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Reclaimed water provides a water supply alternative to address problems of scarcity

in urbanized cities with high living densities and limited natural water resources.

In this study, wastewater metagenomes from 6 stages of a wastewater treatment

plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment

were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and

relative abundance of class 1 integron integrases (intl1). ARGs confering resistance

to 12 classes of antibiotics (ARG types) persisted through the treatment stages,

which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I,

aph(3′)-I, aac(6′)-I, aac(6′)-II, ant(2′′)-I], beta-lactams [class A, class C, class D

beta-lactamases (blaOXA)], chloramphenicol (acetyltransferase, exporters, floR, cmIA),

fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB),

multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS),

rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39,

tetR, tet43, tetQ, tetX ). Although the ARG subtypes in sludge and MBR effluents reduced

in diversity relative to the influent, clinically relevant beta lactamases (i.e., blaKPC, blaOXA)

were detected, casting light on other potential point sources of ARG dissemination

within the wastewater treatment process. To gain a deeper insight into the types of

bacteria that may survive the MBR removal process, genome bins were recovered from

metagenomic data of MBR effluents. A total of 101 close to complete draft genomeswere

assembled and annotated to reveal a variety of bacteria bearing metal resistance genes

and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium

smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired

ARGs aac(2′)-Ib, blaOXA−278, and tet36 respectively. In terms of indicator organisms,

cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa
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from influent to conventional treated effluent was lower (0–2.4), compared toMBR effluent

(5.3–7.4). We conclude that MBR is an effective treatment method for reducing fecal

indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated

effluents (<8 MPN/100mL) and the presence of ARGs and intl1 underscores the need

to establish if further treatment should be applied prior to reuse.

Keywords: wastewater treatment, antibiotic resistance genes, membrane bioreactor, indicator organisms,

metagenomics

INTRODUCTION

Wastewater treatment plants (WWTP) receive large volumes of
sewage that are enriched in nutrients, chemicals, and bacteria
originating from human and animal wastes (Rizzo et al.,
2013; Lood et al., 2017). Prevailing resistome datasets point to
WWTP as hotspots of antibiotic resistance genes (ARG) and
mobile genetic elements (MGE), functioning as point sources
for antimicrobial resistance dissemination due to the release of
large volumes of treated effluent into the environment (Yang
et al., 2014; Ju et al., 2015; Li A. D. et al., 2015; Bengtsson-
Palme et al., 2016; Guo et al., 2017). A recent large scale
analysis of 484 publically available metagenomes concluded
that ARG abundance has strong correlation to fecal pollution
(Antti et al., 2018). Hence, it is important to determine if the
treatment technology utilized in municipal WWTP is sufficient
for removing indicator organisms in effluents at an efficiency that
meets public health guidelines to minimize risks, and evaluate
the performance of ARG removal. Some studies show that
conventional urbanWWTP such as suspended-growth processes
(activated sludge) have low removal rates of antibiotic resistant
bacteria (ARB) and ARGs (Martins da Costa et al., 2006), and
in some cases have higher prevalence of antibiotic resistant
pathogens in treated effluents (Ferreira da Silva et al., 2007;
Luczkiewicz et al., 2010; Al-Jassim et al., 2015) compared to
raw influent. This fuels questions regarding the effectiveness
of conventional wastewater treatment processes to reduce these
emerging contaminants in order to allay public health concerns.

Membrane filtration, although costly, is efficient at removing
a high proportion of bacteria due to the association of microbial
communities with solid particles in wastewater (Lood et al.,
2017). Harb andHong (2017) reported thatmembrane bioreactor
(MBR) filtering resulted in high log reduction values which is
consistent with those in another study (Le et al., 2018). WWTP
trains that include a combination of suspended-growth and
settling process prior to membrane bioreactor (MBR) treatment
are capable of high removal efficiencies (>70%) of certain types of
antibiotics (e.g., beta-lactams, glycopeptides, fluoroquinolones)
with other antibiotics persisting (e.g., lincomycin, trimethoprim)
past MBR treatment (Tran et al., 2016). The exposure of
wastewater microbiomes to sub-inhibitory concentrations of

Abbreviations: ARB, antibiotic resistant bacteria; ARG, antibiotic resistant gene;

WWTP, wastewater treatment plant; LRV, log removal value; INF, influent; PST,

primary settling tank; SST, secondary settling tank; MBR, membrane bioreactor;

WW, wet well; SLUDGE, recycle activated sludge; NEA, National Environment

Agency; U.S. EPA, United States Environmental Protection Agency.

