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Investigation of surface roughness in face milling processes 

Abstract 

This study aims to investigate the effects of dry, minimum quantity lubrication (MQL) and 

nanofluid cutting conditions on surface roughness (Ra) and material removal rate (MRR) for 

Al6082-T6. Three controllable factors namely feed rate (Fr), spindle speed (Vs) and depth of 

cut (Dc) are studied at three levels using Taguchi method. Single-response optimization is 

conducted using S/N ratio and contour plots. Empirical models of Ra and MRR for all cutting 

conditions are developed and analysis of variance (ANOVA) is used to measure the adequacy 

of these models. Experimental results reveal that 26%~30% improvement in Ra could be 

observed when experimental setup shifted from dry to MQL and 13%~16% improvement is 

recorded when further shifted to nanofluid cutting condition. No remarkable effect of cutting 

conditions (dry, MQL and nanofluid) is observed on MRR. Additionally, Vs is observed 

insignificant for MRR in all cutting conditions. The appropriate cutting conditions and 

optimum values of input variables are proposed to the practitioners for industrial machining 

and production when contemplating face milling processes. 

Keywords: Minimum quantity lubrication (MQL), Nanofluid, Surface roughness, Face milling, 

Material removal rate (MRR). 

Nomenclature 

ANOVA  Analysis of variance 

MQL   Minimum quantity lubrication 

MRR   Material removal rate 

Ra   Surface roughness 

S/N ratio  Signal to noise ratio 

Fr   Feed rate 

Vs   Spindle speed 

Dc   Depth of cut 

1 Introduction 

Face milling is the secondary process used for the cutting and finishing of parts. The process 

is employed for the fabrication of tooling for other processes with high accuracy in a suitable 

processing time [1] and also used in the parts of aerospace and automotive industries, where 

quality is the prime factor [2]. Surface roughness is the measure of quality in machined parts, 

highly depends upon controlling parameters: Fr, cutting speed and Dc [3]. There is a need to 

optimize these controlling parameters to enhance the quality of parts as Ra is sensitive to Fr [4, 

5]. It was observed that the parameters other than feed (axial & radial Dc and cutting speed) 

are also significant factors that affects the Ra [6]. Material removal rate is the second major 

measure, which need to be maximized without compromising the surface quality of the part 

[7]. The factors that contribute in achieving maximum MRR are Fr and Dc [8]. High Fr results 

in higher MRR but it also increase the cutting temperature which reduces the tool life [9] and 

surface quality [10]. Beside input parameters, cutting fluid has the prime importance in metal 

cutting processes for enhancing the quality of the workpiece by lubricating the tool. Workpiece 

interface Lubrications (cutting fluid) improves the machining characteristics and work piece’s 

surface quality [11]. But flooded cooling increases the manufacturing cost by 16% [12]. To 

minimize the coolant cost, MQL technique was introduced. Researchers focused on MQL 

technique as it reduces the consumption of lubricant by sprinkling the blend of air and lubricant 

and as environmental friendly [13]. In MQL, coolant mixed with compressed air is sprayed at 
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the tool-workpiece interface at a low flow rate [14]. It is reported that the MQL reduces the 

coolant consumption 3 times than flooded cooling using flow rate 50-500 ml/h approximately. 

It is investigated that MQL produce superior surface finish than other conventional methods of 

lubrication [15, 16]. MQL not only improves the surface finish but also reduces cutting 

temperature and enhances the tool life by reducing the flank wear [17, 18] as it provides excess 

amount of oxygen at tool-workpiece interface forming the protective oxide layer [19]. But for 

material removal rate, it is evident that MQL did not show significant improvement for medium 

carbon steel [20]. 

