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SYSTEMS & CONTROL | RESEARCH ARTICLE

Equivalent conditions of finite-time time-varying 
output-feedback control for discrete-time 
positive time-varying linear systems
Jason J. R. Liu1*, James Lam1, Xin Gong1, Xiaochen Xie1 and Yukang Cui2

Abstract:  This paper studies the issue of finite-time time-varying output-feedback 
control for positive time-varying discrete-time linear systems. Finite-time stability 
for the systems with positivity is defined. To make sure that the system can be 
finite-time stable with positivity, an analysis condition is established first, and then 
two conditions for solving the static output-feedback controller are derived in this 
work where all the obtained results are necessary and sufficient conditions. An 
iterative algorithm for solving the controller is developed and finally, an example is 
given in the simulation to verify the effectiveness of our results and algorithm.

Subjects: Automation Control; Control Engineering; Dynamical Control Systems; General 
Systems  

Keywords: Discrete-time systems; finite-time stability; finite-time control; positive time- 
varying linear systems; time-varying output feedback

1. Introduction
In the control community, finite-time stability is a very useful and practical property of control 
systems, quite different from the classical Lyapunov stability that is considered in a period being 
infinite. A control system has the property of finite-time stability; if the initial state is given 
a bound, the state stays and does not leave certain bounds during a specified time interval. 
Such a property is commonly considered in some practical cases where, for example, large values 
of the state of control systems may lead to saturation (Amato et al., 2014; Mirabdollahi & Haeri, 
2019). Unlike the Lyapunov asymptotic stability of control systems, finite-time stability is a notion 
that has some distinct characterizations. In other words, it is possible that an asymptotically stable 
system may not have the finite-time stability; for example, the transient states may exceed some 
prescribed bounds. Also, a system that has the property of finite-time stability can be an unstable 
system. For the fundamental results on finite-time stability, one can refer to some early literature 
(Dorato, 1961; Kamenkov, 1953; Lebedev, 1954). Finite-time stability analysis or finite-time stability 
synthesis for general linear systems has been further investigated in recent years. The finite-time 
stability issue for linear time-varying continuous-time systems with finite jumps was studied by 
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Amato et al. (2009). In the work by Amato et al. (2010b), for linear time-varying continuous-time 
systems, finite-time stability analysis was analyzed and controller design was also studied. The 
finite-time control problem for linear time-invariant and time-varying discrete-time systems was 
investigated by Amato and Ariola (2005) and Amato et al. (2010a), respectively, where only 
sufficient conditions of finite-time stabilization were provided.

Due to its importance in practical application, finite-time stability and finite-time stable con
troller design have been studied for different kinds of dynamic systems (Ren et al., 2018; Song 
et al., 2016). A special class of systems known as positive system has also been studied recently 
(Ogura et al., 2019; Phat & Sau, 2018; Shang et al., 2019; C. Wang & Zhao, 2019; Xue & Li, 2015). 
A dynamic system has the positive property if the state with a nonnegative initial value always 
stays in the nonnegative orthant for all inputs that are nonnegative (Farina & Rinaldi, 2011). 
Positive systems are extensively present in medicine, social science, biology and engineering 
(Bapat et al., 1997; Farina & Rinaldi, 2011; Haddad et al., 2010). In recent years, the research on 
positive systems has attracted a significant amount of interest (see Ebihara et al., 2020; Hong, 
2019; J. J. R. Liu et al., 2020; L.-J. Liu et al., 2018; P. Wang & Zhao, 2020; Wu et al., 2019; Yang et al., 
2019 and the references therein). Also, finite-time stability analysis and synthesis for positive 
systems was investigated in a large number of articles; for instance, the positive Markov jump 
linear systems are considered by Zhu et al. (2017) and the positive linear time-invariant discrete- 
time systems are investigated by Xue and Li (2015). Different from the previous work by Xue & Li 
(2015) and Zhu et al. (2017), here, we focus on the positive time-varying discrete-time linear 
systems. This kind of system has been studied in the recent work (Kaczorek, 2015) where the 
positivity and classical Lyapunov asymptotic stability were discussed. However, the issue of finite- 
time stability and stabilization for positive time-varying discrete-time linear systems has not been 
well studied yet. Designing a finite-time static output-feedback controller for this kind of system is 
quite challenging as both the finite-time stability and positivity have to be considered in the 
synthesis. The two requirements will lead to a difficult non-convex issue in computation. The 
main contributions of this paper are summarized as follows:

•   Necessary and sufficient conditions of finite-time stability and static output-feedback stabili
zation for positive linear time-varying discrete-time systems are derived.