antibiotics within different compartments of the wastewater
treatment process may allow selection and mutations within the
microbial community that enable them to exhibit phenotypic
resistance (Chait et al., 2016; Singer et al., 2016). Studies have
shown correlations between heavy metals, MGEs [e.g., class 1
integron integrase gene (intI1)] and sul genes, suggesting that the
presence of heavy metals in WWTP play a role in co-selecting for
ARGs (Di Cesare et al., 2016). While MBR systems are efficient at
removing indicator bacteria such as Enterococci and Escherichia
coli (Francy et al., 2012; Hai et al., 2014), complete removal of all
bacteria is still not achieved (Jong et al., 2010; Trinh et al., 2012;
van den Akker et al., 2014; Harb and Hong, 2017). It remains
a challenge to assess the potential risk associated with reuse of
MBR effluents due to lack of information of the types of bacteria
that might slip through the treatment process. Furthermore, a
recent metagenomic study of resistomes in 4 full-scale water
reclamation plants in the United States showed elevated levels of
certain ARGs in final effluents (Garner et al., 2018).

The purpose of this study is to examine shifts in the resistome
profiles and microbial diversity in a full scale urban WWTP that
employs both conventional and MBR for treatment of municipal
sewage. Additionally, the removal of indicator organisms was
assessed at various stages of the treatment train to determine the
performance of each process, and the resultant concentrations
of fecal contamination remaining in final effluents. To achieve
this, wastewater samples were collected from each stage of
the treatment train of a local WWTP during six time points
at different intervals over a 12-month timeframe. Utilizing
metagenomics sequencing and in silico analyses, resistomes and
microbial composition of effluents from each sampled stage of
the WWTP was profiled to evaluate the types of ARGs that
remain after the treatment process.

MATERIALS AND METHODS

Sampling and Concentrations of Microbial
Biomass
Raw sewage and treated wastewater samples were collected
from five locations through the treatment train of a municipal
WWTP in Singapore: influent (INF), primary settling tank (PST),
secondary settling tank (SST), membrane bioreactor (MBR), and
wet well (WW). Also, recycled activated solids (SLUDGE) was
collected from a Modified Ludzack-Ettinger (MLE) bioreactor.
Samples were collected at six different time points: October 2016,
November 2016, January 2017, March 2017, May 2017, August
2017. The water reclamation process and sampling locations are
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FIGURE 1 | Schematic representation of points sampled along the wastewater reclamation plant. Wastewater was sampled from INF, influent; PST, Primary Settling

Tank effluent; SLUDGE, Sludge; SST, Secondary Settling Tank effluent; MBR, Membrane Bioreactor effluent; WW, Wet Well effluent. Sampled points are indicated with

a blue cross.

indicated in Figure 1. Wastewater influent is fed into the PST
where heavier organic and inorganic matter settle to the bottom
and are removed as waste sludge. PST effluent that floats to the
surface is pumped into separate trains for biological treatment,
a step-feed MLE (anoxic-oxic-anoxic) process prior to being
channeled toward SST or MBR treatment. These two points were
selected to compare the efficiency in log removal of indicator
organisms as a measure of fecal contamination reduction, and
determine if adequate removal was achieved. Settled sludge from
SST is pumped back into the initial MLE stage as an activated
mixed liquor source for biological treatment. The effluent from
the SST and MBR trains are then combined in a single storage
tank (i.e., wet well) prior to disposal.

Grab samples were collected in sterile Nalgene carboys and
initially passed through a filter on-site at the facility prior to
further concentration in the laboratory. Turbid samples (INF and
PST) were collected in small volumes (1–5 L), while 60 L were
collected for clear samples (i.e., SST, MBR, and WW). Recycled
SLUDGE (50mL) was collected in a sterile tube directly from the
“return” piping. Samples were concentrated to a final volume of
400mL using a Hemoflow dialyzer (HF 80s; catalog no. 5007181)
via standard bloodline tubing (catalog no. AP16641, Fresenius
Medical Care, Bad Homburg, Germany). Prior to concentration,
the ultrafilter was rinsed with nanopure water for 5min, and
subsequently pre-treated with 500mL of blocking solution [0.1 g
of Sodium Pyrophosphate (Sigma-Aldrich, Germany) in 1 L of
nanopure water] through continuous recirculation for 15min.
After the pre-treatment step, wastewater samples were pumped
through the ultrafilter and the retentate tube was blocked.
The filtrate was discarded and the biomass trapped on the
ultrafilter was eluted with 400mL of elution buffer [0.1 g of
Sodium Pyrophosphate (Sigma-Aldrich, Germany), 5mL of
Tween 80 (Sigma-Aldrich, Germany), 20 µL of antifoam Y-30
(Sigma-Aldrich), 1 L of nanopure water] with the retentate tube
unblocked. The concentrates that were eluted from the hollow
fiber ultrafiltration unit were then filtered through 0.22µm
cellulose nitrate membrane filters (Sartorius Stedim, Malaysia)
to further concentrate the microbial biomass. SLUDGE was
centrifuged at 15,000 g for 15min and the pellet was kept for
further analysis.