To enhance the efficiency of MQL, nanoparticles are contaminated in the fluid. The addition 

of nanoparticles improves the surface quality [21]. It is claimed that 46% reduction in surface 

roughness was achieved as compared to the commonly used lubricant [12]. In nanofluid, 

particles form a lubrication film and fills the surface cavities which polish the surface and 

improve the surface quality [22, 23]. It is noticed that nanofluid exhibits better Ra as compared 

to base fluid [24]. However, increasing of nanoparticles concentration results in reduced Ra 

since the excess nanoparticles concentration enhances the viscosity of cutting fluid and fills the 

surface pores. Incoming nanoparticles shear off the existing ones and other ploughed off 

particles remain stuck on exfoliated film in tool-workpiece interface. Therefore, increased 

nanoparticles concentration may negatively influence the surface quality [25]. But the 

percentage improvement is different for soft and hard material while using MQL and nanofluid. 

And there is a need to study the trends of the input variables/parameters in different cutting 

conditions. 

Number of statistical and mathematical techniques including Response surface methodology, 

Factorial design, Taguchi method, Genetic algorithm, Fuzzy logic and Artificial neural network 

have been used  [26-32]. Among these techniques, Genetic algorithm, Fuzzy logic and Artificial 

neural network are the soft computing while, Response surface methodology, Factorial design 

and Taguchi method are statistical techniques. Soft computing techniques also have the ability 

to predict the response measures and repetitive hit and trial is used for prediction. However, 

statistical techniques require less number of experiments for the prediction and optimization. 

Therefore, Taguchi method has been observed with less number of experiments and also 

considered as cost effective [33]. After the selection of suitable experimental design, various 

analysis techniques including Multi-criteria decision-making (MCDM) analysis, Grey 

relational analysis (GRA) and Analysis of variance (ANOVA) have also been used by the 

researchers in order to optimize the response measures [34-36]. 

Industrial sector is still in efforts to obtain a proper combination of workpiece material, 

lubrication and nanoparticles, which are highly efficient and inexpensive for the machining of 

specific material. For example, a lubrication and nanoparticles used for the machining of hard 

material can be expensive for the softer materials. The alloy chosen for this research commonly 

used in machining application due to its high strength and corrosion resistance. However, little 

study is observed on investigating the effects of these cutting conditions on Ra along with MRR 

for this specific aluminum alloy in face milling process. Therefore, this study aims to analyze 

the impact of dry, MQL and nanofluid cutting conditions on Ra and MRR. The influence of 

three effective input variables including Fr, Vs and Dc have been investigated using Taguchi 

method. 

The rest of this paper is organized as follows. Section 2 explains the experimental procedure 

for the machining of aluminum specimens with dry, MQL and nanofluid medium and the 

Taguchi method used for the design of experiment. Investigated results, analysis using ANOVA 

and optimization through contour plots have been presented in section 3. Finally, conclusions 

of overall research and recommendations for the future study are discussed in section 4. 
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2 Experimental procedure 

This section gives a detail about material composition, experimental setup, sample preparation 

and response measurements. Aluminum alloy 6082-T6 selected for the machining purpose 

having mechanical properties and composition are given in Table 1 and 2 respectively. Optical 

emission spectrometer is operated to check the chemical composition of work piece material 

used. Machining of workpiece material highly depends upon its mechanical properties. 

Machinability refers to the ease of cutting of metal and allowing the removal of material swiftly. 

Materials with superior machinability requires less cutting power and time. Machinability of 

aluminum is considered to be excellent in term of achieving minimum Ra and maximum MRR. 

To further improve the machinability of the selected workpiece material different parameters 

and cutting conditions has been adopted. From the previous research it has been observed that 

Fr, Vs and Dc are the most effective input parameters for Ra and MRR [37-39]. Therefore, Fr, 

Vs and Dc are used as process variables in three different cutting conditions; dry, MQL and 

nanofluid. Fr is the linear motion of tool throughout the machining. Vs is the rotational motion 

of tool and Dc is controlled by the vertical movement of the tool. Commercial soluble oil is 

used as lubricant in MQL machining. A system has been developed for the delivery of MQL 

between the tool and workpiece interface. Air pressure gun attached with a compressor has 

been employed to throw air-lubricant mist using 5 bar pressure. The oil mist has been produced 

inside the tank using air pressure. Flow rate of aerosol has been kept constant at 400 ml/h. In 

nanofluid, Al2O3 nanoparticles of size 80 µm mixed with soluble oil in 5 percent by weight 

ratio was used with same flow rate.  

