Investigation of surface roughness in face milling processes
Muhammad Huzaifa Raza'*, Faisal Hafeez’, Ray Y. Zhong', Asif Imran?

'Department of Industrial and Manufacturing System Engineering, The University of Hong
Kong, Hong Kong

*Department of Industrial Engineering, University of Engineering and Technology Taxila,
Taxila, Pakistan

Corresponding author
Muhammad Huzaifa Raza

!Department of Industrial and Manufacturing System Engineering, The University of Hong
Kong, Hong Kong

Email: huzaifa@connect.hku.hk



mailto:huzaifa@connect.hku.hk

Investigation of surface roughness in face milling processes

Abstract

This study aims to investigate the effects of dry, minimum quantity lubrication (MQL) and
nanofluid cutting conditions on surface roughness (Ra) and material removal rate (MRR) for
Al6082-T6. Three controllable factors namely feed rate (Fr), spindle speed (Vs) and depth of
cut (Dc) are studied at three levels using Taguchi method. Single-response optimization is
conducted using S/N ratio and contour plots. Empirical models of Ra and MRR for all cutting
conditions are developed and analysis of variance (ANOVA) is used to measure the adequacy
of these models. Experimental results reveal that 26%~30% improvement in Ra could be
observed when experimental setup shifted from dry to MQL and 13%~16% improvement is
recorded when further shifted to nanofluid cutting condition. No remarkable effect of cutting
conditions (dry, MQL and nanofluid) is observed on MRR. Additionally, Vs is observed
insignificant for MRR in all cutting conditions. The appropriate cutting conditions and
optimum values of input variables are proposed to the practitioners for industrial machining
and production when contemplating face milling processes.

Keywords: Minimum quantity lubrication (MQL), Nanofluid, Surface roughness, Face milling,
Material removal rate (MRR).

Nomenclature

ANOVA Analysis of variance

MQL Minimum quantity lubrication
MRR Material removal rate

Ra Surface roughness

S/N ratio Signal to noise ratio

Fr Feed rate

Vs Spindle speed

Dc Depth of cut

1 Introduction

Face milling is the secondary process used for the cutting and finishing of parts. The process
is employed for the fabrication of tooling for other processes with high accuracy in a suitable
processing time [1] and also used in the parts of aerospace and automotive industries, where
quality is the prime factor [2]. Surface roughness is the measure of quality in machined parts,
highly depends upon controlling parameters: Fr, cutting speed and Dc [3]. There is a need to
optimize these controlling parameters to enhance the quality of parts as Ra is sensitive to Fr [4,
5]. It was observed that the parameters other than feed (axial & radial Dc and cutting speed)
are also significant factors that affects the Ra [6]. Material removal rate is the second major
measure, which need to be maximized without compromising the surface quality of the part
[7]. The factors that contribute in achieving maximum MRR are Fr and Dc [8]. High Fr results
in higher MRR but it also increase the cutting temperature which reduces the tool life [9] and
surface quality [10]. Beside input parameters, cutting fluid has the prime importance in metal
cutting processes for enhancing the quality of the workpiece by lubricating the tool. Workpiece
interface Lubrications (cutting fluid) improves the machining characteristics and work piece’s
surface quality [11]. But flooded cooling increases the manufacturing cost by 16% [12]. To
minimize the coolant cost, MQL technique was introduced. Researchers focused on MQL
technique as it reduces the consumption of lubricant by sprinkling the blend of air and lubricant
and as environmental friendly [13]. In MQL, coolant mixed with compressed air is sprayed at
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the tool-workpiece interface at a low flow rate [14]. It is reported that the MQL reduces the
coolant consumption 3 times than flooded cooling using flow rate 50-500 ml/h approximately.
It is investigated that MQL produce superior surface finish than other conventional methods of
lubrication [15, 16]. MQL not only improves the surface finish but also reduces cutting
temperature and enhances the tool life by reducing the flank wear [17, 18] as it provides excess
amount of oxygen at tool-workpiece interface forming the protective oxide layer [19]. But for
material removal rate, it is evident that MQL did not show significant improvement for medium
carbon steel [20].