Measuring Concentrations of Indicator
Organisms
To estimate the level of fecal contamination and determine
whether wastewaters met microbiological criteria for recreational
purposes (NEA Singapore, 2018), traditional bacterial indicators
(E. coli, Enterococcus spp., P. aeruginosa) were assayed via
Colilert, Enterolert, and Pseudalert kits (IDEXX Laboratories
Inc., USA) following the manufacturer’s instructions with slight
modification. Briefly, 100mL of wastewater sample and 10-fold
serially diluted samples were prepared by mixing the respective
kit reagents in provided sterile bags and poured into a multi-
well tray (Quanti-Tray 2000). All kits were incubated over 24 h
at temperatures of 37◦C, for Colilert and Pseudalert samples, and
44◦C for Enterolert samples. The trays were visualized under
long-wave ultraviolet light (365 nm) and positive wells producing
a fluorescence was counted and expressed as the most probable
number (MPN) per 100mL of water sample (MPN/100mL).

Calculation of Log Removal Values (LRV)
for Indicator Organisms
The removal efficiency of each indicator organism through the
treatment process was expressed as log removal values (LRV)
calculated using the following formula:

LRV = log10(CIN)−log10(COUT)

where CIN represents the concentration in the inlet wastewater
source and Cout represents the concentration in the effluent of
the treatment stage. For effluent samples that did not contain
detectable concentrations of indicators (<1 MPN/100mL),
a “zero” value was substituted in order to calculate LRV
representative of the actual removal.

DNA Extraction
Nucleic acids were extracted from total wastewater biomass
concentrated on 0.22µm cellulose nitrate membrane filters (see
section Sampling and Concentrations of Microbial Biomass) and
0.5 g (wet weight) of SLUDGE samples using the PowerSoil
DNA Isolation Kit (Qiagen, Netherlands) according to the
manufacturer’s recommendations. The quality and quantity of
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DNA extracted were determined using a Qubit 3.0 Fluorometer
(Thermo Fisher Scientific, United States) and extracted DNAwas
run on a 1% agarose gel to ensure that samples were not degraded.

Library Preparation and Sequencing
Extracted DNA was sent to the Singapore Centre of
Environmental Life Sciences and Engineering (SCELSE)
where library preparation and sequencing was performed
on the Illumina HiSeq2500 sequencer as stated in Ng et al.
(2017). Metagenomic datasets were deposited into the
NCBI short read archive (SRA) under BioProject accession
PRJNA438174 (Table S1).

Taxonomic Assignment and Identification
of ARGs and Integron Genes
All paired end raw reads were removed of sequence adaptors and
low quality reads using bbmaps of the BBTools packages (https://
sourceforge.net/projects/bbmap/). Taxonomic assignment of
clean reads was done using Metaxa2 2.2 beta 10 (Bengtsson-
Palme et al., 2015) with the default parameters, and results
were analyzed using MEGAN 6 (Huson et al., 2016) for
microbial diversity analysis. ARGs-OAP platform (http://smile.
hku.hk/SARGs), an online analysis pipeline developed by Yang
et al. (2016), was used for antibiotic resistance gene detection
through interrogation against A Structured ARG reference
database (SARG). SARG was constructed by extracting unique
ARG sequences from the commonly used Antibiotic Resistance
Database (ARDB) and the Comprehensive Antibiotic Resistance
Database (CARD). ARG-like sequences were identified using
the pipeline and sorted into subtypes (e.g., tetA, tetX, tetY) and
types (e.g., tetracycline) with relative abundances measured by
normalizing the number of assigned ARG reads to 16S rRNA
genes in the metagenomic dataset for each sample. Cleaned reads
were interrogated against integron-like sequences extracted from
the INTEGRALL database (Moura et al., 2009), and relative
abundance was expressed by normalizing the number of integron
assigned reads to the number of 16S rRNA genes assigned reads
for each sample. A log (x + 1) transformation was applied to
integron relative abundance values and an unpaired Student’s
t-test was used to determine statistical differences (P < 0.05)
between the different treatment steps.

