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Tidal stripping of stars near supermassive black holes

L. Dai* and R. Blandford
Kavili Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025, USA

Abstract. In a binary system composed of a supermassive black hole and a star orbiting the hole in an equatorial, circular orbit,
the stellar orbit will shrink due to the action of gravitational radiation, until the star fills its Roche lobe outside the Innermost
Stable Circular Orbit (ISCO) of the hole or plunges into the hole. In the former case, gas will flow through the inner Lagrange
point (L1) to the hole. If this tidal stripping process happens on a time scale faster than the thermal time scale but slower than the
dynamical time scale, the entropy as a function of the interior mass is conserved. The star will evolve adiabatically, and, in most
cases, will recede from the hole while filling its Roche lobe. We calculate how the stellar equilibrium properties change, which
determines how the stellar orbital period and mass-transfer rate change through the “Roche evolution” for various types of stars
in the relativistic regime. We envisage that the mass stream eventually hits the accretion disc, where it forms a hot spot orbiting
the hole and may ultimately modulate the luminosity with the stellar orbital frequency. The ultimate goal is to probe the mass
and spin of the hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals.
The observability of such a modulation is discussed along with a possible interpretation of an intermittent 1 hour period in the

X-ray emission of RE J1034 + 396.

1. INTRODUCTION

When a star passes by a supermassive black hole (SMBH)
closely, tidal effects can be induced. There are two extreme
cases. The first case is a tidal disruption event, to which
most talks in the meeting were dedicated. Tidal disruption
can happen when a star passes close by a black hole in an
unbound orbit or a very eccentric orbit. The stellar volume
exceeds the Roche volume at periastron, and the star is
torn apart and eventually swallowed by the hole (e.g.,
[11]). As broadly discussed in the meeting, one convincing
instance of a tidal disruption event is the recent luminous
Sw J1644 + 57 X-ray observation ([2,15]). Optical and
UV flares have also been associated with tidal disruptions
(e.g., [7,13]).

The other case, which was the main topic of my
talk, is called tidal stripping or stable Roche mass-
transfer. In an Extreme Mass-Ratio Inspiral (EMRI)
system composed of a central SMBH and a star, the
stellar orbit shrinks due to the loss of energy and
angular momentum through gravitational radiation and
other torques. We restrict our discussion of EMRI systems
to stars in circular, equatorial orbits. If such a star
overflows its Roche lobe close to the innermost stable
circular orbit (ISCO), the star loses mass adiabatically
through the inner Lagrange point (L1), and the stellar
orbit will usually expand (eventually). Gas flowing through
L1 will generally form a torus orbiting the hole. A hot
spot will be formed where the stream hits the disc. The
hot spot (and shocks generated) will orbit the hole with
the stellar orbital frequency, and an inclined observer
should see a modulation of the radiation from the disc,
most likely in the X-ray range. Clearly the modulation
will be the greatest when the observer is in the equatorial
plane, observing maximal Doppler boosting. This process
is illustrated in Fig. 1. A tidal stripping event, not as
luminous as a tidal disruption event, however, lasts much
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longer. It is easier to be modeled with high precision for
the mass and spin of the hole. Therefore, it could provide
a probe of detecting SMBH spins and testing general
relativity.

In this paper, we will only focus on the relativistic
treatment of the problem as it is more intriguing. The
details of Newtonian and relativistic calculations can be
found in [4].

2. RELATIVISTIC ROCHE MASS-TRANSFER
2.1. Gravitational inspiral of the star

We restrict our attention to circular equatorial orbits, since
the orbit circularizes quickly as it loses angular momentum
and energy due to gravitational radiation. The star will
plunge into the hole when its orbit shrinks to the size of
the ISCO. The relativistic inspiral time for a star starting
from an orbital radius r till it plunges into the hole is:
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([5]) in the Boyer-Lindquist coordinate, where M is the
mass of the hole, m, is the stellar mass, Q is the
dimensionless orbital angular velocity defined by @ =
MQ, where Q is the regular orbital angular velocity. The
relativistic Kepler’s Second Law gives:

1

Q= .
+a

(@)

91w

?
where + refers to prograde and retrograde orbits, a is
the spin parameter of the hole, and 7 = # (R, is the

Ry
gravitational radius of the hole).

7 is the relativistic correction term. We interpolated
the tabulated results of 7~ in [5] to get a convenient
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Figure 1. A star filling its Roche lobe is tidally stripped by a
massive black hole.
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Figure 2. The total inspiral time in years as a function of /R,
for a 0.3M, dwarf star orbiting a 10’ M, hole. This plot is in
the log-log scale. The three colors indicate three different spin
parameters of the hole: —0.99 (green), O (red), and 0.999 (blue).
The three solid curves are accurate inspiral times obtained using
Eq. (2). The black dotted curve is the Newtonian inspiral time as
in [10]. All other curves approach the Newtonian curve when the
star is far away from the hole.
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where x = r/rsco. This formula holds true with a
maximum error of ~ 2% for x > 2.

