generation of SO, via persulfate activation,
nZV1 has also been studied [28, 29]. Although both nZVI-PDS and nZVI-PMS combinations
can degrade a serious of organic contaminants, the scavenging effect of excess nZVI has been
reported [30, 31]. In addition, the high surface energy of nZVI rends it easily aggregate and
passivate in AOPs [32-34], in which dissolved oxygen is ubiquitously present. To solve these
problems, we here propose to use Fe°@Fe3O4 core-shell nanowires (CSNWSs) to activate PMS.
A Fe?@Fe304 CSNW consists of a Fe® core and a surrounding thin shell of FesO4. Fe’@Fe304
CSNWs provide an efficient interface for electron transport. The FezO4 shell can be considered
as an n-type semiconductor, which mediates the electrons transfer from the Fe® core to the
surface adsorbed contaminants [35, 36]. Therefore, the potential synergy between Fe® and
Fes04 may aid the circulation of iron at different valent states and thus improve the activation

of PMS.

In this study, Fe’@Fe304 CSNWSs were synthesized using a facile reduction approach and were
used, for the first time, to activate PMS for the degradation of target contaminant atrazine,
which is a widely used herbicide and has been frequently detected in various environmental
matrices [37]. The nanowires prepared were fully characterized using various surface-sensitive
techniques and their reactivity was tested under varied experimental conditions. To explore the
activation mechanism, classical scavenging experiments and kinetic studies were carried out.
Finally, the transformation product of Fe°@FesOs CSNWSs was studied, and the electron

transfer associated with the activation process was proposed.
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2. Experimental section

2.1 Chemicals

OXONE, monopersulfate compound (KHSOs-0.5KHSO4:0.5K>S04), ferrous sulfate
heptahydrate (>99.0%), sodium borohydride, sodium thiosulfate, nitrobenzene, and Pluronic
F-127 were obtained from Sigma-Aldrich (St. Louis, MO, USA). Atrazine (97%) was supplied
by TCI Ltd. (Shanghai, China). tert-Butanol (99.5%) was purchased from Aladdin Corp.
(Shanghai, China). High-performance liquid chromatography (HPLC) grade methanol and
sulfuric acid (2 M) were supplied by Fisher Scientific (Pittsburgh, PA, USA). Ultrapure water
(18.0 MQ - cm) for preparing experimental solutions was prepared using a Millipore water

purification system.

2.2 Synthesis and characterization of Fe?@Fe30s CSNWs

Fe@Fe304 CSNWSs were synthesized using a facile reduction method. In a typical procedure,
6 g of ferrous sulfate heptahydrate, 4.1 g of sodium borohydride, and 1 g of Pluronic F-127
were dissolved in 50 mL, 10 mL, and 40 mL of ultrapure water, respectively. The resulting
ferrous sulfate solution was then mixed with the F-127 solution, followed by the dropwise
addition of the sodium borohydride solution to produce black powders. The black powders
obtained were washed with pure ethanol and deoxygenated water to remove impurities. The
resulting products were put in a freeze-drying device and dried for 12 h. The mechanism
underling the formation of FesO4 layer on nano Fe® cores is described by Egs.3 and 4 [38].
Nano Fe304 was synthesized using a solvothermal approach [39].

2Fe® + 0, - 2Fe0 (3)

6FeO + O, —» 2Fe;0, 4

The purity and crystallinity of the synthesized sample were characterized using a D8 Advance

X-ray diffractometer (Bruker, Karlsruhe, Germany) with a Cu X-ray tube at 40 mA and 40 kV.
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The valent state of iron on the material surface was characterized using an ESCALAB 250XI1
X-ray photoelectron spectrometer (Thermo, Waltham, MA, USA) with Al-Ka radiation. The
morphology was examined using a Hitachi S-4800 scanning electron microscope and a FEI
Tecnai G2 20 S-TWIN transmission electron microscope. The measurement of
Brunauer—Emmett—Teller specific surface area was carried out via N2 adsorption at 77 K using
an ASAP 2460 surface area analyzer (Micromeritics, Norcross, GA, USA). The Fourier-
transform infrared (FT-IR) spectra were recorded on a Spectrum 100 FT-IR spectrometer
(PerkinElmer, Waltham, MA, USA). The Zeta potential was measured using a Malvern Zeta
potential analyzer (Malvern, UK), and the point of zero charge (pHpzc) was estimated to be

around 6.8.