Statistical Analysis
To construct heatplots of the relative abundance of ARG subtypes
and types in each sample, data was normalized using a log
(x + 1) transformation and plotted using the online web tool
ClustVis (https://biit.cs.ut.ee/clustvis/). Primer v7 (Clarke and
Gorley, 2015) was used to analyze clustering patterns of ARGs
and microbial community structure (at the genus level). A log
(x + 1) transformation was used to normalize datasets and a
resemblance matrix was calculated using a Bray-Curtis analysis.
Principal Coordinate Analysis (PCO) was used to illustrate
clustering patterns of samples and an Analysis of Similarity
(ANOSIM) procedure using 999 iterations were used to test for
significance of the clustered groups. Only ARGs or microbial taxa
that had a Pearson correlation of >0.8 within clustered groups
were represented as vectors in PCO plots.

Metagenomic Binning of MBR Effluent
All clean metagenomics reads from the MBR effluent were
assembled into contigs using Megahit (Li D. et al., 2015).
Genomic binning was conducted using Metabat 2 (Kang
et al., 2015) and MaxBin (Wu et al., 2014), after which
genome refinement was done using MetaWRAP (Uritskiy et al.,
2018). The quality of genomes recovered was measured for
completeness and contamination using CheckM (Parks et al.,
2014). To identify genomes containing acquired ARGs, each
bin was searched against Resfinder 3.0 (https://cge.cbs.dtu.dk/
services/ResFinder/) at a selected threshold of 90% andminimum
query length of 60%. Gene calling and functional annotation of
genome bins were performed using RAST (Rapid Annotation
using Subsystem Technology, Overbeek et al., 2014) available
online (http://rast.nmpdr.org/).

RESULTS

Removal Efficiency of Indicator Organisms
Although mean concentrations for each indicator were abundant
in raw sewage (E. coli 1.3 × 107 ± 8.9 × 106 MPN/100mL,
Enterococci 1.1 × 106 ± 5.6 × 105, P. aeruginosa 4.7 × 106

± 4.8 × 106 MPN/100mL), sedimentation during PST stages
resulted in only slight reduction (<1.00) of E. coli (2.3 × 107

± 2.3 × 107 MPN/100mL) and Enterococci (6.8 × 105 ± 2.2
× 105 MPN/100mL), as well as P. aeruginosa (4.7 × 106 ±

4.8 × 106 MPN/100mL) (Table 1). Suspended-growth AO-A
bioreactors followed by SST resulted in mean LRV of 1.35 for
E. coli and 1.77 for P. aeruginosa, and 1.81 for Enterococci.
However, secondary effluent from this train contained 104 to
105 MPN/100mL of each indicator organism. The majority of
indicator removal occurred during MBR secondary treatment, as
this stage resulted in mean LRV of 6.86 ± 0.80 for E. coli, 5.98 ±
0.22 for Enterococci and 6.03 ± 0.58 for P. aeruginosa. Effluent
fromMBR did not contain detectable concentrations of E. coli or
Enterococci (<1 MPN/100mL), but contained P. aeruginosa at a
mean concentration of 4.0± 2.8 MPN/100mL.

Occurrence of ARG Types and Subtypes in
the Treatment Train
The average diversity of ARG subtypes was higher in the
INF (450 subtypes), PST (460 subtypes), and WW (325
subtypes), compared to the SST (292 subtypes), SLUDGE (195
subtypes), and MBR (181 subtypes) (Table S1). The average
normalized abundance of ARG subtypes were highest in MBR
(1.350), INF (1.106), and PST (0.857) while the WW, SST,
and SLUDGE had lower relative abundances (0.323–0.605)
(Table S1). The ARG types with highest relative abundance
in INF, PST, and SST were those encoding for multidrug
resistance, as well as resistance to beta-lactam and tetracycline
antibiotics (Table S2). The MBR, SLUDGE, and WW displayed
a slightly different abundance profile. In MBR samples, the
dominant ARG types were fosmidomycin, beta-lactam and
puromycin; in SLUDGE, tetracycline, multidrug resistance and
bacitracin; and in WW, multidrug resistance, beta-lactam and
aminoglycoside (Table S2). Across treatment steps, the most
dominant ARG subtypes encoded for multidrug resistance and
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TABLE 1 | Log removal values (LRV) of indicator organisms along the wastewater treatment train.