Table 1. Properties of Al6082-T6  [40] 

Properties  Value 

Density (g/cm³) 2.7 

Hardness (Vickers)  95 

Ultimate tensile strength (MPa) 300 

Yield strength (MPa) 255 

Elongation at break (%) 10 

Modulus of elasticity (GPa) 69 

Shear strength (MPa) 200 

Modulus (GPa) 26 

Table 2. Chemical composition of aluminum alloy (Al-6082) 

Si Fe Zn Cr Mg Mn Cu Al Others 

1.2 0.33 0.05 0.14 0.78 0.5 0.08 Bal 0.15 

Machining process is performed using NC MIKRON WF21C milling machine having 

maximum Vs of 4000 rpm is shown in Figure 1(a). Workpiece is clamped using fixtures to 

avoid any vibration and distortion during the machining. To avoid the effect of machine-tool 

fixture environment on the machining rate and quality, all workpiece are clamped with same 

type and number of fixtures. Use of proper machine tool fixtures enables experimental process 

to present the true effects of input parameters and cutting conditions. Cutting tool made of HSS 

with 16 mm diameter is employed. The specimens prepared for the face milling process along 

with dimensions are shown in Fig. 1 (b) and (c) respectively. Surface roughness of the 

specimens was measured through surface roughness tester, shown in Fig. 2. 
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Figure 1. (a) Face milling process of aluminum specimen (b) machined specimens and (c) dimensions of 

specimen prepared for machining 

 

Figure 2. Surface roughness measuring apparatus 

2.1 Experimental design 

Taguchi design is a robust technique used for the optimization of input variables and reduces 

the process variation. The technique uses signal-to-noise (S/N) ratio as quality characteristic 

measurement [41]. Using S/N ratios, Taguchi empirically found the two stage optimization 

process indeed offers the optimum level combination while keeping mean on target, 

minimizing the standard deviation [42]. S/N ratio is beneficial in improvement of measurement 

and improving quality through variability reduction. Properties of S/N can be classified in three 

categories: 

Smaller the better property; S/N =−10 log
1

𝑛
(∑𝑌2)                                          (1) 

Nominal the best property; S/N = 10 log
𝑌̅ 

𝑆𝑦
2                                          (2) 

Larger the better property; S/N = −10 log
1

𝑛
(∑

1

𝑌̅2
)                                         (3) 

where Y is mean of all the observed values, Sy² is variance of y, y is observed data and n depicts 

number of observed values. Smaller the better case was employed for Ra and larger the better 

for MRR. Fr, Vs and Dc have been specified as input variables due to their remarkable impact 

on machining properties [43-46]. The input variables along with selected levels are shown in 

Table 3. 

Table 3. Face milling input variables with levels 

Input Variables Levels 

Low Medium High 

HSS Tool 

Workpiece Fixture

s 

1
0

0
 m

m
 

65 mm 
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Feed rate (mm/min) 500 1000 2000 

Spindle speed (rpm) 1000 2000 4000 

Depth of cut (mm) 0.25 0.5 1 

Nine experiments were performed using Taguchi method L93
4 array for each cutting condition. 

Experiments were performed at each level of the input variables to measure the response 

variables included Ra and MRR. Three different readings of the machined surface have been 

taken for each specimen and their mean value is considered as final reading. Mean and standard 

deviation of the measured values against each experimental run have been presented in Table 

4. MRR is calculated using relation 4 [47]. 

𝑀𝑅𝑅 =
(𝑊1−𝑊2)

𝑡×𝜌
                                                                              (4) 

Here W1 is initial weight of a specimen before machining, W2 is final weight after machining, 

ρ is density of workpiece material and t is machining time. 

Table 4. Design matrix with observed responses 

Exp. 