•   An effective iterative algorithm for controller design is developed for solution.

The remaining parts of this paper are organized as follows. Some mathematical preliminaries 
for time-varying discrete-time linear systems with positivity and definition of the positive finite- 
time time-varying output-feedback stabilization problem are given in Section 2. In Section 3, finite- 
time stability and finite-time controller design conditions using static output-feedback control are 
derived and an iterative algorithm is developed for solution. In Section 4, the effectiveness and 
applicability of the obtained results and the corresponding algorithm are shown by an illustrative 
example. Finally, some remarks are concluded in Section 5. 

Notations. The notation R is used to represent the set of real numbers; R n is used to denote the n- 
dimensional Euclidean space; R m�n is used to represent the set of m� n matrices with all entries 
belonging to R . It is assumed throughout this paper that the dimensions of all matrices are 
compatible for algebraic operations if it is not explicitly stated. I is used to denote the identity 
matrix with appropriate dimension. The transpose of matrix A is denoted by AT. In this paper, for 
two given real matrices Z and W that are symmetric, Z �W (respectively, Z > W) is used to 
represent that Z � W is positive semi-definite (respectively, positive definite). j � j denotes the 
Euclidean norm for vectors. For vector xðmÞ 2 R n and matrix U>0 2 R n�n, k xðmÞkU denotes the 
weighted norm xTðmÞUxðmÞ. N0 denotes the set of natural numbers while Nþ denotes the set of 
natural numbers without zero. For matrix A 2 R m�n, ½A�ij denotes the ith row and jth column 
element of A. The notation A � 0 (respectively, A � 0) represents that all its elements satisfy ½A�ij �
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0 (respectively, ½A�ij>0). A 2 R
m�n is a nonnegative matrix if all its all elements are nonnegative, 

which is represented by A � 0.

2. Preliminaries
Consider the following time-varying discrete-time linear system: 

xðmþ 1Þ ¼ AðmÞxðmÞ þ BðmÞuðmÞ
yðmÞ ¼ CðmÞxðmÞ;m 2 N0

�

(1) 

where xðmÞ 2 R r, uðmÞ 2 R q and yðmÞ 2 R p denote the system state, input and measured output, 
respectively. AðmÞ 2 R r�r , BðmÞ 2 R r�q and CðmÞ 2 R p�r denote the system matrices of appropriate 
dimensions. Before we discuss on system (1) with positivity, some characterizations regarding the 
positivity property of system (1) are given as follows (Bapat et al., 1997; Farina & Rinaldi, 2011; 
Haddad et al., 2010; Kaczorek, 2015).

Definition 1. System (1) is called (internally) positive if for any nonnegative initial state and input, 
the state trajectory and output always remain nonnegative for all time.

Lemma 1 System (1) is (internally) positive if and only if matrices AðmÞ � 0, BðmÞ � 0 and CðmÞ � 0 
for all m 2 N0.

In the following, system (1) is assumed to be positive. Given the positive system in (1), we use 
the following time-varying output-feedback controller: 

uðmÞ ¼ GðmÞyðmÞ; m 2 N 0 

and a closed-loop system is derived: 

xðmþ 1Þ ¼ AclðmÞxðmÞ; m 2 N0 (2) 

where AclðmÞ :¼ AðmÞ þ BðmÞGðmÞCðmÞ.

According to the results by Amato et al. (2010a), the finite-time stability for system (1) is 
defined as follows. 

Definition 2 System (2) is positive and finite-time stable w:r:t: ðγ, U, JÞ, where matrix U>0 and 
constant J 2 Nþ, if   

xð0Þ � 0; xTð0ÞUxð0Þ � 1) xðmÞ � 0; xTðmÞUxðmÞ � γ2;"m 2 f1; . . . ; Jg:

In this work, the finite-time static output-feedback controller design issue for system (1) with 
positivity is considered as follows.

Problem PFTSOFC (Positive Finite-time Static Output-feedback Control): Given a positive system 
(1), given any xð0Þ � 0, solve a time-varying controller fGðmÞgJ� 1

m¼0 such that the system (2) is 1) 
positive, that is, xðmÞ � 0 for all m 2 f1, . . . , Jg, and 2) having the finite-time stability property 
w:r:t: ðγ, U, JÞ where matrix U>0 and J 2 Nþ.