To enhance the efficiency of MQL, nanoparticles are contaminated in the fluid. The addition
of nanoparticles improves the surface quality [21]. It is claimed that 46% reduction in surface
roughness was achieved as compared to the commonly used lubricant [12]. In nanofluid,
particles form a lubrication film and fills the surface cavities which polish the surface and
improve the surface quality [22, 23]. It is noticed that nanofluid exhibits better Ra as compared
to base fluid [24]. However, increasing of nanoparticles concentration results in reduced Ra
since the excess nanoparticles concentration enhances the viscosity of cutting fluid and fills the
surface pores. Incoming nanoparticles shear off the existing ones and other ploughed off
particles remain stuck on exfoliated film in tool-workpiece interface. Therefore, increased
nanoparticles concentration may negatively influence the surface quality [25]. But the
percentage improvement is different for soft and hard material while using MQL and nanofluid.
And there is a need to study the trends of the input variables/parameters in different cutting
conditions.

Number of statistical and mathematical techniques including Response surface methodology,
Factorial design, Taguchi method, Genetic algorithm, Fuzzy logic and Artificial neural network
have been used [26-32]. Among these techniques, Genetic algorithm, Fuzzy logic and Artificial
neural network are the soft computing while, Response surface methodology, Factorial design
and Taguchi method are statistical techniques. Soft computing techniques also have the ability
to predict the response measures and repetitive hit and trial is used for prediction. However,
statistical techniques require less number of experiments for the prediction and optimization.
Therefore, Taguchi method has been observed with less number of experiments and also
considered as cost effective [33]. After the selection of suitable experimental design, various
analysis techniques including Multi-criteria decision-making (MCDM) analysis, Grey
relational analysis (GRA) and Analysis of variance (ANOVA) have also been used by the
researchers in order to optimize the response measures [34-36].

Industrial sector is still in efforts to obtain a proper combination of workpiece material,
lubrication and nanoparticles, which are highly efficient and inexpensive for the machining of
specific material. For example, a lubrication and nanoparticles used for the machining of hard
material can be expensive for the softer materials. The alloy chosen for this research commonly
used in machining application due to its high strength and corrosion resistance. However, little
study is observed on investigating the effects of these cutting conditions on Ra along with MRR
for this specific aluminum alloy in face milling process. Therefore, this study aims to analyze
the impact of dry, MQL and nanofluid cutting conditions on Ra and MRR. The influence of
three effective input variables including Fr, Vs and Dc have been investigated using Taguchi
method.

The rest of this paper is organized as follows. Section 2 explains the experimental procedure
for the machining of aluminum specimens with dry, MQL and nanofluid medium and the
Taguchi method used for the design of experiment. Investigated results, analysis using ANOVA
and optimization through contour plots have been presented in section 3. Finally, conclusions
of overall research and recommendations for the future study are discussed in section 4.



2 Experimental procedure

This section gives a detail about material composition, experimental setup, sample preparation
and response measurements. Aluminum alloy 6082-T6 selected for the machining purpose
having mechanical properties and composition are given in Table 1 and 2 respectively. Optical
emission spectrometer is operated to check the chemical composition of work piece material
used. Machining of workpiece material highly depends upon its mechanical properties.
Machinability refers to the ease of cutting of metal and allowing the removal of material swiftly.
Materials with superior machinability requires less cutting power and time. Machinability of
aluminum is considered to be excellent in term of achieving minimum Ra and maximum MRR.
To further improve the machinability of the selected workpiece material different parameters
and cutting conditions has been adopted. From the previous research it has been observed that
Fr, Vs and Dc are the most effective input parameters for Ra and MRR [37-39]. Therefore, Fr,
Vs and Dc are used as process variables in three different cutting conditions; dry, MQL and
nanofluid. Fr is the linear motion of tool throughout the machining. Vs is the rotational motion
of tool and Dc is controlled by the vertical movement of the tool. Commercial soluble oil is
used as lubricant in MQL machining. A system has been developed for the delivery of MQL
between the tool and workpiece interface. Air pressure gun attached with a compressor has
been employed to throw air-lubricant mist using 5 bar pressure. The oil mist has been produced
inside the tank using air pressure. Flow rate of aerosol has been kept constant at 400 ml/h. In
nanofluid, AlO3; nanoparticles of size 80 um mixed with soluble oil in 5 percent by weight
ratio was used with same flow rate.