MPN/100 mL Log value (log10) LRV

INF PST SST MBR INF PST SST MBR INF→PST INF→SST INF→MBR

E. coli

Oct 2016 1.41 × 107 1.12 × 107 5.28 × 105 <1 7.15 7.05 5.72 0 0.10 1.43 7.15

Nov 2016 1.66 × 107 1.33 × 107 3.87 × 105 <1 7.22 7.12 5.59 0 0.10 1.63 7.22

Jan 2017 1.45 × 107 1.12 × 107 3.13 × 105 <1 7.16 7.05 5.50 0 0.11 1.66 7.16

Mar 2017 8.84 × 106 5.95 × 106 2.70 × 105 <1 6.95 6.77 5.43 0 0.17 1.52 6.95

May 2017 2.70 × 107 6.87 × 107 1.90 × 105 <1 7.43 7.84 5.28 0 −0.41 2.15 7.43

Aug 2017 1.87 × 105 2.42 × 107 3.87 × 105 <1 5.27 7.38 5.59 0 −2.11 −0.32 5.27

Enterococci

Oct 2016 7.27 × 105 7.12 × 105 2.26 × 104 <1 5.86 5.85 4.35 0 0.01 1.51 5.86

Nov 2016 6.38 × 105 6.13 × 105 1.79 × 104 <1 5.80 5.79 4.25 0 0.02 1.55 5.80

Jan 2017 2.01 × 106 9.87 × 105 1.05 × 104 <1 6.30 5.99 4.02 0 0.31 2.28 6.30

Mar 2017 1.41 × 106 7.76 × 105 1.19 × 104 <1 6.15 5.89 4.08 0 0.26 2.07 6.15

May 2017 1.11 × 106 6.83 × 105 1.19 × 104 <1 6.05 5.83 4.07 0 0.21 1.97 6.05

Aug 2017 5.48 × 105 3.26 × 105 1.87 × 104 <1 5.74 5.51 4.27 0 0.23 1.47 5.74

P. aeruginosa

Oct 2016 1.41 × 107 1.55 × 106 5.94 × 104 <1 7.15 6.19 4.77 0 0.96 2.38 7.15

Nov 2016 4.61 × 106 3.45 × 106 7.27 × 104 7.40 6.66 6.54 4.86 0.87 0.13 1.80 5.79

Jan 2017 1.50 × 106 1.99 × 106 4.61 × 104 2.00 6.18 6.30 4.66 0.30 −0.12 1.51 5.88

Mar 2017 1.12 × 106 3.45 × 106 6.69 × 104 2.00 6.05 6.54 4.83 0.30 −0.49 1.22 5.75

May 2017 2.48 × 106 3.26 × 106 3.79 × 104 7.50 6.39 6.51 4.58 0.88 −0.12 1.82 5.52

Aug 2017 4.11 × 106 5.79 × 106 5.48 × 104 3.10 6.61 6.76 4.74 0.49 −0.15 1.88 6.12

INF, influent; PST, primary settling tank effluent; SST, secondary settling tank effluent; MBR, membrane bioreactor effluent.

resistance to beta-lactam antibiotics. The 3 most abundant
ARG subtypes belonged to the ARG type bacitracin (bacA),
sulfonamide (sul1), aminoglycoside (aad), beta-lactam (class A
beta-lactamase), multidrug resistance (multidrug transporter,
multidrug ABC transporter, mexF, mexW, mexD, mexI,
mexT, adeJ), tetracycline (tetX), and macrolide-lincosamide-
streptogramin (MLS, ermF) (Figure S1). A heatplot of the
ARG types across all samples are represented in Figure 2. ARG
subtypes associated with multidrug resistance and resistance
to aminoglycoside (aac, aad, ant, aph), bacitracin (bacA), beta
lactams (blaLCR, blaAER, blaJOHN, blaGOB, blaIMP, blaOXA, blaKPC,
blaPDC, blaPER), chloramphenicol (chloramphenicol exporters,
cmlA, floR), fosmidomycin (rosAB), MLS (ere, erm, macAB,
msrA), polymyxin (arnA), quinolone (qepA), rifamycin (arr),
sulfonamide (sul1, sul2), tetracycline (tet36, tet39, tet41, tet43,
tetA, tetC, tetE, tetG, tetL, tetQ, tetR, tetV, tetX), trimethoprim
(dfrAB) and vancomycin (vanRSX) were detected in the
MBR effluent.

The Shared Resistome
Wastewaters from all six locations along the treatment train
shared a core resistome of 100 ARG subtypes belonging to
12 ARG types (Figure 3). There were 12 main ARG types
that persisted through the treatment stages, which included
genes that confer resistance to aminoglycoside [aadA, aph(6)-
I, aph(3′)-I, aac(6′)-I, aac(6′)-II, ant(2′′)-I], beta-lactams [class
A, class C, class D beta-lactamases (blaOXA)], chloramphenicol

(acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB),
MLS (macAB, ereA, ermFB), multidrug resistance (subunits of
transporters), polymyxin (arnA), quinolone (qnrS), rifamycin
(arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG,
tetE, tet36, tet39, tetR, tet43, tetQ, tetX) (Figure 3). A Principal
Coordinate Analysis (PCO) indicated that at the ARG subtype
level, resistome profiles of INF, SST and WW clustered and
were different from that of SLUDGE and MBR (ANOSIM test
R= 0.849, P= 0.001, Figure 3). A Pearson correlation (R> 0.85,
P = 0.001) showed that ARG subtypes, class A beta lactamase,
cAMP regulatory proteins, and kasugamycin resistance protein
(ksgA) correlated with the INF, SST, and WW cluster, while
mutidrug efflux pumps (oprN, mexEF, mdtB) correlated with the
MBR samples.