3. Main results
This section gives some theoretical results regarding positivity, finite-time stability and finite-time 
controller design for positive linear time-varying discrete-time systems. Then an iterative algorithm 
is developed for finding a static output-feedback controller.
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From Lemma 1, it follows that system (2) is positive if and only if matrix AclðmÞ � 0, "t 2 N0. 
For designing the finite-time stabilizing controller of system (1) without positivity, an equivalent 
analysis condition guaranteeing that the system is finite-time stable has been established by 
Amato et al. (2010a). Obviously, solving Problem PFTSOFC for system (1) requires that the system 
is finite-time stable with positivity. Therefore, by employing the result by Amato et al. (2010a) and 
considering the positivity property of systems, an equivalent condition for solving Problem 
PFTSOFC is concluded in the following. 

Theorem 1. Problem PFTSOFC w:r:t: ðγ, U, JÞ where matrix U>0 and J 2 Nþ is solvable for fGðmÞgJ� 1
m¼0 if 

and only if there exist real symmetric positive definite matrices fPhðmÞgh
m¼0, "h 2 f1, 2, . . . , Jg such that 

ðiÞ AclðmÞ � 0, "m 2 f0, 1, . . . , J � 1g, 
ðiiÞ AT

clðmÞPhðmþ 1ÞAclðmÞ � PhðmÞ<0, "h 2 f1, 2, . . . , Jg and m 2 f0, 1, . . . , h � 1g, 
ðiiiÞ PhðhÞ � U, "h 2 f1; . . . ; Jg, 
ðivÞ Phð0Þ<γ2U, "h 2 f1; . . . ; Jg.

Expanding the condition ðiiÞ of Theorem 1, we have ðiiÞ ðAðmÞ þ BðmÞGðmÞCðmÞÞTPhðmþ
1ÞðAðmÞ þ BðmÞGðmÞCðmÞÞ � PhðmÞ<0 where GðmÞ is coupled with Phðmþ 1Þ. To decouple the 
controller GðmÞ from the finite-time matrix variable Phðmþ 1Þ, an equivalent condition correspond
ing to Theorem 1 is derived as follows. 

Theorem 2. Problem PFTSOFC w:r:t: ðγ, U, JÞ where matrix U>0 and J 2 Nþ is solvable for 
fGðmÞgJ� 1

m¼0 if and only if there exist positive scalars fqðmÞgJ� 1
m¼0 and real symmetric positive definite 

matrices fPhðmÞgh
m¼0, "h 2 f1, 2, . . . , Jg such that 

ðiÞ AclðmÞ � 0, "m 2 f0, 1, . . . , J � 1g,   

ðiiÞ

ΨhðmÞ:¼
ATðmÞPhðmþ1ÞAðmÞ� PhðmÞ
� qðmÞCTðmÞGTðmÞGðmÞCðmÞ ATðmÞPhðmþ1ÞBðmÞþCTðmÞGTðmÞqðmÞ

BTðmÞPhðmþ1ÞAðmÞþqðmÞGðmÞCðmÞ BTðmÞPhðmþ1ÞBðmÞ� qðmÞI

2

4

3

5<0 (3)  

for all h 2 f1;2; . . . ; Jg and m 2 f0;1; . . . ;h � 1g,  
ðiiiÞ PhðhÞ � U, "h 2 f1; . . . ; Jg,  
ðivÞ Phð0Þ<γ2U, "h 2 f1; . . . ; Jg.

Proof. Since qðmÞ � 0, one can obtain the following conclusion: condition ðiÞ AðmÞqðmÞ þ

BðmÞGðmÞqðmÞCðmÞ ¼ AclðmÞqðmÞ � 0 is equivalent to condition ðiÞ AclðmÞ � 0 in Theorem 1. �  
Define the set of non-singular matrices as 

TðmÞ :¼
I 0

GðmÞCðmÞ I

� �

; "m 2 f0;1; . . . ; J � 1g:

Multiplying both sides of ΨhðmÞ by TTðmÞ and TðmÞ, respectively, yields the following inequality: 

ΦhðmÞ :¼
AT

clðmÞPhðmþ 1ÞAclðmÞ � PhðmÞ AT
clðmÞPhðmþ 1ÞBðmÞ

BTðmÞPhðmþ 1ÞAclðmÞ BTðmÞPhðmþ 1ÞBðmÞ � qðmÞI

� �

<0: (4) 

It follows from the first leading principal submatrix of ΦhðmÞ that AT
clðmÞPhðmþ 1ÞAclðmÞ � PhðmÞ<0, 

for all h 2 f1;2; . . . ; Jg and m 2 f0;1; . . . ;h � 1g, which indicates that the condition ðiiÞ in Theorem 1 
holds.

