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SUMMARY

Caspase-8, the initiator caspase of the death
receptor pathway of apoptosis, its adapter molecule,
FADD, required for caspase-8 activation, and cFLIPL,
a caspase-8-like protein that lacks a catalytic site
and blocks caspase-8-mediated apoptosis, are
each essential for embryonic development. Animals
deficient in any of these genes present with E10.5
embryonic lethality. Recent studies have shown
that development in caspase-8-deficient mice is
rescued by ablation ofRIPK3, a kinase that promotes
a form of programmed, necrotic cell death. Here, we
show that FADD, RIPK3 double-knockout mice
develop normally but that the lethal effects of cFLIP
deletion are not rescued by RIPK3 deficiency.
Remarkably, in mice lacking FADD, cFLIP, and
RIPK3, embryonic development is normal. This can
be explained by the convergence of two cell pro-
cesses: the enzymatic activity of the FADD-cas-
pase-8-cFLIPL complex blocks RIPK3-dependent
signaling (including necrosis), whereas cFLIPL blocks
RIPK3-independent apoptosis promoted by the
FADD-caspase-8 complex.

INTRODUCTION

Apoptosis, or programmed cell death, is an essential process

for development and homeostasis of multicellular organisms.

Insight into the important roles apoptosis plays in these

processes has come from knockout animals ablated for genes

in cell death pathways (Weinlich et al., 2011). Although knockout

animals of proapoptotic genes such as Apaf-1, caspase-9, and

caspase-3 all demonstrate phenotypes consistent with failure

to eliminate cells, animals ablated for key components of the

death receptor pathway suffer early embryonic lethality associ-

ated with defective vascularization (Green et al., 2011; Weinlich

et al., 2011). Embryos deficient in caspase-8, the adaptor mole-
cule FADD, or the noncatalytically active caspase-8 homolog

cFLIP die around E10.5 (Varfolomeev et al., 1998; Yeh et al.,

1998, 2000; Zhang et al., 1998) with similar defects in vasculari-

zation of the yolk sac (Oberst and Green, 2011; Sakamaki et al.,

2002), which suggests that these proteins perform significant

nonapoptotic roles in development. Caspase-8, FADD, and

cFLIPL (herein called ‘‘FLIP’’) have also been implicated in

cell-cycle regulation and NF-kB activation (Budd et al., 2006;

Oberst and Green, 2011; Tourneur and Chiocchia, 2010) in

various tissues post-development. Recent work has shown

that caspase-8 deficiency can be rescued by concurrent deletion

of RIPK3 (Kaiser et al., 2011; Oberst et al., 2011), a kinase that

promotes a form of programmed necrotic cell death (sometimes

called ‘‘necroptosis’’; Galluzzi et al., 2012), indicating a more

specific and limited role for caspase-8 in development.

Biochemical evidence demonstrates that a caspase-8-FLIP

heterodimer acts to inhibit the function of RIPK3 in vitro, sug-

gesting that this complexmight play the same role in vivo (Oberst

et al., 2011). In this work we address the survival functions of

FADD and FLIP in the context of RIPK3-dependent necrosis

and apoptosis during development.

RESULTS AND DISCUSSION

FADD�/� Embryonic Lethality Is Rescued by RIPK3

Ablation
The activation of caspase-8 depends on the adaptor molecule

FADD (Oberst and Green, 2011). We therefore hypothesized

that deletion of RIP kinases might rescue the embryonic lethality

of FADD�/� mice similar to caspase-8�/� animals (Kaiser et al.,

2011; Oberst et al., 2011). However, in one study the lethal

effects of FADD deletion were only partially rescued by ablation

ofRIPK1 (Zhang et al., 2011) because these animals died perina-

tally, as is also seen in RIPK1�/� mice (Kelliher et al., 1998).

Because RIPK1 can promote necrosis that depends on RIPK3

(Cho et al., 2009), we asked if deletion of RIPK3 rescues

development in FADD�/� mice. We found that FADD, RIPK3

double-knockout (DKO)micewereweaned at expected frequen-

cies (Figure 1A) and grew with kinetics identical to those of their

FADD+/+ and FADD+/� littermates (Figure 1B and Figure S1A). As
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FADD+/-,RIPK3-/- x FADD+/-,RIPK3-/-

Expected Observed 
FADD+/+, RIPK3-/- 40.25 44 
FADD+/-, RIPK3-/- 80.5 73 
FADD-/-, RIPK3-/- 40.25 44 

Total: 161 161 
p value: 0.4972 
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B   Figure 1. FADD�/�, RIPK3�/� Mice Are

Viable and Overtly Normal, Functionally

Deficient for FADD, and Display Severe

Progressive Lymphoaccumulation

(A) Expected and observed frequency of FADD

status in offspring from crosses of FADD+/�,
RIPK3�/� animals. The resulting offspring were

genotyped at weaning.