Table 1. Properties of A16082-T6 [40]

Properties Value
Density (g/cm?) 2.7
Hardness (Vickers) 95
Ultimate tensile strength (MPa) 300
Yield strength (MPa) 255
Elongation at break (%) 10
Modulus of elasticity (GPa) 69
Shear strength (MPa) 200
Modulus (GPa) 26

Table 2. Chemical composition of aluminum alloy (Al-6082)
Si Fe Zn Cr Mg Mn Cu Al Others

1.2 0.33 0.05 0.14 0.78 0.5 0.08 Bal 0.15

Machining process is performed using NC MIKRON WF21C milling machine having
maximum Vs of 4000 rpm is shown in Figure 1(a). Workpiece is clamped using fixtures to
avoid any vibration and distortion during the machining. To avoid the effect of machine-tool
fixture environment on the machining rate and quality, all workpiece are clamped with same
type and number of fixtures. Use of proper machine tool fixtures enables experimental process
to present the true effects of input parameters and cutting conditions. Cutting tool made of HSS
with 16 mm diameter is employed. The specimens prepared for the face milling process along
with dimensions are shown in Fig. 1 (b) and (c) respectively. Surface roughness of the
specimens was measured through surface roughness tester, shown in Fig. 2.
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Figure 1. (a) Face milling process of aluminum specimen (b) machined specimens and (c) dimensions of
specimen prepared for machining

Figure 2. Surface roughness measuring apparatus
2.1 Experimental design

Taguchi design is a robust technique used for the optimization of input variables and reduces
the process variation. The technique uses signal-to-noise (S/N) ratio as quality characteristic
measurement [41]. Using S/N ratios, Taguchi empirically found the two stage optimization
process indeed offers the optimum level combination while keeping mean on target,
minimizing the standard deviation [42]. S/N ratio is beneficial in improvement of measurement
and improving quality through variability reduction. Properties of S/N can be classified in three
categories:

Smaller the better property; S/N =—10 logrll Y 1)

Nominal the best property; S/N =10 logsi2 2)
y

Larger the better property; S/N = —10 log% & %) 3)

where Y is mean of all the observed values, S)? is variance of y, y is observed data and n depicts
number of observed values. Smaller the better case was employed for Ra and larger the better
for MRR. Fr, Vs and Dc have been specified as input variables due to their remarkable impact
on machining properties [43-46]. The input variables along with selected levels are shown in
Table 3.

Table 3. Face milling input variables with levels
Input Variables Levels

Low  Medium High




Feed rate (mm/min) 500 1000 2000
Spindle speed (rpm) 1000 2000 4000
Depth of cut (mm) 0.25 0.5 1

Nine experiments were performed using Taguchi method Lo3* array for each cutting condition.
Experiments were performed at each level of the input variables to measure the response
variables included Ra and MRR. Three different readings of the machined surface have been
taken for each specimen and their mean value is considered as final reading. Mean and standard
deviation of the measured values against each experimental run have been presented in Table
4. MRR is calculated using relation 4 [47].

W1-W3)
txp

MRR = 4)

Here W1 is initial weight of a specimen before machining, W is final weight after machining,
p is density of workpiece material and t is machining time.