Liu et al., Cogent Engineering (2020), 7: 1791547                                                                                                                                                          
https://doi.org/10.1080/23311916.2020.1791547

Page 4 of 10



If AT
clðmÞPhðmþ 1ÞAclðkÞ � PhðmÞ<0, for all h 2 f1;2; . . . ; Jg and m 2 f0;1; . . . ;h � 1g holds, there 

must exist positive scalars qðmÞ such that � qðmÞIþ BTðmÞPhðmþ 1ÞBðmÞ � BTðmÞPT
hðmþ 1ÞAclðmÞ

ðAT
clðmÞPhðmþ 1ÞAclðmÞ � PhðmÞÞ� 1AT

clðmÞPhðmþ 1ÞBðmÞ<0, for all h 2 f1;2; . . . ; Jg and m 2
f0;1; . . . ;h � 1g holds. By Schur complement equivalence, it follows that ΦhðmÞ<0, which further 
indicates that ΨhðmÞ ¼ T� TðmÞΦhðmÞT� 1ðmÞ<0, for all h 2 f1;2; . . . ; Jg and m 2 f0;1; . . . ;h � 1g. 
Therefore, condition ðiiÞ here is equivalent to the condition ðiiÞ in Theorem 1.  

Remark 1 By observing (3) in Theorem 2, it can be seen that controller GðmÞ has been decoupled 
from Pðmþ 1Þ successfully without introducing any conservatism. 

The nonlinear quadratic term CTðmÞGTðmÞGðmÞCðmÞ in ΨhðmÞ makes it difficult to compute the 
controller effectively. To solve the controller fGðmÞgN� 1

m¼0, an equivalent condition corresponding to 
Theorem 2, which will lead to a convex programming algorithm, is obtained as follows.

Theorem 3. Problem PFTSOFC w:r:t: ðγ, U, NÞ where matrix U>0 and N 2 Nþ is solvable for 
fGðmÞgJ� 1

m¼0 if and only if there exist matrices fYðmÞgN� 1
m¼0, positive scalars fqðmÞgN� 1

m¼0 and real 

symmetric positive definite matrices fPhðmÞgh
m¼0, "h 2 f1, 2, . . . , Ng such that 

ðiÞ AðmÞqðmÞ þ BðmÞYðmÞCðmÞ � 0, "m 2 f0;1; . . . ;N � 1g,   

ðiiÞ

ΓhðmÞ :¼
ΩðmÞ ATðmÞPhðmþ 1ÞBðmÞ þ CTðmÞLTðmÞ

BTðmÞPhðmþ 1ÞAðmÞ þ YðmÞCðmÞ BTðmÞPhðmþ 1ÞBðmÞ � qðmÞI

� �

<0 (5)  

for all h 2 f1;2; . . . ; Jg and m 2 f0;1; . . . ;h � 1g,  
ðiiiÞ PhðhÞ � U, "h 2 f1; . . . ;Ng,  
ðivÞ Phð0Þ<γ2U, "h 2 f1; . . . ;Ng

where ΩðmÞ :¼ ATðmÞPhðmþ 1ÞAðmÞ � PhðmÞ � MTðmÞYðmÞCðmÞ � CTðmÞLTðmÞMðkÞ þ qðmÞ
MTðmÞMðmÞ.  

Under the conditions, one can get the controller as GðmÞ ¼ YðmÞ=qðmÞ, 2 f0, 1, . . . , N � 1g.

Proof. Notice that GðmÞ ¼ YðmÞ=qðmÞ, "m 2 f0, 1, . . . , N � 1g implies that YðmÞ ¼ GðmÞqðmÞ, "m 2 f0, 
1, . . . , N � 1g. Then we have ðiÞ AclðmÞqðmÞ ¼ AðmÞqðmÞ þ BðmÞYðmÞCðmÞ ¼ AðmÞqðmÞ

þBðmÞGðmÞqðmÞCðmÞ � 0, "m 2 f0, 1, . . . , N � 1g. �  
Moreover, since qðmÞ � 0 and ðYðmÞCðmÞ � qðmÞMðmÞÞTðYðmÞCðmÞ � qðmÞMðmÞÞ=qðmÞ � 0, we 

have � qðmÞCTðmÞGTðmÞGðmÞCðmÞ ¼ � CTðmÞLTðmÞYðmÞCðmÞ=qðmÞ � � MTðmÞYðmÞCðmÞ � CTðmÞLT  

ðmÞMðmÞ þ qðmÞMTðmÞMðmÞ ¼ ΩðmÞ. Therefore, we have ΨhðmÞ � ΓhðmÞ<0, for all h 2 f1;2; . . . ; Jg
and m 2 f0;1; . . . ;h � 1g if (5) holds.