Run 

Input variables Response variables 

Feed 

rate 

(mm/

min) 

Spindle 

speed  

(rpm) 

Depth 

of cut 

(mm) 

Surface roughness (µm) Material Removal Rate (mm³/sec) 

Dry MQL Nanofluid Dry MQL Nanofluid 

Mean Std. dev Mean Std. dev Mean Std. dev 

1. 500 1000 0.25 1.105 0.0042 0.785 0.0089 0.683 0.00025 30.906 29.606 30.556 

2. 500 2000 0.5 0.940 0.00098 0.677 0.00064 0.582 0.00051 75.811 76.931 75.901 

3. 500 4000 1 0.658 0.00027 0.480 0.00091 0.403 0.00029 148.620 149.342 148.892 

4. 1000 1000 0.5 1.713 0.0016 1.216 0.00022 1.046 0.0054 149.622 147.622 151.523 

5. 1000 2000 1 1.542 0.0075 1.141 0.0021 1.016 0.00069 289.774 287.224 290.534 

6. 1000 4000 0.25 0.694 0.00051 0.486 0.00062 0.423 0.00024 69.811 69.781 67.764 

7. 2000 1000 1 3.381 0.0232 2.468 0.071 2.172 0.039 506.489 508.490 506.015 

8. 2000 2000 0.25 2.339 0.0099 1.684 0.0064 1.465 0.0087 163.552 161.622 163.642 

9. 2000 4000 0.5 1.520 0.0056 1.064 0.0051 0.936 0.00061 269.244 271.894 269.723 

3 Results and discussion 

3.1 Graphical representation using Signal to Noise Ratio Approach 

Taguchi’s S/N ratio represents the response or quality characteristics and largest S/N ratio value 

is desirable. S/N ratio was used for selecting the best combination of input variables to achieve 

optimum response. Average values of signal to noise ratio for Ra of different variables at their 

levels are shown in Table 5 and represented in graphical form in Figure 3. The peak values of 

S/N ratio of control variables were selected representing the optimum conditions for the Ra. 

S/N ratio is also used to rank the input parameters on the basis of their contribution in Ra. Fr 

is the highest contributing factor followed by the Vs and Dc. At higher values of Fr and Dc and 

lower values of Vs, deformed chip cross section and volume and sharp and brittle fractures 

occur on the machining surface which increases the surface roughness [48, 49]. In dry 

condition, Ra is found to be minimum at low level of Fr and Dc and high level of Vs. Similar 

trends are observed for MQL and nanofluid cutting conditions as shown in Figure 3(b) and (c) 

respectively. 

Table 5. Average values of S/N ratios of Ra at different levels 

Level 
Dry MQL Nanofluid 

Fr Vs Dc Fr Vs Dc Fr Vs Dc 
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(a) 

 
(b) 

 
(c) 

Figure 3. S/N ratio graph showing the effects of Fr, Vs and Dc on Ra for (a) Dry (b) MQL (c) Nanofluid 

Average values of signal to noise ratio for MRR are given in Table 6 and graph for the S/N 

ratio are presented in Figure 4. Ranking of input parameters on the basis of their S/N ratio 

shows that Fr is the most contributing input parameter for MRR. While Dc and Vs are the 

second and third most contributing input parameters respectively and same can be seen in Fig. 

4. MRR is maximum at high level of Fr and Dc and mid-level of Vs. 

Table 6. Average values of S/N ratio of MRR at different levels 

Level 
DRY MQL Nanofluid 

Fr Vs Dc Fr Vs Dc Fr Vs Dc 

1 36.95 42.46 36.98 36.88 42.31 36.82 36.92 42.46 36.87 

2 43.21 43.70 43.23 43.14 43.69 43.26 43.16 43.72 43.28 

3 48.99 42.97 48.92 48.99 43.01 48.92 48.99 42.90 48.93 

Delta 12.04 1.24 11.94 12.12 1.37 12.10 12.07 1.25 12.07 

Rank 1 3 2 1 3 2 1 3 2 

 
(a) 

 
(b) 

 
(c) 

Figure 4. S/N ratio graph showing the effects of Fr, Vs and Dc on MRR for (a) Dry (b) MQL (c) Nanofluid 