Table 4. Design matrix with observed responses

Exp. Input variables Response variables
Run Feed Spindle Depth Surface roughness (pm) Material Removal Rate (mm?/sec)
rate speed  ofcut
(mm/ (rpm) (mm) Dry MQL Nanofluid Dry MQL Nanofluid
min) Mean  Std.devn Mean Std.dev Mean Std. dev
1. 500 1000 0.25 1.105 0.0042  0.785  0.0089 0.683 0.00025 30.906  29.606 30.556
2. 500 2000 0.5 0.940  0.00098 0.677 0.00064 0.582 0.00051 75.811 76.931 75.901
3. 500 4000 1 0.658  0.00027 0.480 0.00091 0.403 0.00029 148.620 149.342 148.892
4. 1000 1000 0.5 1.713 0.0016 1.216  0.00022 1.046 0.0054 149.622 147.622 151.523
5. 1000 2000 1 1.542 0.0075 1.141 0.0021 1.016 0.00069 289.774 287.224 290.534
6. 1000 4000 0.25 0.694  0.00051 0.486 0.00062 0.423 0.00024 69.811 69.781 67.764
7. 2000 1000 1 3.381 0.0232  2.468 0.071 2.172  0.039  506.489 508.490 506.015
8. 2000 2000 0.25 2.339 0.0099 1.684  0.0064 1.465 0.0087 163.552 161.622 163.642
9. 2000 4000 0.5 1.520 0.0056 1.064  0.0051 0936 0.00061 269.244 271.894 269.723

3 Results and discussion

3.1 Graphical representation using Signal to Noise Ratio Approach

Taguchi’s S/N ratio represents the response or quality characteristics and largest S/N ratio value
is desirable. S/N ratio was used for selecting the best combination of input variables to achieve
optimum response. Average values of signal to noise ratio for Ra of different variables at their
levels are shown in Table 5 and represented in graphical form in Figure 3. The peak values of
S/N ratio of control variables were selected representing the optimum conditions for the Ra.
S/N ratio is also used to rank the input parameters on the basis of their contribution in Ra. Fr
is the highest contributing factor followed by the Vs and Dc. At higher values of Fr and Dc and
lower values of Vs, deformed chip cross section and volume and sharp and brittle fractures
occur on the machining surface which increases the surface roughness [48, 49]. In dry
condition, Ra is found to be minimum at low level of Fr and Dc and high level of Vs. Similar
trends are observed for MQL and nanofluid cutting conditions as shown in Figure 3(b) and (c)

respectively.
Table 5. Average values of S/N ratios of Ra at different levels
Dry MQL Nanofluid
Level
Fr Vs Dc Fr Vs Dc Fr Vs Dc




1. 1.103 -5.376 -1.722 39573 -2.4815 1.2833  5.3020 -1.2715  2.4930
2. -1.785 -3.533 -2.591 1.1411  -0.7594 0.3842 2.3184 0.4179 1.6276
3. -7.199 1.028 -3.568 -43043 4.0349 -0.8735 -3.1609  5.3131 0.3388
Delta 8.303 6.404 1.846 8.2616  6.5164  2.1568  8.4629 6.5846 2.1541
Rank 1 2 3 1 2 3 1 2 3
Ra(Dry) Ra (MQL) Ra (Nanofluid)
Feed rate Spindlespeed  Depth of cut Feed rate Spindlespeed  Depth of cut Feed rate Spdlespeed  Deplh of cut
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Figure 3. S/N ratio graph showing the effects of Fr, Vs and Dc on Ra for (a) Dry (b) MQL (c) Nanofluid

Average values of signal to noise ratio for MRR are given in Table 6 and graph for the S/N
ratio are presented in Figure 4. Ranking of input parameters on the basis of their S/N ratio
shows that Fr is the most contributing input parameter for MRR. While D¢ and Vs are the
second and third most contributing input parameters respectively and same can be seen in Fig.
4. MRR is maximum at high level of Fr and Dc and mid-level of Vs.

Table 6. Average values of S/N ratio of MRR at different levels

DRY MQL Nanofluid
Level
Fr Vs Dc Fr Vs Dc Fr Vs Dc
1 36.95 42.46 36.98 36.88 42 .31 36.82 36.92 42.46 36.87
2 43.21 43.70 43.23 43.14 43.69 43.26 43.16 43.72 43.28
3 48.99 42.97 48.92 48.99 43.01 48.92 48.99 42.90 48.93
Delta 12.04 1.24 11.94 12.12 1.37 12.10 12.07 1.25 12.07
Rank 1 3 2 1 3 2 1 3 2
MRR (Dry) MRR (MQL) MRR (Nanofluid)
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Figure 4. S/N ratio graph showing the effects of Fr, Vs and Dc on MRR for (a) Dry (b) MQL (c) Nanofluid



3.2 Analysis of results through Analysis of variance

For the modelling of response variables, regression analysis is performed using statistical
software Minitab. Analysis of variance (ANOVA) is employed to test the adequacy of the
developed models.