When MðmÞ ¼ GðmÞCðmÞ, we have � qðmÞCTðmÞGTðmÞGðmÞCðmÞ ¼ � MTðmÞYðmÞCðmÞ �
CTðmÞLTðmÞMðmÞ þ qðmÞMTðmÞMðmÞ. In this case, we have ΓhðmÞ ¼ ΨhðmÞ<0, for all h 2 f1;2; . . . ; Jg
and m 2 f0;1; . . . ;h � 1g, if (3) holds.  

Remark 2. In Theorem 2, the static output-feedback controller GðmÞ is explicitly given, while in 
Theorem 3 it is not, but can be solved implicitly by parameterizing two additional variables YðmÞ and 
qðmÞ. Theorems 2 and 3 are equivalent to Theorem 1.

If system (1) is a general linear system without the positivity constraint, then one can directly 
derive the following corollary for the general Finite-time Control Problem: 
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Corollary 1. Finite-time Control Problem w:r:t: ðγ, U, JÞ where matrix U>0 and J 2 Nþ is solvable for 
fGðmÞgJ� 1

m¼0 if and only if there exist matrices fYðmÞgJ� 1
m¼0, positive scalars fqðmÞgJ� 1

m¼0 and symmetric 

matrices fPhðmÞgh
m¼0, "h 2 f1, 2, . . . , Ng such that: 

ðiÞ

�ΓhðmÞ :¼
�ΩðmÞ ATðmÞPhðmþ 1ÞBðmÞ þ CTðmÞLTðmÞ

BTðmÞPhðmþ 1ÞAðmÞ þ YðmÞCðmÞ BTðmÞPhðmþ 1ÞBðmÞ � qðmÞI

� �

<0  

for all h 2 f1;2; . . . ; Jg and m 2 f0;1; . . . ;h � 1g,  
ðiiÞ PhðhÞ � U, "h 2 f1; . . . ; Jg,  
ðiiiÞ Phð0Þ<γ2U, "h 2 f1; . . . ; Jg

where �ΩðmÞ :¼ ATðmÞPhðmþ 1ÞAðmÞ � PhðmÞ þ � MTðmÞYðmÞCðmÞ � CTðmÞLTðmÞMðmÞ þ qðmÞ
MTðmÞMðmÞ.  

Under the conditions, one can get the controller as GðmÞ ¼ YðmÞ=qðmÞ, 2 f0, 1, . . . , J � 1g.

Remark 3. Different from the finite-time output-feedback control results by Amato and Ariola (2005) 
and Amato et al. (2005, 2010a) where only sufficient conditions for the solution of the problem are 
derived, Corollary 1 provides a necessary and sufficient condition for solving the general finite-time 
static output-feedback control problem.

Though ΓhðmÞ in Theorem 3 is related to the nonlinear variable term, it becomes a linear 
matrix inequality (LMI) when matrix M(m) is known. It can be seen from many works (Amato 
et al., 2010a; Song et al., 2017; Xie et al., 2017; Zong et al., 2013) that the LMI approach is 
effective for solving finite-time stability problems. In light of this fact, we define the LMI as 
ΓhðmÞ<γI w:r:t: matrix MðmÞ and scalar γ, and try to minimize γ. Then the minimum value of γ 
is achieved when MðmÞ ¼ GðmÞCðmÞ. Based on this idea, by virtue of the theoretical results in 
Theorem 3, a heuristic iteration algorithm is developed and given in Algorithm PFTSOFC.

Algorithm PFTSOFC:
Step 1: Set j ¼ 1 and γð0Þ ¼ 0. Solve fMðjÞðmÞgJ� 1

m¼0 such that 

xðmþ 1Þ ¼ ðAðmÞ þ BðmÞMðjÞðmÞÞxðmÞ; "m 2 f0;1; . . . ; Jg (6) 

is finite-time stable w:r:t: ðγ, U, JÞ.