1. 1.103 -5.376 -1.722 3.9573 -2.4815 1.2833 5.3020 -1.2715 2.4930 

2. -1.785 -3.533 -2.591 1.1411 -0.7594 0.3842 2.3184 0.4179 1.6276 

3. -7.199 1.028 -3.568 -4.3043 4.0349 -0.8735 -3.1609 5.3131 0.3388 

Delta 8.303 6.404 1.846 8.2616 6.5164 2.1568 8.4629 6.5846 2.1541 

Rank 1 2 3 1 2 3 1 2 3 
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3.2 Analysis of results through Analysis of variance 

For the modelling of response variables, regression analysis is performed using statistical 

software Minitab. Analysis of variance (ANOVA) is employed to test the adequacy of the 

developed models. 

3.2.1 ANOVA for Ra 

ANOVA results declared that the effects of input variables: Fr, Vs and Dc associated with Ra 

were significant for dry conditions. Same input variables were obtained significant for MQL 

and Nanofluid cutting. ANOVA results along with adequacy measures R², adjusted R² and 

predicted R² values are provided in Table 4. The results demonstrate that the regression models 

are significant having p-value less than 0.05. Adequacy measures R², R² (adjusted) and R² 

(predicted) values for dry, MQL and nanofluid conditions are close to one, indicating the 

adequacy of models. For the prediction of Ra, empirical models for dry, MQL, nanofluid 

conditions are presented in equation 5, 6 and 7 respectively.  

Ra (Dry) = 0.801 + 0.001021×Fr - 0.000363×Vs + 0.684× Dc    (5) 

Ra (MQL) = 0.561+ 0.000737×Fr - 0.000267×Vs + 0.540 × Dc    (6) 

Ra (Nanofluid) = 0.472 + 0.000653×Fr - 0.000313×Vs + 0.486× Dc    (7) 

Percentage contribution of each factor in Ra for all cutting conditions extracted from the 

ANOVA tables has been presented as pie charts in Figure 5 (a). Fr is the most contributing 

factor for Ra with percentage contribution of 60%. Percentage contribution of Vs and Dc are 

30% and 7% respectively. 

3.2.2 ANOVA for MRR 

The input parameters that significantly influence in MRR include Fr and Dc. Models developed 

for MRR are significant with p-value less than 0.05 as shown in Table 6. Adequacy measures 

R², R²(adjusted) and R²(predicted) are close to one, showing the adequacy of the models. For 

the prediction of MRR, empirical models for dry, MQL and nanofluid are developed and 

presented in equation 8, 9 and 10 respectively. 

MRR (Dry) = -116.2 + 0.1508×Fr - 0.0200×Vs + 302.2× Dc    (8) 

MRR (MQL) = -119.3 + 0.1515×Fr - 0.0194×Vs + 303.3× Dc    (9) 

MRR (Nanofluid) = -116.0 + 0.1507×Fr - 0.0203×Vs + 303.1× Dc (10) 

Pie chart in Figure 5 (b) showing the percentage contribution of different input variables for 

MRR has been obtained from the ANOVA table. Fr and Dc are the major contributing factors 

with percentage contribution of 46% each. Vs has very small contribution in achieving 

maximum MRR. 
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(a) 

 
(b) 

Figure 5. Pie chart of percentage contributions for (a) Ra and (b) MRR  

3.3 Optimization using contour plots 

Contour plots normally used for the optimization and prediction of the response variables. 

Optimization of milling process can be considered as multivariate and multi-criteria problems 

in which objective is to maximize or minimize the single variable. Here the effects of input 

variables on Ra and MRR has been analyzed using contour plots. It is apt that the graphs 

represent the effects of two input variables at the middle level of all the other variables. 

3.3.1 Contour plots for Ra 

Figure 6(a-c) represent the effects of Fr and Vs on Ra for dry, MQL and nanofluid respectively. 

By comparing the Ra of dry, MQL and nanofluid cutting conditioned parts, it is evident that 

the effect of Fr and Vs on Ra are similar. Ra is more sensitive to Fr as compared to Vs. 