(B) Plot of weight of littermate FADD+/+, RIPK3�/�,
FADD+/�, RIPK3�/�, and FADD�/�, RIPK3�/�

animals.

(C) Effect of anti-CD95 in vivo. A total of 15 mg of

agonist anti-CD95 antibody Jo2 was injected

intravenously into FADD+/�,RIPK3�/� or FADD�/�,
RIPK3�/� animals. Animals were monitored and

euthanized when moribund.

(D) Lymphoid organs removed from young

(4 weeks) and old (20 weeks) littermate mice of the

indicated genotypes. Scale bar represents 1 cm.

See also Figure S1.
seen in caspase-8, RIPK3 DKO mice (Kaiser et al., 2011; Oberst

et al., 2011), FADD, RIPK3 DKO mice were completely resistant

to lethal hepatic injury induced by injection of agonistic anti-

CD95 antibody (Ogasawara et al., 1993) (Figures 1C and S1B–

S1D). Also, as seen in caspase-8, RIPK3 DKO mice, FADD,

RIPK3 DKO animals accumulated over time a population of

B220+CD3+ T lymphocytes (Figure S1E), resulting in a lymphoac-

cumulative disease (Figure 1D), resembling that seen in mice or

humans lacking CD95 or its ligand (Wilson et al., 2009). There-

fore, like caspase-8 (Kaiser et al., 2011; Oberst et al., 2011),

FADD is required for prevention of RIPK3-mediated embryonic

lethality and for the function of CD95.

FADD, RIPK1 DKO mice display defects in B cell activation-

induced proliferation (Zhang et al., 2011). Because FADD

had been previously suggested to play a role in cell-cycle

progression (Tourneur and Chiocchia, 2010), we examined

lymphocytes from young (5 weeks) FADD, RIPK3 DKO mice,

and observed no differences in activation-induced proliferation

of T or B cells between these and FADD-sufficient cells

(Figures S1F and S1G). Therefore, the defect observed in the

FADD, RIPK1 DKO (Zhang et al., 2011) is likely to be a conse-

quence of RIPK1 deficiency rather than due to the absence

of FADD.

Elimination of RIPK3 Does Not Rescue FLIP-Deficient
Embryos
To investigate the role of RIPK3 in the embryonic lethality

observed in FLIP-deficient mice, we crossed FLIP+/�, RIPK3�/�

animals (Figure 2A). No FLIP�/�, RIPK3�/� mice were detected

at weaning. Examination of embryos from timedmatings showed

developmental abnormalities beginning around E10–E10.5

(Figures 2A and 2B). As seen in animals lacking caspase-8,

FADD, or FLIP (Sakamaki et al., 2002; Varfolomeev et al.,
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1998; Yeh et al., 1998, 2000; Zhang

et al., 1998), the vasculature of the yolk

sacs of FLIP, RIPK3 DKO mice showed

severe defects, readily observable in live
embryos or by staining for the endothelial marker, PECAM-1

(Newman et al., 1990) (Figure 2C).

Formally, the ability of RIPK3 ablation to rescue development

of caspase-8�/� (Kaiser et al., 2011; Oberst et al., 2011) or

FADD�/� mice (Figure 1), but not that of FLIP�/� mice (Figure 2),

indicates that FLIP has a function distinct from those of FADD

and caspase-8 in embryogenesis. To gain more insight into

these interrelated functions, we turned to an established

in vitro system in which ligation of TNF receptor 1 induces

RIPK1-RIPK3-dependent necrosis that is inhibited by the

activity of the caspase-8-FLIP heterodimer (Oberst et al.,

2011). Cells were treated with TNF with or without the caspase

inhibitor zVAD-fmk. In the presence of the inhibitor, TNF

induced the formation of a complex, identified upon immuno-

precipitation of FADD, containing FADD, caspase-8, FLIP,

RIPK1, and RIPK3 (Figure 3A). In contrast, no components of

the complex were found in the absence of caspase inhibition

(Figure 3A). This is consistent with findings suggesting that

caspase-8 (presumably in the form of the caspase-8-FLIP het-

erodimer) cleaves RIPK1 and RIPK3 (Feng et al., 2007; Rébé

et al., 2007). Furthermore, additional findings suggest that cas-

pase-8-FLIP is rapidly degraded in cells (Feoktistova et al.,

2011), and therefore, this instability may extend to the entire

complex to control both apoptosis and necrosis (Green et al.,

2011).