2.3 Degradation experiments

Unless otherwise stated, all degradation reactions were conducted at room temperature (25 + 1
°C) in 200 mL glass reactors. In a typical test, 100 mL of atrazine solution (500 pg/L) was
added to the glass reactor, followed by the addition of PMS solution. The original pH value of
the atrazine solution with PMS (1 mM) was around 3.0 and was further adjusted when
necessary using a diluted NaOH or H,SOs solution. Fe°?@Fe304 CSNWs were then added to
the solution to initiate activation and degradation reactions. Samples were withdrawn with
syringes, filtered with PTFE membrane filters (0.22 um), and transferred to autosampler vials
(2 mL) for HPLC analysis. To prevent the atrazine from further degradation, excess sodium
thiosulfate (10 uL, 0.5 M) was spiked to the vials. After the degradation reaction, the solid
activators were recollected by vacuum filtration and dried in a freeze-drying device for further

use. The degradation of atrazine by PMS alone is described in Note S1.
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2.4 Chemical analysis

Atrazine was measured using an Agilent 1260 Infinity Il HPLC system equipped with a diode
array detector (DAD) and an autosampler. The separation was carried out on a ZORBAX
Eclipse XDB-C18 column (4.6 x 150 mm, 5 um). A mobile phase consisted of HPLC-grade
methanol and ultrapure water (60:40) was used for the elution. The flow rate and column
temperature were fixed at 1 mL/min and 30 °C, respectively. The DAD wavelength was set at
222 nm. The retention time of atrazine was around 2.4 min. The solution pH was measured
using an Orion 2-Star benchtop pH meter. PMS was quantified using an iodometric method

[40], which is based on the quantification of I3 .

3. Results and discussion

3.1 Material characterization

Figure 1. (a) Scanning electron microscopy, (b) transmission electron microscopy, (c) high-
resolution transmission electron microscopy, and (d) selected area electron diffraction images
of Fe’@Fes0s CSNWSs. The inset in (a) shows the image of the synthesized Fe?@FesOq

CSNWs.
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The scanning electron microscopy image shows that the synthesized sample existed in
nanowire structures with a length of 200 to 300 nm (Fig. 1a). The nanowires consisted of core-
shell structures (Fig. 1b) with a shell thickness of around 5 nm (Fig. 1c). The composition of
the shell layer was investigated using selected area electron diffraction and was found to be
FesO4 (Fig. 1d). The transmission electron microscopy image of nano FesO4 is shown in Fig.

S1, which reveals that the size of the nano FesO4 was generally in the range of 10 to 20 nm.

a X Fe,0, (JCPDS no. 86-1362) b Fe 2p3/2

| Fe® (JCPDS no. 87-0722) Fe 2p1/2

satellite peaks, satellite pegks

Intensity (a.u.)

X |
e K oy Ky e K Ry g ———
10 20 30 40 50 60 70 80 740 735 730 725 720 715 710 705
Two theta (degree) Binding energy (eV)

Figure 2. (a) X-ray diffraction pattern and (b) X-ray photoelectron spectroscopy spectrum of
fresh Fe?@Fe304 CSNWs.

The X-ray diffraction pattern of the synthesized Fe’@FesOs CSNW sample is shown in Fig.
2a. A weak and broad peak at around 45° is observed, which is a characteristic peak of metallic
Fe (JCPDS no. 87-722) [41]. The average size of the particle can be measured according to
the Scherrer equation D = k(A/B cos(0)). Where A is the X-ray wavelength equal to 0.154 nm,
0 is the half diffraction angle, k is a constant equal to 0.89, and B is the full width at half
maximum. When 6 was at around 45°, § was measured to be 3.226. Therefore, the size of the
metallic Fe® (nZVI) was calculated to be around 17 nm, which is very close to the value
observed in Fig. 1b. The X-ray diffraction pattern of nano FesO4 is shown in Fig. S2. This
pattern confirms that pure nano FezO4 (JCPDS no. 19-0629) was successfully synthesized. The

specific surface areas of Fe?@Fes04 CSNWs and nano FesO4 were measured to be 56.2 and
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20.7 m®/g, respectively. Other physical-chemical properties of the activators, such as pore size,

are listed in Table S1.