Relative Abundance of Class 1
Integron-Integrase Genes (intI1)
The relative abundance of intI1 genes was highest in INF (33± 9)
and PST (34± 8), compared to the other points further down the
treatment train (WW28± 5, SST 24± 5,MBR 16± 13, SLUDGE
14 ± 7) (Figure 4). There were no significant differences from
the INF to PST, however there was a significant (P < 0.05)
reduction in relative abundance values from PST to SST, and SST
to SLUDGE (Figure 4). There were no significant reductions in
the relative abundance of intI1 genes from SST to MBR.
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FIGURE 2 | Average values of the relative abundance of ARG subtypes, classified as antibiotic resistance types, in INF, PST, SST, MBR, SLUDGE, and WW samples.

Values were transformed using a log (x + 1) function. The color gradient from pink to green represents a higher to lower relative abundance of ARG subtypes assigned

to the ARG type.

Taxonomic Composition
The Shannon-Weaver and Simpson reciprocal indices were used
to assess the microbial diversity for each sample. The average
values showed SLUDGE had the greatest bacterial diversity
followed by SST, WW, INF, PST, and MBR (Table S3). A
Principal Coordinate Analysis showed that bacterial community
structure was divided into two main clusters, one consisting
of INF, PST, SST, MBR and WW and another represented
by SLUDGE samples (ANOSIM test R = 0.357, P = 0.01,
Figure 5). Pseudomonas, Bacteroides, Aeromonas, Prevotella,
and Cloacibacterium dominated the first cluster in wastewater
samples. However, a higher prevalence of Alteromonadaceae,
Pedobacter, Gemmatimonas, and Flexibacter differentiated
SLUDGE from the rest of the samples (Pearson correlation
R > 0.8, Figure 5B). A core microbiome present across
all samples was composed of Pseudomonas, Acinetobacter,
Cloacibacterium, Acidovorax, Comamonas, Flavobacterium, and
Azospira. Pseudomonas (33%), Acinetobacter (25%), Varivorax
(12%), Comamonas (5%), Thermomonas (4%), Acidovorax
(3%), and Delftia (3%) persisted in post-MBR treated effluent,
while Cloacibacterium (24%), Pseudomonas (11%), Aeromonas
(8%), Arcobacter (6%), Flavobacterium (5%), Bacteroides (5%),
Acinetobacter (5%) persisted in SST treated effluent (Figure 5A,
Table S4). The WW bacterial community comprised of taxa
that were present in SST and MBR effluent with a dominance
of Cloacibacterium (26%), Pseudomonas (8%), Flavobacterium
(7%), Acinetobacter (6%), and Acidovorax (2%).

Binned Bacterial Genomes Recovered
From MBR Effluent
A total of 101 microbial genomes were recovered and assembled
from the MBR treated effluent, and a criteria of >70%
completeness and a contamination of <9.6% was selected.
The binned genomes were assigned to 59 unique bacterial
species based on taxonomic assignments provided by RAST
(Table S5). The dominant genera representing at least 3%
of the total number of bins included Magnetospirillum,
Acidovorax, Nitrospira, Rhodospirillum, Sphingopyxis,
Flavobacterium, Acinetobacteria, Chitinophage, Dechloromonas,
Janthinobacterium, Mycobacterium, Novosphingobium
(Table S5). Other potential fish pathogens such as
Flavobacterium spp., Chryseobacterium spp., and a chlamydial
bacterial endosymbiont in Acanthamoebae, Parachlamydiae
spp., and the opportunistic human pathogen Comomonas
spp. represented at least one genome in the total number of
bins identified. Annotation of binned genomes indicated that
functional genes related to antibiotic resistance (fluroquinolone
resistance, aminoglycoside adenylyltransferase, tetracycline
resistance and ribosomal protection type, beta-lactamase,
fosfomycin resistance, strepthothricin resistance, multidrug
resistance efflux pumps, MexC-MexD-OprJ multidrug efflux
systems) and metal resistance (copper homeostasis, cobalt-zinc-
cadium resistance, zinc resistance, mercuric reductase/resistance
operon, arsenic resistance, chromium compound resistance)
were present in the genomes of bacteria in the MBR effluent
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FIGURE 3 | Shared resistomes along the wastewater treatment train. Overlapping ARGs detected at (A) all six-, (B) five-, (C) four-, (D) three-, and (E) two- treatment