3.2.1 ANOVA for Ra

ANOVA results declared that the effects of input variables: Fr, Vs and Dc associated with Ra
were significant for dry conditions. Same input variables were obtained significant for MQL
and Nanofluid cutting. ANOVA results along with adequacy measures R?, adjusted R? and
predicted R? values are provided in Table 4. The results demonstrate that the regression models
are significant having p-value less than 0.05. Adequacy measures R?, R? (adjusted) and R?
(predicted) values for dry, MQL and nanofluid conditions are close to one, indicating the
adequacy of models. For the prediction of Ra, empirical models for dry, MQL, nanofluid
conditions are presented in equation 5, 6 and 7 respectively.

Ra (Dry) =0.801 + 0.001021xFr - 0.000363%Vs + 0.684x Dc 4)
Ra (MQL) = 0.561+ 0.000737xFr - 0.000267%Vs + 0.540 x Dc (6)
Ra (Nanofluid) = 0.472 + 0.000653%Fr - 0.000313xVs + 0.486x D¢ (7

Percentage contribution of each factor in Ra for all cutting conditions extracted from the
ANOVA tables has been presented as pie charts in Figure 5 (a). Fr is the most contributing
factor for Ra with percentage contribution of 60%. Percentage contribution of Vs and Dc are
30% and 7% respectively.

3.2.2 ANOVA for MRR

The input parameters that significantly influence in MRR include Fr and Dc. Models developed
for MRR are significant with p-value less than 0.05 as shown in Table 6. Adequacy measures
R?, R?*(adjusted) and R?*(predicted) are close to one, showing the adequacy of the models. For
the prediction of MRR, empirical models for dry, MQL and nanofluid are developed and
presented in equation 8, 9 and 10 respectively.

MRR (Dry) = -116.2 + 0.1508xFr - 0.0200xVs + 302.2x Dc (8)
MRR (MQL) =-119.3 + 0.1515%Fr - 0.0194xVs + 303.3x D¢ 9)
MRR (Nanofluid) = -116.0 + 0.1507xFr - 0.0203xVs + 303.1x Dc (10)

Pie chart in Figure 5 (b) showing the percentage contribution of different input variables for
MRR has been obtained from the ANOVA table. Fr and Dc are the major contributing factors
with percentage contribution of 46% each. Vs has very small contribution in achieving
maximum MRR.
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Figure 5. Pie chart of percentage contributions for (a) Ra and (b) MRR

3.3 Optimization using contour plots

Contour plots normally used for the optimization and prediction of the response variables.
Optimization of milling process can be considered as multivariate and multi-criteria problems
in which objective is to maximize or minimize the single variable. Here the effects of input
variables on Ra and MRR has been analyzed using contour plots. It is apt that the graphs
represent the effects of two input variables at the middle level of all the other variables.

3.3.1 Contour plots for Ra

Figure 6(a-c) represent the effects of Fr and Vs on Ra for dry, MQL and nanofluid respectively.
By comparing the Ra of dry, MQL and nanofluid cutting conditioned parts, it is evident that
the effect of Fr and Vs on Ra are similar. Ra is more sensitive to Fr as compared to Vs.
Moreover, Ra decreases with increasing Vs and decreasing Fr. It is virtuous to state that
minimum Ra is achieved in nanofluid cutting condition as compared to dry and MQL.