The valent state of iron on Fe°’@Fe30s CSNWs was investigated using X-ray photoelectron
spectroscopy. The highly resolution X-ray photoelectron spectrum of Fe is shown in Fig. 2b.
Two bands with banding energies at around 711.2 and 725.1 eV were assigned to Fe 2ps;» and
Fe 2p12 [42], respectively. These bands are the characteristic peaks of Fe(ll) from FeO and
Fe(111) from Fe3O4 [16], which consistently suggests that the shell layer of the Fe?@Fes04

CSNWs is Fes0a.

3.2 Reactivity of Fe’@Fes04 CSNWs

-
N

ato b 1.0 2
—— 25 mg/L Fe’@Fe,0, é’é\§\ % e 10
0.8 —@— 50 mg/L Fe’@Fe,0, 0.8 ‘\é € ‘
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&) W PMS alone = u B Nano Fe,0 IS
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Figure 3. (a) Degradation of atrazine by Fe’@FesOs CSNWs-activated PMS, (b) comparison
of different activators for atrazine degradation via the activation of PMS, and (c) pseudo-first-
order rate constants with different activators. Conditions: [PMS] = 1 mM, [atrazine] = 500
ug/L, [Fe’@FesOs CSNWSs] = [nano FesOa4] = 25 mg/L, [Fe?*] = 4 mg/L, and pH 3.0.

Only slight degradation of atrazine (<1%) occurred in the presence of PMS alone (pH 3-4; Fig.
S3), which is consistent with the fact that PMS has quite limited oxidative capability under
acidic conditions [43]. Fe°@FesO4 CSNWs alone also had no obvious reactivity to remove
atrazine (Fig. S4). When Fe’@Fe304 CSNWs were co-present with PMS, rapid degradation of
atrazine was observed; near complete degradation of atrazine was achieved after reaction for 2

min in the presence of 1 mM PMS and 50 mg/L Fe’@FesOs CSNWs (Fig. 3a). This rapid
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degradation of atrazine suggests the efficient reactivity of Fe°?@Fe3Os CSNWs toward PMS

activation.

To reveal the potential synergy between the Fe® and FesO4 in Fe?@Fes04 CSNWs, we studied
the degradation of atrazine in the presence of the synthesized nano FesO4. Under identical
conditions, Fe°?@FesO4 CSNWs had significant greater reactivity than nano FesOs (Fig. 3b);
approximately 100% degradation of atrazine was achieved with Fe°@Fes0s CSNWs-PMS
after reaction for 6 min, while only 66% of the degradation was achieved with nano FezOs-
PMS. Kinetics investigations revealed that the removal of atrazine followed pseudo-first-order
Kinetics in the tested time range. The pseudo-first-order kinetic constant with Fe’@FesOq4
CSNWSs-PMS was calculated to be around 0.216 min™?, which was 36 times greater than that
with nano Fes04-PMS (0.006 min™t) (Fig. 3c). The reactivity of Fe?* was also studied and
compared. The selection of the concentration of Fe?* (4 mg/L) was based on the leaching result
of iron in the presence of PMS (Fig. 4c). The results show that an overall degradation rate of
less than 20% was achieved by Fe?*-PMS (Fig. 3b). This value was significantly lower than
that obtained by Fe?@Fe30s CSNWSs-PMS (~100%), suggesting that Fe°@FesO4 CSNWSs had

much higher reactivity than Fe?*.

10
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3.3 Effects of experimental parameters and active sites
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Figure 4. (a) Effects of Fe’@FesO4 CSNWs and (b) pH value on the degradation of atrazine.
(c) Iron leaching during the activation of PMS by Fe’@FesO, CSNWs. (d) High resolution X-
ray photoelectron spectroscopy spectra of Fe 2p from fresh and used Fe’@Fe3Os CSNWs.
Conditions: [PMS] =1 mM, (b, ¢) [Fe°’@Fe304 CSNWs] = 25 mg/L, and pH 3.0.

The degradation of atrazine increased with the increase of Fe?@Fe30s CSNW dosage from 25
to 500 mg/L, and no scavenging effect was observed (Fig. 4a). The effect of solution pH value
on the activation of PMS by Fe’@FesO. CSNWs for atrazine degradation was studied. The
degradation performance decreased significantly when the pH value rose from 3.0 to 4.0 (Fig.
4b). Only slight change in the degradation occurred when the pH value was in the range of 4.0
to 8.0, but an obvious decrease in the degradation was noticed when the pH value was further
increased to 10.0. The significant decrease with the pH enhancement from 3.0 to 4.0 could be

ascribed to the limited availability of dissolved iron. The total dissolved iron (TDI) under both