Moreover, Ra decreases with increasing Vs and decreasing Fr. It is virtuous to state that 

minimum Ra is achieved in nanofluid cutting condition as compared to dry and MQL. 

 

(a) 
 

(b) 
 

(c) 
Figure 6. Contour plots of Ra vs Fr and Vs (a) Dry (b) MQL (c) nanofluid 

The effects of input variables; Fr and Dc for all cutting conditions are shown in figure 7 (a) to 

7 (c). The contour plot demonstrates that Ra is affected by Fr significantly, and it is less altered 

by Dc and same trend has been observed in all cutting conditions. Among three different types 

of cutting conditions nanofluid machining yields better results. 
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(a) 
 

(b) 

 

(c) 

Figure 7. Contour plots for Ra vs Dc and Fr (a) Dry (b) MQL (c) nanofluid 

While distinguishing the influence of Vs and Dc on Ra under dry, MQL and nanofluid cutting 

conditions, identical trends has been observed (Figure 8a to 8c). Ra decreases with increasing 

Vs and decreasing Dc. Among different cutting conditions, nanofluid produce the improved 

surface quality. 

(a) (b) (c) 

Figure 8. Contour plots of Ra vs Dc and Vs (a) Dry (b) MQL (c) nanofluid 
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Table 6. Analysis of variance for Ra and MRR

Surface Roughness (Dry)   

Source DF Adj SS Adj MS F-Value P-Value   

Regression 3 5.904 1.968 50.12 <0.0001 Significant  

 Fr 1 3.648 3.648 92.90 <0.0001   

 Vs 1 1.847 1.847 47.05 0.001   

Dc 1 0.409 0.409 10.42 0.023   

Error 5 0.196 0.039         

Total 8 6.101            

Model Summary   

R² 96.78% R² (adj) 94.85% R² (Pred) 85.73%   
 

Material Removal Rate (Dry)  

Source DF Adj SS Adj MS F-Value P-Value  

Regression 3 165017 55006 33.48 0.001 Significant 

 Fr 1 79545 79545 48.41 0.001  

 Vs 1 5584 5584 3.40 0.125  

 Dc 1 79888 79888 48.62 0.001  

Error 5 8216 1643 
  

 

Total 8 173233 
   

 

Model Summary  

R² 95.26% R²(adj) 92.41% R²(pred) 78.32%  
 

Surface Roughness (MQL)  

Source DF Adj SS Adj MS F-Value P-Value  

Regression 3 3.155 1.051 46.76 <0.0001 Significant 

 Fr 1 1.899 1.899 84.46 <0.0001  

 Vs 1 1.001 1.001 44.49 0.001  

  Dc 1 0.255 0.255 11.35 0.020  

Error 5 0.112 0.022        

Total 8 3.267           

Model Summary  

R² 96.56% R² (adj) 94.49% R² (Pred) 84.84%  
 

Material Removal Rate (MQL)  

Source DF Adj SS Adj MS F-Value P-Value  

Regression 3 166115 55372 31.82 0.001 Significant 

 Fr 1 80352 80352 46.18 0.001  

 Vs 1 5255 5255 3.02 0.143  

  Dc 1 80508 80508 46.27 0.001  

Error 5 8699 1740        

Total 8 174815           

Model Summary  

R² 95.02% R²(adj) 92.04% R²(pred) 77.29%  
 

Surface Roughness (Nanofluid)  

Source DF Adj SS Adj MS F-Value P-Value  

Regression 3 2.469 0.823 49.67 <0.0001 Significant 

 Fr 1 1.491 1.491 90.02 <0.0001  

 Vs 1 0.770 0.770 46.50 0.001  

  Dc 1 0.207 0.207 12.49 0.017  

Error 5 0.082 0.016 
  

 

Total 8 2.552 
   

 

Model Summary 

R² 96.75% R² (adj) 94.81% R² (Pred) 85.76%  
 

Material Removal Rate (Nanofluid)  