stages. The ARG was considered detected as long as it was present in at least one collected time point within the treatment stage. (F) A PCO plot of the ARG

subtypes. Vectors represent ARGs that had Pearson correlation of >0.8.
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FIGURE 4 | Relative abundance of class 1 integron-integrase genes (intI1)

along the wastewater treatment train. Differences were considered significant

(*) where P < 0.05. INF, influent; PST, primary settling tank effluent; SST,

secondary settling tank effluent; MBR, membrane bioreactor effluent.

(Table S6). A query against the Resfinder database identified 3
bins (bins 19, 23, 76) harboring acquired ARGs which showed
high homology to aac(2′)-Ib, blaOXA−278, tet36, respectively
(Figure 6). These three bins were affiliated to Mycobacterium
smegmatis, Acinetobacter Iwoffii, Flavobacterium psychrophila
that carried other genes associated with metal and antibiotic
resistance (Table S6).

DISCUSSION

Water management is one of the cornerstones of sustainable
urban development; hence, knowing the efficiency of wastewater
treatment technology employed in WWTPs is essential to
understand how the effluents may affect downstream processes
and the urban water cycle. According to European legislation,
traditional parameters such as total suspended solids, chemical
oxygen demand, biochemical oxygen demand, ammonia, nitrate,
total phosphorus, and fecal coliforms are used to assess the
quality of treated wastewaters (EEC, 1998). The indiscriminant
usage of antibiotics in human and animals has perpetuated the
antimicrobial resistance problem globally (WHO, 2014; Ventola,
2015). Wastewater discharges originating from hospitals and
domestic sources carry fecal pathogens, as well as ARB and ARGs
which are emerging environmental contaminants (Rizzo et al.,
2013; Le et al., 2016; Ng et al., 2017; An et al., 2018; Gupta
et al., 2018; Haller et al., 2018; Lorenzo et al., 2018; Manaia
et al., 2018). If wastewaters are not treated using appropriate
technology, environments receiving wastewater dischargemay be
impacted (Rodriguez-Mozaz et al., 2015; Proia et al., 2018; Sabri
et al., 2018), particularly where fecal indicator concentrations in
effluents are high (Antti et al., 2018).

In this full-scale study of a municipal WWTP, cumulative
LRV of indicator organisms (E. coli, Enterococci, P. aeruginosa)
from INF to post-SST was 0–2.4, and 5.3–7.4 post-MBR, which
validates a greater removal capacity via MBR as evident in other
studies (Harb and Hong, 2017; Zhu et al., 2018). The fecal
coliform values were comparable to wastewater treatment plants
in Sweden and Italy that apply conventional andMBR treatments

(Ottoson et al., 2006). The LRV of E. coli reported in our study
was slightly higher than that of the Swedish study, as well as LRV
median values (5.9) of nine different wastewater MBR systems
in California (Hirani et al., 2012). Still, LRV of E. coli (7) and
Enterococci (6) were comparable to another study with a full
scale MBR system in a municipal WWTP in Italy (Zanetti et al.,
2010). E. coli and Enterococci in the MBR effluent were below
the detection limit (<1MPN/100mL), which meets the U.S. EPA
guidelines for recreational purposes, and within reported limits
used for agriculture reuse for surface or spray irrigation of food
crop intended for human consumption (U. S. EPA, 1986, 2012).