11
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pH conditions was measured. Around 3.6 mg/L of TDI was detected when Fe°@FesO4 CSNWs
reacted with PMS for 6 min at pH 3.0 (Fig. 4c). However, the overall TDI was measured to be
lower than 50 ug/L at pH 4.0. Such a low level of TDI had a negligible effect on the activation
of PMS (Fig. S5). In the absence of PMS, the overall TDI was measured to be 6.5 mg/L, which
was much greater than the value (3.6 mg/L) measured in the presence of PMS. The adverse
effect of PMS on the leaching of iron was probably due to its adsorption onto the surface of
Fe?@Fes04 CSNWSs, which hindered the interaction between H* and Fe’@Fe304 CSNWs. This

phenomenon was also observed in our previous study with siderite as the activator [22].

In the absence of Fe?@Fes04 CSNWSs, only 0.5% of the atrazine was degraded by PMS alone
(Fig. S3). However, the degradation rate increased to around 34% when Fe’@FesOs CSNWs
was present, which reveals that the surface activation of PMS by Fe?@Fes0s CSNWs also
occurred. Tan et al. [44] studied the activation of PMS by nanoscale FesO4 under different pH
values, and they found that an increase in the acidity has an inhibitory effect. For such a reason,
the contribution of the surface activation to the overall degradation performance at pH 3.0
should be much smaller than that at pH 4.0. Therefore, the heterogeneous activation of PMS
by Fe?@FesO, CSNW surfaces occurred but should not be the key mechanism for the efficient
degradation of atrazine. Instead, the dissolved iron was the major species for PMS activation.
In addition, atrazine has a pKa value of around 1.6 [45], which suggests that atrazine existed
mainly as neutral molecules in the tested pH range. Thus, the low performance at pH 10 was
not caused by static interaction. Instead, the dominance of SOZ~ over HSOZ was probably the
controlling factor. PMS has a second ionization constant of around 9.4 [46]; PMS exited mainly
in form of SOZ~ at pH 10.0. Compared with HSOZ, SO%~ is much more difficult to activate [15,
47]. As the pHp. of Fe?@Fes0, CSNWSs was around 6.8, their surfaces were negatively

charged when the pH value of the reacting solution was in the range of 8.0 to 10.0. The

12
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negatively charged surfaces were not electrostatically favorable to react with SOZ~.In addition,
some PMS decomposed under alkaline conditions to generate nonradical species, which also
probably contributed to the low performance [48, 49]. The high-resolution X-ray photoelectron
spectroscopy spectra of Fe 2p from the fresh and used Fe’@Fe30s CSNWSs were recorded (Fig.
4d). By comparing these spectra, it can be seen that only slight oxidation of the surface iron

occurred after the activation reaction.

3.4 Kinetics for atrazine degradation

a 1.0 b %°]
1 0.5 -
0.9 S S — |
1 0.4 y=0.001 x x + 0.46
5 %87 —B- Atrazine| |G g3 R%=0.992
S 1 —@ PMS S
© 0.7 | < 0.2
' B y=0.053 x x + 0.044
| A )
0.6 — M\H\é\* 3 R*=0.923
1 0.0 1H
0 7T 1 T 7 I
0 10 20 30 40 50 0 10 20 30 40 50
Reaction time (min) Reaction time (min)

Figure 5. (a) Degradation of atrazine and decomposition of PMS. (b) Plot of -In(C/Co) versus
reaction time (min). Conditions: [atrazine] = 5 mg/L, [Fe°’@FesOs CSNWs] = 25 mg/L, [PMS]
=1 mM, and pH 3.0.

To investigate the kinetics, the degradation of atrazine with a relatively higher level of
concentration (5 mg/L) was explored. Rapid degradation of atrazine was observed in the first
10 min and the rate slowed down with the continuation of the reaction (Fig. 5a). Meanwhile,
relatively more rapid decrease in the concentration of PMS occurred in the first 10 min of
reaction. To measure the efficiency of the oxidant, we calculated the stoichiometric efficiency
(Eq. 5) [47]. Under the conditions of 5 mg/L atrazine and 1 mM PMS, the stoichiometric

efficiency was calculated to be around 10.3%.

13
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In Fe?@Fes0, CSNWSs-PMS oxidation, the fate of atrazine can be expressed by a pseudo-first-

order law with regard to the concentration of atrazine (Eg. 6). An integration of Eq. 6 yields

Eq. 7.