2000

2000

Surface Surface

Surface

Roughness Roughness Roughne§s
(Dry) 1750 (MQL) " B (Nantmzd:
B <04 B <04 W4 - 08
W04 - 08 - Bod o8 1500 Wos - 11
. Wos - L1 o W08 - L1 k] [ ] 1‘1 - 1'5
3 ] i; - i; F Wil-1s g 2% 15 - 19
3 Iy g 15 - 19 3 19 - 23
? 9-23 3 19 - 23 g W23 - 26
& mo26 8 W3- 26 63
26 - 30 1000 6 - 3 1 -
= 6o W26 -30 B 30
! B 30
750
500 1000 1500 2000 2500 3000
000100 2000 250 3000 000100200 20300
. . Spindle Speed
Spindle Speed Spindle Speed P P
(a) (b) (©)

Figure 6. Contour plots of Ra vs Fr and Vs (a) Dry (b) MQL (c) nanofluid

The effects of input variables; Fr and Dc for all cutting conditions are shown in figure 7 (a) to
7 (c). The contour plot demonstrates that Ra is affected by Fr significantly, and it is less altered
by Dc and same trend has been observed in all cutting conditions. Among three different types
of cutting conditions nanofluid machining yields better results.
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Figure 7. Contour plots for Ra vs Dc and Fr (a) Dry (b) MQL (c) nanofluid

While distinguishing the influence of Vs and Dc on Ra under dry, MQL and nanofluid cutting
conditions, identical trends has been observed (Figure 8a to 8c). Ra decreases with increasing
Vs and decreasing Dc. Among different cutting conditions, nanofluid produce the improved
surface quality.
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Figure 8. Contour plots of Ra vs Dc and Vs (a) Dry (b) MQL (c) nanofluid



Table 6. Analysis of variance for Ra and MRR

Surface Roughness (Dry)

Material Removal Rate (Dry)

Source DF  AdjSS Adj MS F-Value P-Value Source DF AdjSS AdjMS F-Value P-Value
Regression 3 5.904 1.968 50.12  <0.0001  Significant Regression 3 165017 55006 33.48 0.001 Significant
Fr 1 3.648 3.648 9290  <0.0001 Fr 1 79545 79545 48.41 0.001
Vs 1 1.847 1.847 47.05 0.001 Vs 1 5584 5584 3.40 0.125
Dc 1 0.409 0.409 10.42 0.023 Dc 1 79888 79888 48.62 0.001
Error 5 0.196 0.039 Error 5 8216 1643
Total 8 6.101 Total 8 173233
Model Summary Model Summary
R> 96.78% R?(adj) 94.85%  R*(Pred) 85.73% R? 95.26% R*(adj) 92.41%  R*(pred) 78.32%
Surface Roughness (MQL) Material Removal Rate (MQL)
Source DF AdjSS  AdjMS F-Value P-Value Source DF AdjSS AdjMS F-Value  P-Value
Regression 3 3.155 1.051 46.76 <0.0001 Significant Regression 3 166115 55372 31.82 0.001 Significant
Fr 1 1.899 1.899 84.46 <0.0001 Fr 1 80352 80352 46.18 0.001
Vs 1 1.001 1.001 44.49 0.001 Vs 1 5255 5255 3.02 0.143
Dc 1 0.255 0.255 11.35 0.020 Dc 1 80508 80508 46.27 0.001
Error 5 0.112 0.022 Error 5 8699 1740
Total 8 3.267 Total 8 174815
Model Summary Model Summary
R? 96.56% R?(adj) 94.49%  R?(Pred) 84.84% R? 95.02%  R*(adj) 92.04% R*(pred) 77.29%
Surface Roughness (Nanofluid) Material Removal Rate (Nanofluid)
Source DF AdjSS AdjMS F-Value P-Value Source DF AdjSS AdiMS  F-Value  P-Value
Regression 3 2.469 0.823 49.67 <0.0001  Significant Regression 3 165647 55216 34.83 0.001 Significant
Fr 1 1.491 1.491 90.02 <0.0001 Fr 1 79536 79536 50.17 0.001
Vs 1 0.770 0.770 46.50 0.001 Vs 1 5742 5742 3.62 0.115
Dc 1 0.207 0.207 12.49 0.017 De 1 80369 80369 50.70 0.001
Error 5 0.082 0.016 Error 5 7926 1585
Total Q 2.552 Total 8 173573
Model Summary Model Summary
R2 96.75% R2 (ad]) 94.81% R? (Pred) 85.76% R? 95.43% R (Ad_]) 92.69% R? (Pred) 79.14%
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3.3.2  Contour plots for MRR