Ablation of RIPK3 in FLIP-Deficient Cells and Embryos
Converts Death from Necrosis to Apoptosis
We then examined the interplay of FLIP and FADD in cells with

or without RIPK3. In the presence of RIPK3, knockdown of

FLIP, FADD, or both sensitized cells to TNF-induced cell death

with characteristics of necrosis (i.e., rapid loss of plasma

membrane integrity as detected by propidium iodide [PI] staining



FLIP+/-, RIPK3-/- x FLIP+/-, RIPK3-/- 

E9.0-9.5 E10-10.5 E11-11.5 E12-13.5 Weaned 
Expected Observed Expected Observed Expected Observed Expected Observed Expected Observed 

FLIP+/+, RIPK3-/- 12.5 18 9.25 7 12.5 12 10. 5 14  42.25 59 
FLIP+/-,RIPK3-/- 25 23 18.5 24 25 31 21 27 84.5 110 
FLIP-/-, RIPK3-/- 12.5 9 9.25 6* 12.5 7* 10.5 1* 42.25 0 

Total: 50 50 37 37 50 50  42 42 169 169 
p value:  0.1686 0.1897 0.1437 0.0032 <0.0001 
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Figure 2. FLIP�/�, RIPK3�/� Mice Are Embryonic Lethal

(A) Expected and observed frequency of FLIP status in offspring from crosses of FLIP+/�, RIPK3�/� animals. The resulting offspring were genotyped at the

indicated developmental time points or at weaning. Asterisks reflect malformed embryos.

(B) Embryos (left) and hematoxylin and eosin-stained sections of fixed embryos (right) of the indicated genotypes at the indicated time points. Representative

images are presented (n R 3 for each genotype). Scale bars for images on left are 1 mm and for sections on right are 500 mm.

(C) Embryos of the indicated genotypes at E13.5 (left and middle) showing vascularization of the embryos and yolk sacs. Left scale bar is 1 mm, and middle scale

bar is 333 mm. Right panels show PECAM-1 immunostaining on sections from E11.5 embryos of the indicated genotypes. Representative images are presented

(n R 3 for each genotype). Scale bar represents 250 mm.
without downstream effector caspase activation) (Figures 3B,

S2A, and S2B). However, in the absence of RIPK3, knockdown

of FLIP sensitized cells to TNF-induced apoptosis (Annexin V+,

PI� and downstream effector caspase activation as detected

by intracellular cleaved caspase-3 staining), whereas knock-

down of FADD did not (Figures 3C, S2A, and S2B). Importantly,

knockdown of both FADD and FLIP did not sensitize cells to

apoptosis (Figures 3C, S2A, and S2B). These results are consis-

tent with the interpretation, supported here by caspase-8 knock-

down (Figure 3C) and extensively by other studies (Wilson et al.,

2009), that FADD promotes caspase-8-mediated apoptosis that

is inhibited by FLIP. However, in the presence of RIPK3, loss of

function of the FADD-caspase-8-FLIP complex results in

RIPK3-dependent necrosis (Figure 3B).

Based on these observations, we reasoned that in embryos,

a lack of both FLIP and RIPK3 would result in uncontrolled acti-

vation of caspase-8, as we observed (Figure 3C) and as

described in cell lines (Oberst et al., 2011). We therefore exam-

ined apoptosis in embryos at E9.5–E10, lacking caspase-8,

FADD, or both FLIP and RIPK3 (Figures 3D, 3E, S2C, and

S2D). Caspase-8�/� embryos at this stage did not display

obvious apoptotic cell death, consistent with previous observa-

tions (Sakamaki et al., 2002), and this was also the case for

embryos lacking FADD (Yeh et al., 1998) (Figures 3D, S2C, and

S2D). In contrast, FLIP, RIPK3 DKO embryos showed apoptosis

in the endothelium, the first branchial arch, and other regions
(Figures 3D and 3E). Thus, whereas embryonic lethality in

caspase-8�/� or FADD�/� animalsmay occur due to unregulated

RIPK3 necrosis (supported by the survival of caspase-8, RIPK3

DKO; [Kaiser et al., 2011; Oberst et al., 2011] and FADD,

RIPK3 DKO mice [Figure 1A]), apoptotic cell death may be

responsible for lethality in FLIP, RIPK3 DKO mice.