——d[atrstzme] = kgpplatrazine] (6)
[atrazine] \ __

—In ([atrazine]o) - kappt (7)

As shown in Fig. 5b, there were two different reaction stages. Considering the transformation
product of Fe°@Fe30s CSNWs, it is easy to conclude that these two reaction stages were
mainly mediated by the released Fe?* and formed r-FeOOH. By plotting -
In[atrazine]/[atrazine]o versus reaction time (Eq. 7), the pseudo-first-order Kinetic rate
constants for atrazine degradation by Fe**-PMS and r-FeOOH-PMS were calculated to be
0.053 and 0.001 min?, respectively. The low reactivity of r-FeOOH toward PMS activation

could be explained by the difficulty in the regeneration of Fe(Il) from Fe(ll1) reduction.

3.5 Activation and degradation mechanisms

1.0 1.0 C 1.0 {m=
a b L
| ] . = =
0.8 0.8 5 0.8 —4
S 3 )
S 0.6 S 0.6+ @ 06 -
‘q‘J’ —— 0 M Methanol ‘q')’ S ©
< —@—0.1 M Methanol| | £ —8— 0 M tert-Butanol o ——————
N 0.4 —A—0.5 M Methanol| | N 0.4 + —8—0.1 M fert-Butanol | & 04 —- Fe’@Fe,0, alone
g 2 —&—05M tertButanol | © ® Fe'@Fe,0,-PMS
0.2 - 0.2 - Z 02
0.0 0.0 - 0.0 4 T T T T

0 1 2 3 4 H 5 I 6 0 : 1 2 3 4 5 : 6 0 I 1 I 2 I 3 4 I é I (IS
Reaction time (min) Reaction time (min) Reaction time (min)
Figure 6. (a) Effects of methanol and (b) tert-butanol on the degradation of atrazine by
Fe’@Fe304 CSNWs-activated PMS. (c) Degradation of nitrobenzene by Fe®@FesO4 CSNWs-
activated PMS. Conditions: [atrazine] = 500 pg/L (2.3 uM), [Fe?@Fes04 CSNWSs] = 25 mg/L,

[PMS] =1 mM, and [nitrobenzene] = 2.3 uM.
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To examine the degradation mechanism of atrazine, classical scavenging experiments were
carried out to study the role of radicals. The scavenging experiments were based on the great
difference in the reaction rate constants of alcohols (methanol and tert-butanol) with oxygen-
bearing radicals. Methanol reacts rapidly with both -OH (9.7 x 108 M* s7%) [50] and SO} (1.0
x 10" M1 s71) [51]. tert-Butanol is reactive for -OH (3.3 x 10° Mt s™%), but highly inert for
SO, (4.1-9.0 x 10° M1 s™1). The results show that the degradation of atrazine was significantly
inhibited in the presence of 0.1 M of methanol, and the inhibitory extent was increased with
the further enhancement of methanol dose; the overall degradation rate was decreased from
around 99% to 10% when 0.5 M methanol was present (Fig. 6a). Significant inhibitory effects
were also observed when different levels of tert-butanol presented as a scavenger; the overall
degradation rate was decreased from around 99% to 9% when 0.5 M of tert-butanol was present
(Fig. 6b). The significant scavenging effects of both methanol and tert-butanol suggest the

dominance of radicals in the degradation.

To further examine the radical species produced, the degradation of nitrobenzene by
Fe®@Fes0s CSNWs-PMS was investigated. Nitrobenzene reacts quite slowly with SO, (<10°
M™1s™), but interacts rapidly with -OH (3.9 x 10° Mt s71) [50]. Our previous work has shown
the effectiveness of using nitrobenzene in the identification of SO, [52]. Less than 20% of the
nitrobenzene was removed by Fe°@Fe3Os CSNWs alone and no obvious change in the removal
performance was observed when PMS was further added (Fig. 6¢). This observation suggests
that the combination of Fe°@Fe30s CSNWSs with PMS had no obvious oxidizing capability

toward nitrobenzene, and therefore SO, was the dominant active species.