Source DF Adj SS Adj MS F-Value P-Value  

Regression 3 165647 55216 34.83 0.001 Significant 

 Fr 1 79536 79536 50.17 0.001  

 Vs 1 5742 5742 3.62 0.115  

 Dc 1 80369 80369 50.70 0.001  

Error 5 7926 1585        

Total 8 173573           

Model Summary  

R² 95.43% R² (Adj) 92.69% R² (Pred) 79.14%  
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3.3.2 Contour plots for MRR 

Based on the previous discussions, Fr and Dc are significant factors for MRR. Therefore, it is 

no need to consider the Vs in MRR optimization. From Figure 9 (a) to 9 (c), it is cleared that 

MRR is maximum at high level of Fr and Dc. And different cutting conditions has no effect on 

MRR. 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Contour plots of MRR vs Dc and Fr (a) Dry (b) MQL (c) nanofluid 

3.4 Comparison of cutting conditions (Dry, MQL and Nanofluid) 

It is observed that MQL is better than dry cutting and Nanofluid lubrication is better than MQL 

cutting for Ra. Observed responses of dry, MQL and nanofluid conditions are compared in 

Figure 10. The figure has been drawn from the design matrix given in Table 3. From the figure 

it is evident that when move from dry to MQL cutting the percentage improvement range from 

26%~30% and further shifted from MQL to nanofluid the percentage improvement 13%~16% 

for Ra. In MQL, lubricant penetrates in the machining zone between tool and workpiece with 

air pressure in a very effective way which reduces the surface roughness [50]. Moreover, in 

nanofluid the particles present in the lubricant possess filling and polishing effect and rolled at 

tool-workpiece interface which reduces the Ra and frictional co-efficient [51, 52]. From Figure 

11 it is clear that no improvement has been noticed in MRR in all cutting conditions and 

negligible variation observed, can be due to the error. 

 

Figure 10.  Percentage improvement results of Ra 
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Figure 11.  Percentage improvement results of MRR 

4 Conclusion 

The focus of this research is to analyze the effects of dry, MQL and nanofluid cutting conditions 

in face milling process for Al-6082 alloy. The effects of Fr, Vs and Dc on Ra and MRR analyzed 

for dry, MQL and nanofluid cutting conditions using Taguchi method.  

• The experimental results reveal that for Ra: 1) Fr is most significant input variables with 

percentage contribution of 60%; 2) Vs is significant with percentage contribution of 30%; 

and 3) Dc is less significant as compared to feed rate and Vs with percentage contribution 

of 7% for dry, MQL and nanofluid cutting conditions. 

• For material removal rate, Fr and Dc are significant factors with percentage contribution of 

46% each for all cutting conditions while Vs is not as significant as Fr and Dc. 

• Comparative analysis for Ra shows that the 26%~30% improvement will be achieved when 

shifted from dry to MQL and 13%~16% improvement will be obtained when further move 

to nanofluid cutting condition. 

• Negligible effect of cutting conditions (dry, MQL and nanofluid) is observed for material 

removal rate. 

• Other machining conditions including machine tool fixture environment are kept constant 

for all experiments to avoid their influence on surface roughness. 

This research verified that the proposed nanofluid cutting condition for face milling process 

could be used by the practitioners to improve the quality of machined parts. Furthermore, the 

contour plots and developed empirical models for Ra and MRR will aid practitioners to select 

the optimum level of input variables for the desired Ra and MRR. 

As aluminum is a softer material therefore, it is necessary to use some soft nanoparticles in 

lubricant to keep surface roughness at its minimum level. Therefore, future study can be 

conducted on the comparative analysis of the performance of metallic and non-metallic or some 

soft nano particles in the lubricant. If non-metallic nanoparticles yield low surface roughness, 

then further studies will be conducted to optimize the particle’s size and concentration with 

respect to workpiece materials. The lowest surface roughness achieved in case of soft 

nanoparticles will eliminate the post processing of workpiece material. Elimination of single 

process on industrial scale may reduce the consumption of resources. Moreover, the 

combination of such nanoparticles and some environmental friendly lubricants can be used to 

make the process healthy on industrial scale.  
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