Mice Lacking FADD, FLIP, and RIPK3 Are
Developmentally Normal
Because knockdown of FADD protected cells lacking FLIP and

RIPK3 from TNF-induced apoptosis (Figure 3C), we examined

the consequences of the triple knockout (TKO) of FADD, FLIP,

and RIPK3. Using two different breeding strategies, we found

that animals lacking all three genes were born at expected

frequencies (Figures 4A and S3A–S3D). Here, we have found

a situation in which a combination of two lethal genotypes

(FADD KO; FLIP, RIPK3DKO) yields a TKOwith normal develop-

ment. Young TKO animals were grossly normal (Figure S3B), and

gained weight with age indistinguishably from littermates (Fig-

ure 4B). Furthermore, because FADD (Tourneur and Chiocchia,

2010) and FLIP (Budd et al., 2006) have been implicated in prolif-

eration and activation of NF-kB in activated T cells, we examined

proliferation and phosphorylation of p65RelA in activated TKO T

lymphocytes. No abnormalities in activation-induced prolifera-

tion (Figure S3E) or activation of NF-kB (Figure S3F) were

observed. Finally, as in caspase-8, RIPK3 DKO (Kaiser et al.,
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Figure 3. FLIP-Deficient Cells and Embryos Undergo Apoptosis in the Absence of RIPK3

(A) Immunoprecipitation of a FADD-containing complex fromSVEC4-10 cells treated with or without 20 ng/ml TNF and 50 mMzVAD-fmk. NIH 3T3 cells, with (B) or

without (C) stably expressed RIPK3, were transfected with the indicated siRNAs for 48 hr, followed by treatment with TNF for 9 hr. At harvest, cultures were split,

and cell death was assessed by AnnexinV-APC and PI staining (with AnnexinV+, PI� as apoptotic [pink] and AnnexinV+, PI+ as necrotic or late apoptotic [blue]).

The presence of cleaved caspase-3 (green) was assessed by intracellular staining.

(D) Cleaved caspase-3 immunostaining in sections from E9.5–E10 embryos of the indicated genotypes. Arrowheads mark areas of focal cleaved caspase-3

staining. Scale bars are 500 mm.

(E) Cleaved caspase-3 immunostaining in heart section from an E9.5 FLIP�/�, RIPK3�/� embryo. Scale bar represents 100 mm.

For (D) and (E), representative images are presented (n R 3 for each genotype).

See also Figure S2.
2011; Oberst et al., 2011), and FADD, RIPK3 DKO (Figure 1D)

mice, these animals accumulated over time a population of

B220+CD3+ T cells (Figure S3G), resulting in severe lymphoaccu-

mulation (Figure 4C).

The normal development of FADD, FLIP, RIPK3 TKO mice

provides strong support for the emerging model (Figure S4A)

that the FADD-caspase-8-FLIP complex inhibits RIPK3-medi-

ated embryonic lethality while not promoting apoptosis in

affected cells. In the absence of FLIP, the function of FADD

promotes lethality, most likely via the action of caspase-8

(Oberst andGreen, 2011). Unfortunately, due to the close linkage

of FLIP and caspase-8, this could not be readily tested in vivo.

However, this idea is strongly supported by the normal develop-

ment of caspase-8, RIPK3 DKOmice (Kaiser et al., 2011; Oberst

et al., 2011), but not FLIP, RIPK3 DKO mice (Figure 2). Further-

more, because FADD, RIPK1 (Zhang et al., 2011) and FADD,

RIPK3 (Figure 1) DKO mice develop normally in utero, both

RIPK1 and RIPK3 mediate embryonic lethality, most likely by

the process of RIPK1-RIPK3-mediated programmed necrosis

(Weinlich et al., 2011).
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Mice lacking FADD (Yeh et al., 1998; Zhang et al., 1998), FLIP