Step 2: Fix MðmÞ ¼ MðjÞðmÞ, minimize μðjÞ

s:t:

qðmÞ � 0;"m 2 0;1; . . . ; J � 1f g

AðmÞqðmÞ þ BðmÞYðmÞCðmÞ � 0;"m 2 0; 1; . . . ; J � 1f g

ΓhðmÞ<μðjÞI;"h 2 1;2; . . . ; Jf g;"m 2 0;1; . . . ;h � 1f g
PhðhÞ � U;"h 2 1; . . . ; Jf g

Phð0Þ<γ2U;"h 2 1; . . . ; Jf g

8
>>><

>>>:

Step 3: If μðjÞ � 0, a solution is obtained: GðmÞ ¼ YðmÞ=qðmÞ, "m 2 f0, 1, . . . , J � 1g. STOP. 
Otherwise, go to the next step.

Step 4: If jμðjÞ � μðj� 1Þj=μðjÞ � θ, where θ is a given positive number, then it does not find a solution. 
STOP. Otherwise, set j ¼ jþ 1, update MðjÞðmÞ as MðjÞðmÞ ¼ YðmÞCðmÞ=qðmÞ, then go to Step 2. 

Remark 4. Step 1 in Algorithm PFTSOFC aims at finding the state-feedback controller such that the 
closed-loop system in (6) is finite-time stable w:r:t: ðγ, U, NÞ. Based on Theorem 2 (Amato et al., 
2005), one can first solve the following LMIs w:r:t: DðmÞ and SðmÞ: 
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� Dðmþ 1Þ AðmÞDðmÞ þ BðmÞSðmÞ
DðmÞATðmÞ þ STðmÞBTðmÞ � DðmÞ

� �

<0;

"m 2 f0;1; . . . ; J � 1g
DðmÞ � U� 1;"m 2 f1; . . . ; Jg
Dð0Þ> 1

γ2 U� 1

8
>>>><

>>>>:

and then obtain the state-feedback controller as Mð0ÞðmÞ ¼ SðmÞDðmÞ� 1, "m 2 f0;1; . . . ; J � 1g.

4. Illustrative example
In order to show the efficacy of the obtained results and Algorithm PFTSOFC, an illustrative 
example is used in the simulation in this section. Consider a time-varying discrete-time linear 
system in system (1) with the following system matrices: 

AðmÞ ¼ 0:6992 � 1
10m 0:3008

0:1504 0:8496þ 1
10m

� �

; BðmÞ ¼ 0:16690
0:01653

� �

; CðmÞ ¼ 1 0½ �: (7) 

We solve Problem PFTSOFC with γ ¼ 2, U ¼ I and J ¼ 10. The initial matrices (state-feedback 
controller) are found in Step 1 and shown in Table 1 giving the response shown in Figure 1 from 
which we can see that the positivity of system is not guaranteed since x2ðmÞ becomes negative. 
With the initial matrices, a feasible solution is obtained as shown in Table 1 and the corresponding 
weighted state norms and state response are shown in Figure 2 from which we can see that the 
state of system is nonnegative and the finite-time stability w:r:t: ð2, I, 10Þ has been guaranteed 
according to Definition 2.

5. Conclusion
The positivity, finite-time stability and static output-feedback control for time-varying discrete- 
time linear system have been investigated in this work. Finite-time stability for positive linear time- 
varying discrete-time systems has been defined. For controller design, a necessary and sufficient 
condition guaranteeing the finite-time stability and positivity of the closed-loop system has been 
obtained at first. Two conditions that are equivalent to provide finite-time stability have been given 
such that the controller is decoupled from the finite-time matrix variable. Then an iterative 
algorithm has been developed for designing the controller such that the system can be finite- 
time stable with positivity. The theoretical results and algorithm have been verified by an illus
trative example.

Table 1. Controller gains
m MðmÞ KðmÞ

0 ½� 4:3455; � 3:3795� � 1:2643

1 ½� 3:7204; � 3:2416� � 3:5902

2 ½� 3:995; � 3:1121� � 3:8898

3 ½� 4:1064; � 3:0608� � 3:9896

4 ½� 4:1568; � 3:0209� � 4:0395

5 ½� 4:1832; � 2:9812� � 4:0695

6 ½� 4:1985; � 2:9251� � 4:0895

7 ½� 4:2045; � 2:8302� � 4:1037

8 ½� 4:1985; � 2:6483� � 4:1144

9 ½� 4:1711; � 2:2971� � 4:1228
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Figure 1. Weighted state norm 
and state response with a state- 
feedback controller (x1ð0Þ ¼ 0:62, 
x2ð0Þ ¼ 0:78).
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Figure 2. Weighted state norm 
and state response with a static 
output-feedback controller 
(x1ð0Þ ¼ 0:62, x2ð0Þ ¼ 0:78).
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