Based on the previous discussions, Fr and Dc are significant factors for MRR. Therefore, it is
no need to consider the Vs in MRR optimization. From Figure 9 (a) to 9 (c), it is cleared that
MRR is maximum at high level of Fr and Dc. And different cutting conditions has no effect on
MRR.

MRR MRR (MQL)
(Dry) [ ] < 90,0
B <% W 900 - 1500
W 90- 15 W 1500 - 2100
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(a) (b) (©)

Figure 9. Contour plots of MRR vs Dc and Fr (a) Dry (b) MQL (c) nanofluid
3.4 Comparison of cutting conditions (Dry, MQL and Nanofluid)

It is observed that MQL is better than dry cutting and Nanofluid lubrication is better than MQL
cutting for Ra. Observed responses of dry, MQL and nanofluid conditions are compared in
Figure 10. The figure has been drawn from the design matrix given in Table 3. From the figure
it is evident that when move from dry to MQL cutting the percentage improvement range from
26%~30% and further shifted from MQL to nanofluid the percentage improvement 13%~16%
for Ra. In MQL, lubricant penetrates in the machining zone between tool and workpiece with
air pressure in a very effective way which reduces the surface roughness [50]. Moreover, in
nanofluid the particles present in the lubricant possess filling and polishing effect and rolled at
tool-workpiece interface which reduces the Ra and frictional co-efficient [51, 52]. From Figure
11 it is clear that no improvement has been noticed in MRR in all cutting conditions and
negligible variation observed, can be due to the error.
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Figure 10. Percentage improvement results of Ra
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Figure 11. Percentage improvement results of MRR

4 Conclusion

The focus of this research is to analyze the effects of dry, MQL and nanofluid cutting conditions
in face milling process for Al-6082 alloy. The effects of Fr, Vs and Dc on Ra and MRR analyzed
for dry, MQL and nanofluid cutting conditions using Taguchi method.

e The experimental results reveal that for Ra: 1) Fr is most significant input variables with
percentage contribution of 60%; 2) Vs is significant with percentage contribution of 30%;
and 3) Dc is less significant as compared to feed rate and Vs with percentage contribution
of 7% for dry, MQL and nanofluid cutting conditions.

e For material removal rate, Fr and Dc are significant factors with percentage contribution of
46% each for all cutting conditions while Vs is not as significant as Fr and Dc.

e Comparative analysis for Ra shows that the 26%~30% improvement will be achieved when
shifted from dry to MQL and 13%~16% improvement will be obtained when further move
to nanofluid cutting condition.

e Negligible effect of cutting conditions (dry, MQL and nanofluid) is observed for material
removal rate.

e Other machining conditions including machine tool fixture environment are kept constant
for all experiments to avoid their influence on surface roughness.

This research verified that the proposed nanofluid cutting condition for face milling process
could be used by the practitioners to improve the quality of machined parts. Furthermore, the
contour plots and developed empirical models for Ra and MRR will aid practitioners to select
the optimum level of input variables for the desired Ra and MRR.

As aluminum is a softer material therefore, it is necessary to use some soft nanoparticles in
lubricant to keep surface roughness at its minimum level. Therefore, future study can be
conducted on the comparative analysis of the performance of metallic and non-metallic or some
soft nano particles in the lubricant. If non-metallic nanoparticles yield low surface roughness,
then further studies will be conducted to optimize the particle’s size and concentration with
respect to workpiece materials. The lowest surface roughness achieved in case of soft
nanoparticles will eliminate the post processing of workpiece material. Elimination of single
process on industrial scale may reduce the consumption of resources. Moreover, the
combination of such nanoparticles and some environmental friendly lubricants can be used to
make the process healthy on industrial scale.
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