(Yeh et al., 2000), or caspase-8 (Sakamaki et al., 2002; Varfolo-

meev et al., 1998) are embryonic lethal around E10.5 due to, at

least partially, a failure in yolk sac vascularization, an effect we

also observed in FLIP, RIPK3 DKO mice (Figure 2C). According

to the model (Figure S4A), this lethality in FLIP, RIPK3 DKO

mice is predicted to be caused by FADD-caspase-8-dependent

apoptosis. Indeed, we observed early, focal apoptosis in endo-

thelium and other structures in these embryos that was not

observed at this stage in embryos lacking caspase-8 or FADD

(Figures 3D, 3E, S2C, and S2D). An early study, using mixed

chimeras, suggested that embryonic lethality in FADD�/� mice

correlates with the null allele associated with the region of

the embryonic heart (Yeh et al., 1998). We found, however,

that conditional deletion of caspase-8 in the heart (a myosin

heavy-chain Cre; Agah et al., 1997) did not cause embryonic

lethality (Figures 4D and S4B), and weaned animals showed no

differences in body weight (WT 22.6 ± 6.4 g versus KO 25.2 ±

4.3 g. n = 5) or heart weight (WT 0.14 ± 0.02 g versus KO

0.14 ± 0.03 g n = 5). Previous studies using conditional deletion



FLIP+/-, FADD-/-, RIPK3-/- x FLIP+/-, FADD-/-, RIPK3-/-

Expected Observed 
FLIP+/+, FADD-/-, RIPK3-/- 15.75 13 
FLIP+/-, FADD-/-,RIPK3-/- 31.5 37 

Total: 63 63 
p value: 0.3828 

-MyHC-Cre+, Casp8+/- x Casp8fl/fl 

Expected Observed 
-MyHC-Cre+, Casp8fl/- 39.25 43 
-MyHC-Cre+, Casp8fl/+ 39.25 39 
-MyHC-Cre-, Casp8fl/- or fl/+ 78.5 75 

Total: 157 157 
p value: 0.7726 
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Figure 4. FLIP�/�, FADD�/�, RIPK3�/� Mice Are Viable with Overtly Normal Development but Display Severe Progressive Lymphoaccumu-
lation

(A) Expected and observed frequency of FLIP and FADD status in offspring from crosses of FLIP+/�, FADD�/�, RIPK3�/� animals. The resulting offspring were

genotyped for FLIP status at weaning.

(B) Plot of weight of littermate animals of the indicated genotypes at different ages.

(C) Lymphoid organs removed from young (6 weeks) and old (16 weeks) littermate mice of the indicated genotypes. Scale bars represent 1cm.

(D) Expected and observed frequency of caspase-8 status in offspring from crossing of aMyHC-Cre+, Casp8+/� with Casp8flox/flox animals.

See also Figures S3 and S4.
of caspase-8, however, have shown that E10.5 lethality is

observed upon ablation of this gene in endothelium (TIE1-Cre)

(Kang et al., 2004). Caspase-8 ablation in liver (Albumin-Cre)

(Kang et al., 2004), skin (Keratin 5 or 14-Cre) (Kovalenko et al.,

2009; Lee et al., 2009), or intestinal epithelium (Villin-Cre)

(Günther et al., 2011), while having effects, did not cause E10.5

lethality, nor did conditional deletion of FADD in the intestine or

skin (Bonnet et al., 2011; Welz et al., 2011). It is possible that

the precursors of definitive hematopoiesis, which arise in the

endothelium of the aorta, move to the yolk sac, and are required

for remodeling of the yolk sac vasculature (Dzierzak and Speck,

2008), are the targets of RIPK3-dependent necrosis in the

absence of FADD or caspase-8, and of caspase-8-dependent

apoptosis in the absence of FLIP and RIPK3.

Therefore, there is a close interplay between two cell death

pathways: one leading to caspase-8-dependent apoptosis,

and one leading to RIPK3-dependent necrosis. The presence

of FLIP prevents the formation of FADD-dependent, active

caspase-8 homodimers, required for apoptosis, whereas the

resulting caspase-8-FLIP heterodimers prevent RIPK3 activa-

tion, required for programmed necrosis. In the absence of the

FADD-caspase-8-FLIP complex, RIPK3 drives necrosis, result-

ing in embryonic lethality. In the presence of FADD, but in the

absence of FLIP, caspase-8 drives apoptosis, also resulting in

embryonic lethality at the same stage. Thus, either death

pathway disrupts the proper development of the yolk sac vascu-
lature, unless both are held in check through the interactions we

have described (Figure S4A).