The inspiral time of a ~ 0.3M; dwarf star falling
into a 10’ My, hole is shown in Fig. 2. It is clear that the
standard “Landau-Lifschitz” form equation is adequate for
r > 100R,. It is arguable that faraway stars on circular
orbits can take too long to get close enough to the black
hole. Therefore, other mechanisms must happen to shorten
the inspiral time. Stars can be borne in the accretion disc,
when materials accrete onto the black holes and finally go
away eventually leaving only the stars. Such stars would
orbit the hole in close, bound orbits in the equatorial plane
with low eccentricity. When other stars and gas are around,

dynamical frictions and three-body interactions can also
drag in a faraway star.

The gravitational radiation reaction torque is readily
computed from:
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where the orbital angular momentum is (e.g., [1])
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2.2. Roche limit

Tidal stripping starts if the star fills the Roche lobe outside
the ISCO. The Roche lobe is an equi-potential surface of
the first Lagrange point (L.1), at which the gradient of the
Roche potential vanishes. The Roche potential is the sum
of the gravitational potentials of the star and the hole, plus
the potential in the frame rotating with the star due to the
centrifugal force. It can be calculated by expanding the
local tidal tensor in an orthonormal coordinate basis freely
falling with the star to be:

B(x,y,2) = —ma(F + yF + )
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Here {x,y,z} is a locally orthonormal coordinate system
centered at the star and directed along the {r,6, ¢}
coordinate axes. k,, is the stellar rotational parameter in
the inertial frame, ranging between O (non-rotating star)
and 1 (co-rotating star), and k is a parameter defining how
relativistic the motion is:
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Using this potential, an adequate approximation to the
Roche volume is:

Wn(r, ko) = Visco(r, k)
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Vy is the Newtonian Roche volume:
Vi ~ 0.683 X k—°’+171%3 9)
N 2.78 M
And Visco is the Roche volume at the ISCO (k=2):
Visco = 0.456 x k—“’+1_l%r3 (10)
1seo = 4.09 M
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In summary, the relativistic volume has a similar form
as the Newtonian formula — a constant times the ratio of
the two masses times the distance between the two objects.
The constant, ranging between 0.368 and 0.683, depends
on k (how relativistic the motion is) and k,, (how fast the
star rotates in inertial frames). Comparing with Fishbone’s
Roche volume model ([6]) used by Hameury ([9]), which
didn’t consider the black hole spin and assumed the star
to be co-rotating, our Roche volume could be 20-40%
different in value as the star gets close to the ISCO. We will
show that it is crucial to give this problem a full relativistic
treatment in Section 2.4.

2.3. Adiabatic evolution of the star

We used real stellar models kindly provided by Peter
Eggleton to study how stars respond to the loss of mass
adiabatically on a time scale slower than the dynamical
time scale but still faster than the thermal one. The stellar
orbital radius from the hole changes as mass is lost.
The way that the star evolves in such a mass-transfer
environment depends mainly upon the mean density of
the stripped star as a function of decreasing mass. Nuclear
reactions will be shut off as soon as the mass loss starts and
the central temperature decreases. For details please refer
to [3].

As the star is stripped on an adiabatic time scale,
its entropy as a function of interior mass is conserved.
For a star composed of ideal gas, ignoring radiative
contributions, Coulomb and degeneracy corrections, its
equilibrium properties satisfy:

dr(m) _ S (m)
dm 4xr(myp(m)}
dp(m) B Gm
dm — dar(m)* 1D

Here m is the interior mass, r(m) is the stellar radius
as a function of m, p(m) is the interior gas pressure, G
is the gravitational constant, p(m) is the stellar density.
S = p*’p7!is the effective entropy, which is a known
function of m using our stellar models. Therefore, we can
use these equations to solve for the stellar properties as its
total mass decreases.

We considered the adiabatic evolution of not only
main-sequence stars but also a representative set of stars
and planets under these conditions. We found that as mass
is lost, the pressure will decrease, gas will expand, but
the total stellar volume might increase or decrease. As
a result, stellar mean density might increase or decrease.
We found that lower main-sequence stars, brown dwarfs,
white dwarfs, and Jupiter-like planets will have their mean
densities decrease all the time as mass is stripped. Upper
main-sequence stars, Sun-like stars, red giants will have
their mean densities increase and then decrease through the
mass-loss.

2.4. Stellar orbit evolution and Roche mass-transfer

Using the relativistic Kepler’s Second Law (Eq. (2)), and
the results of relativist Roche Volume (Eq. (8)), we obtain
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Figure 3. Roche evolutions of different stars close to SMBHs
with M = 10’ M, and a = 0.9. The x-axis is the stellar mass, and
the y-axis is the stellar orbital period from the ISCO to 100R,.
The solid line are the relativistic calculations for co-rotating stars,
and the dashed lines are the relativistic calculations for non-
rotating stars. The vertical dotted lines represent the phase of
inspiral due to gravitational radiation.