Fe® + 0, + 2H* — Fe** + H,0, (8)
Fe** +H,0, » Fe** +-OH + OH~ 9)
= Fe'l'OH + Fe?* + H,0 - = Fe!l'OFe!'OH + 2H* (10)
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= Fe''OFe"'OH — = Fe!'OFe"'OH (12)

= Fe''OFe"'OH + 0, - = Fe'"OFe"OH + - O; (12)
Fe® + 2Fe3+ — 3Fe?t (13)
Fe3* + 07 > Fe?* + 0, (14)

Previous studies reported that - OH could be generated via the activation of dissolved
molecular oxygen by nZVI (Egs. 8 and 9) [53, 54]. However, the dominance of SO, in
Fe®@Fes0s CSNWs-PMS oxidation suggests that the contribution of this mechanism to the
degradation was negligible. The significant greater reactivity of Fe°@FesO4s CSNWs over
Fes04 could be ascribed to the accelerated regeneration of both structural Fe(ll) and dissolved
Fe?*. First, the = Fe!"OH on Fe’@Fes04 CSNWs formed a complex (= Fe!"OFe'OH) with
the released Fe?* (Eq. 10). Second, electron transfer occurred in the complex and resulted in
the formation of = Fe!'OFe!'OH (Eq. 11), which then activated dissolved molecular oxygen
to produce superoxide radicals (- O;; Eq. 12). Finally, the produced - O along with the Fe®
core reduced Fe®* to Fe?* (Egs. 13 and 14) [41, 55]. In addition to the facilitate the regeneration
of Fe?*, the FesO4 shell well prevented the Fe® core from deactivation. To further reveal this
protection, we exposed the Fe’@Fe304 CSNWs in air for three months and then compared their
reactivity for PMS activation with fresh Fe?@FesOs CSNWs. The results show that no obvious
difference in the degradation of atrazine was observed with the two kinds of Fe’@FesO.

CSNWs (Fig. S6).

The morphology of the Fe®@FesO4s CSNWs after its extended reaction with PMS was
investigated. The emission scanning microscopy image shows that needle-like products were
formed during the transformation of Fe°@FesOs CSNWs (Fig. 7a). The X-ray diffraction
characterization showed that sharp crystalline peaks were recorded and lepidocrocite (r-

FeOOH; JCPDS no. 44-1415) was the major oxidation product (Fig. 7b). This finding was
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367  further supported by the FT-IR studies (Fig. 7c) and selected area electron diffraction pattern
368  (Fig. 7d). The generation of r-FeOOH as the major product of nZVI oxidation is consistent

369  with previous reports [33, 56].
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y-FeOOH (JCPDS no. 44-1415)
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371  Figure 7. (a) Transmission electron microscopy image, (b) X-ray diffraction pattern, (c) FI-TR
372  spectra, and (d) selected area electron diffraction pattern of the Fe°@FesO4 CSNWs after an

373  extended reaction with PMS. The inset in (a) shows the image of the used Fe’@FesO4 CSNWs.
374

375 4 Conclusions

376  Although iron-based core-shell structures have previously been studied in -OH-mediated AOPs,
377  they are rarely investigated in SO, -mediated processes, particularly through the activation of
378 PMS. In this study, Fe?@FesOs CSNWSs were synthesized and demonstrated to be a highly

379 efficient activator of PMS for atrazine removal from water solutions. Some conclusions can be

380 drawn as follows:
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(1) Fe’@Fe304 CSNWSs with a shell layer thickness of 5 nm was successfully synthesized using
the facile reduction approach;

(2) Fe?@Fes04 CSNWs had high reactivity for atrazine degradation via the activation of PMS;
near 100% removal of atrazine was achieved after reaction for 2 min in the presence of 1
mM PMS and 50 mg/L Fe?@FesOs CSNWs;

(3) Fe’@Fe304 CSNWs had significantly greater reactivity than nano Fe3Oa. The rate constant
with Fe?@FesO4 CSNWs was calculated to be around 0.216 min*, which was 36 times
that with nano FesO4 (0.006 min™?);

(4) The surface activation of PMS by Fe?@FesOs CSNWSs occurred, but this mechanism
contributed only a small proportion to the degradation of atrazine. Instead, the iron released
from Fe?@Fe304 CSNWs primarily activated PMS to generate SO, that degraded atrazine;

(5) Two reaction stages were observed in the activation of PMS by Fe°@Fe3O4 CSNWSs, which
was found to be caused by the generation of r-FeOOH from Fe°@Fe304 CSNW oxidation;

(6) The Fe?@Fe304 CSNWs are highly stable in air, which suggests convenience during the
transportation and storage in practical remediation applications.

(7) A low stoichiometric efficiency (10.3%) was recorded, which reveals that the majority of

the PMS was invalidly consumed during the activation process.
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