If so, why is the system ‘‘built’’ in this complex manner? One

possibility relates to the dissemination of DNA viruses, which

often carry endogenous inhibitors of caspase-8 (Weinlich et al.,

2011). Such viruses may thereby trigger RIPK3-dependent

necrosis, which would limit the infection. Indeed, cytomegalo-

virus (Weinlich et al., 2011) has been shown to cause such

necrosis. Therefore, the developmental regulation of RIPK3-

dependent necrosis by FADD-caspase-8-FLIP may represent

a ‘‘failsafe’’ mechanism to prevent viral dissemination if the

apoptotic pathway is compromised, resulting in the untoward

consequences of deletion of any of the latter three components.

Amore direct role for these death processes in embryonic devel-

opment may only be unveiled when the specific cell types and

triggers that initiate both caspase-8-apoptosis and RIPK3-

necrosis are elucidated.

EXPERIMENTAL PROCEDURES

Mice, Treatments, and Timed Matings

Mice with a deleted allele of caspase-8 were generated by germline deletion of

a caspase-8flox allele described previously by Salmena et al. (2003). A distinct

set of caspase-8flox animals was generated as previously described by

Kang et al. (2004) and was crossed to a myosin heavy-chain Cre animals

(Agah et al., 1997). RIPK3-deficient animals were obtained from V. Dixit

(Newton et al., 2004). FADD and FLIP-deficient animals have been previously
Cell Reports 1, 401–407, May 31, 2012 ª2012 The Authors 405



described by Yeh et al. (1998, 2000). Genotypes were confirmed by tail snip

PCR as described previously. For anti-CD95 injections, animals were injected

via tail vein with 15 mg purified Jo2 antibodies in lipopolysaccharide-free PBS

per animal. Liver enzymes were assayed using a Trilogy Multi-Purpose

Analyzer System from Drew Scientific, and liver sections were created and

stained with hematoxylin and eosin, in the St. Jude Veterinary Pathology

Core facility. Timed matings were performed by mating animals and then veri-

fying developmental age through palpation and ultrasound, with post-dissec-

tion staging performed by the St. Jude Veterinary Pathology Core facility.

Dissections were performed using a Leica M844/F40 surgical microscope

scope. Image capture of embryos was performed using a Nikon SMZ1500

Epi-fluorescence Stereoscopic Zoom Microscope with a DS-Fi1 Camera

and Nikon Elements Imaging Software. Sections from embryos were gener-

ated and stained with hematoxylin and eosin, anti-cleaved caspase-3 (Bio-

Care), or anti-CD31/PECAM-1 antibody (BD PharMingen) and biotinylated

rabbit anti-rat antibody (Vector). The St. Jude Institutional Animal Care and

Use Committee approved all procedures in accordance with the Guide for

the Care and Use of Animals.

Knockdown Experiments

NIH 3T3 cells that do not express endogenous RIPK3 were stably transduced

with a multicistronic pBabe-PURO vector containing full-length, untagged

murine RIPK3 followed by a T2A ribosome-skipping sequence, followed by

eGFP. Control cells received the same vector containing eGFP alone. Cells

were treated with siRNAs as described in Extended Experimental Procedures.

Immunoprecipitation of FADD

SVEC 4-10 cells were treated with or without 20 ng ml�1 recombinant murine

TNF-a (PeproTech) and 50 mM zVAD (SM Biochemicals) for 90 min. Immuno-

precipitation of DISC-associated complexes was carried out using buffer and

lysis conditions previously described by Geserick et al. (2009). FADD was

immunoprecipitated using theM19 polyclonal anti-FADD antibody conjugated

to Protein A/G-PLUS Agarose beads, both from Santa Cruz Biotechnology.

Immune Cell Staining, Cell Death, and Activation Assays

For immune cell staining the spleen, thymus, and lymph node were harvested

from animals, and single-cell suspensions were generated. For immune cell

staining from the blood, blood was harvested from the retrorbital sinus from

animals anesthetized with 2%–2.5% isoflurane in 1 l oxygen. Red blood cells

were lysed in hypotonic buffer, and samples were stained with the appropriate

antibodies as described in Extended Experimental Procedures. Data were

acquired using a FACSCalibur or LSRII using FlowJo Collectors or FACSDiva

software, respectively. Data analysis was performed using FlowJo (Tree Star).

For cell death assays, cells were harvested at 9 hr, stained with AnnexinV-APC

(Invitrogen) and PI (Sigma-Aldrich), and assayed for viability using flow cytom-

etry. For cleaved caspase-3 intracellular staining, cells were harvested, fixed,

permeabilized, and stained per manufacturer’s instructions (eBioscience).

Proliferation assays and culture conditions were performed per standard

protocols as detailed in Extended Experimental Procedures.
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