a simple relationship between the stellar mean density and
the orbital radius when the star fills its Roche lobe:
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As a star approaches a SMBH in a circular, equatorial orbit,
it might plunge into the SMBH directly, or go through
full Roche evolution, or start the Roche evolution then
plunge into the hole. The detailed evolution depends on
the mass and spin of the black hole, the stellar type, and
the rotational parameter k,, of the star. Using Eq. (12), we
can check when the star will start Roche accretion and
if so, how its orbit will change through the process. We
summarized the inspiral/outspiral scenarios for different
stars and hole parameters in Fig. 9 in our paper [4]. For
example, Fig. 3 shows how different stars behave when
approaching a hole with M = 10’M, and a = 0.9
on circular, equatorial orbits: A white dwarf will plunge
in directly. A brown dwarf and a lower main-sequence
star will spiral out since mass-transfer starts. A higher
main-sequence star and a Sun-like star will spiral in first
then eventually spiral out. A red super giant star, with its
envelop being stripped, will keep on spiraling in till its
core plunges into the hole. The qualitative behavior of the
orbital evolution is similar using Newtonian or relativistic
models for non-rotating or co-rotating stars, with some
quantitative differences.

From the conservation of angular momentum, the
stellar angular momentum L satisfies:

AL = ALgg + ALisco. (13)

Here L is the angular momentum of the star as in Eq. (5).
ALgr is caused by the gravitational radiation torque g
calculated from our new model (Eq. (4)). 4 Lisco represents
the loss of angular momentum of materials falling into the
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Figure 4. This figure shows how fast a non-rotating lower main-
sequence star with initial mass ~ 0.3M, is tidally stripped
by a Schwarzschild SMBH with a mass 10’M,. The x-axis
is the stellar mass, and the y-axis is the mass-loss rate. The
black curve is the Newtonian calculation, the solid blue curve
is the relativistic calculation, and the dashed blue curve is the
relativistic calculations ignoring the angular momentum loss at
the ISCO.

ISCO. For simplicity we ignored the disc radiation and disc
wind. We then have:

dr + Tg + 1y jms = 0. (14)
dt
m, is the stellar mass-loss rate, and jys is the specific
angular momentum at the ISCO, which equals O in the
Newtonian limit.

For example, we can calculate how a dwarf star with
mass ~ 0.3M loses mass at different rate in relativistic
and Newtonian models. With general relativity considered,
the star does not recede from the hole as far as in the
Newtonian limit (as in Fig. 3), and the mass accretion rate
drops by about half (as in Fig. 4).

In order to see if this Roche mass-transfer is
dynamically stable, as Hameury ([9]) suggested, we can
check whether the star will exceed the Roche surface under
the assumption of no angular momentum loss through
gravitational radiation. Hameury’s model suggests that
such Roche mass-transfer can be dynamically unstable
for some stars, e.g. a lower-main sequence star around a
10" M,, hole. However, using our more accurate relativistic
models, we found that all the stars go through tidal
stripped dynamically stably, in contradiction to Hameury’s
results.

3. OBSERVATION OF RE J1034 + 396 AND
FUTURE DIRECTIONS

One observation that may possibly be explained by this
model is the quasi-periodic XMM-Newton
X-ray signal from a nearby active Seyfert I galaxy RE
J1034 + 396 ([8]). As shown in Fig. 1 in their paper, the
rest-frame X-ray emission has a periodicity of ~ 1 hr. The
X-ray flux has a modulation of ~0.1 associated with the
nucleus of the galaxy, and this modulation could be well
fitted by a cosine function. Using our model, a dwarf star
or brown dwarf or red giant can produce emissions with
such a periodicity when tidally stripped by a ~10°—107 M,
SMBH, though the mass accretion rate under adiabatic
condition and pure gravitational radiation torque is too

low to produce the observed X-ray flux. 16 cycles of
signals are insufficient to be confident of a stable period.
However, if more signals can be observed, information on
spin could be extracted. In principle, the closer the star is
to the hole, or the larger the spin of the hole, the stronger
the emission would be. This could introduce a selection
effect as rapidly spinning holes would be more likely to be
observed.

We also simulated periodic signals from a hot spot
orbiting around the hole circularly and equatorially using
our numerical package. The modulation of intensity comes
from beaming effect. The shape of the curves and the
relative intensity are different for different spins and
observer inclination angles, from which we can probe the
parameters of the hole. Also our model is different from
other quasi-periodic oscillation (QPO) models (e.g. [14])
in producing a hot spot on the disc, as the periodicity
of the modulation will follow that of the stellar orbit
although there is likely to be phase noise. Since the stellar
orbit evolves on an adiabatic time scale, the periodicity of
the hot spot will change slowly but in a consistent way.
For example, an accreting ~0.3M; dwarf star’s orbital
periodicity can change by ~0.1 s per year, during which we
can observe ~8000 cycles of modulation. A P — P analysis
similar to the double pulsar’s could in principle be done
to extract information of the stellar type and black hole
parameters.

Interesting future projects include: (1) calculating
the probability of observing tidal stripping events by
studying stellar distributions in the cusps near the hole
and the mechanisms of bringing stars close to the ISCO;
(2) analyzing the radiation mechanism of the hot spot
produced by gas stream hitting the disc; (3) investigating
the final fate of a star as it migrates outward after the onset
of mass- transfer; and most importantly, (4) searching
existing X-ray databases, to seek evidence for stars in
bound orbits around SMBHs and QPOs associated with
SMBHs.
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