Despite the absence of E. coli and Enterococci in MBR
effluents, low abundance of viable P. aeruginosa were present.
The microbial community profile from INF, PST, to SST appear
fairly stable with a slight shift observed after MBR treatment,
where certain taxa continued to predominated and others
waned. The MBR effluent had a microbial community profile
dominated by species of Pseudomonas, Acinetobacter, Varivorax,
Comamonas, Thermomonas, Acidovorax, Delftia, Sphingomonas,
Chryseobacterium, Azospira, and Flavobacteria. The same genera
of bacteria have been described in post MBR treated effluent in
several other studies (Grijalbo et al., 2015; Harb and Hong, 2017;
Liu et al., 2017). Of these taxa, Pseudomonas and Acinetobacter
are pathogen-associated genera and their detectable levels in
MBR treated effluents may pose problems in receiving waters or
enable regrowth in storage tanks. Furthermore, the ARG profile
of MBR effluents show high relative abundance of fosmidomycin,
beta lactam and puromycin ARG types. Also, MBR profiles
indicate the persistence of a diversity of 100 ARG subtypes
detected throughout the treatment process with resistance to
aminoglycoside, beta-lactams (class A, class C, class D beta-
lactamases) chloramphenicol, fosmidomycin, MLS, polymyxin,
quinolone, rifamycin (arr), sulfonamide, tetracycline, and intI1
genes (associated with horizontal gene transfer). Detection of
sulfonamide (sul1, sul2), tetracycline (tetC, tetX, tetG), MLS
(ereA) resistant genes and intI1 in our study has also been
observed in MBR effluents of municipal wastewater treatment
plants in China (Du et al., 2015; Zhu et al., 2018). Among
the beta lactamases, variants of the blaOXA genotypes (class
D beta lactamase) were detected across the treatment process,
including in the sludge. A variety ARG subtypes belonging
to 14 different ARG types (multidrug resistance, polymyxin,
quinolone, rifamycin, fosmidomycin, chloramphenicol, beta
lactam, bacitracin aminoglycoside, sulfonamide, tetracycline,
MLS, vancomycin, trimethoprim) were detected in sludge
samples which underscores problems of the application of
sludge for organic farming purposes. Another study by
Calero-Cáceres et al. (2014) provided evidence of sludge being a
potentially important source of ARGs.

The ubiquity of different types of blaOXA is consistent with
previous findings in hospital wastewater effluents and municipal
wastewater samples in Singapore (Ng et al., 2017). Variants of
class A (blaKPC, blaPER), class B (blaGOB, blaLRA), and class
C (blaPDC) beta lactamases were detected in INF and MBR
effluents, which confer resistance to beta lactam antibiotics such
as cephalosporin and carbapenems. These antibiotics are of
clinical importance and considered as last resort antibiotics in the
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FIGURE 5 | Genera of bacteria detected along the wastewater treatment train. (A) A comparison of the most abundant family/genera identified across samples and

(B) A PCO plot of the bacterial community composition. Vectors represent taxa that had Pearson correlation of >0.8.

treatment of Gram-negative infections (Nordmann et al., 2011;
WHO, 2016). This result suggests that even with advanced MBR
treatment, these ARG subtypes persist and further treatment
and monitoring would be necessary to prevent dissemination.
Detection of blaPDC, a chromosomally inducible Pseudomonas-
derived cephalosporinase (PDC), and the presence of viable
P. aeruginosa cells in MBR effluent is a basis for P.aeruginosa

playing an important role in the carriage and dissemination of
antimicrobial resistance in post MBR treated effluent. Although
low concentrations of viable P.aeruginosa (<8 MPN/100mL)
were measured in the MBR effluent, their biofilm forming ability
and antibiotic tolerant properties within a biofilm community
(Spoering and Lewis, 2001; Harrison et al., 2005) could allow
them to colonize surfaces in the post MBR wastewater treatment
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FIGURE 6 | A comparison of binned genomic regions in MBR effluents harboring acquired ARGs. Genomic bin numbers are seen in parenthesis. Sets of genes with

similar sequences are grouped by color with those in red representing acquired ARGs identified by Resfinder. Corresponding ARG homologs present in similar

organisms were compared against the binned genomic regions.

train providing a protective environment for other ARB to
thrive. Moreover, plasmid bearing blaKPC in P. aeruginosa strains
have been described in local hospital wastewaters (Ng et al.,
2017; Haller et al., 2018); providing a basis for prioritizing the
monitoring of this ARB in wastewater effluents.

To infer the implications of the detectable array of ARGs
in the MBR effluent, metagenomic binning was used to assign
ARGs to specific taxa. Only a few binned genomes from the
MBR effluent belonged to genera associated with opportunistic
pathogens, consistant with taxa (Acinetobacter, Mycobacterium,
Stenotrophomonas, Pseudomonas) also observed in a 16S rRNA-
based microbial classification study of municipal water effluent
by Harb and Hong (2017). Two other genome bins affiliated
to Flavobacterium (Flavobacterium johnsoniae, Flavobacterium
psychrophilum) and Chryseobacterium (Chryseobacterium
gleum), known to cause infections in fish and occasionally
humans (Loch and Faisal, 2015) were recovered from the MBR
effluent metagenomes. Metal resistance genes and intrinsic
ARGs were annotated in binned bacterial genomes of the MBR
effluents. This provides new insights and a direct genetic link
of members within the microbial consortia with resistance
mechanisms which allow them to protect themselves and survive
in the presence of antimicrobials or heavy metals. Only three
aquired ARGs were detected in the genome bins ofM. smegmatis,
A. Iwoffii, F. psychrophila and the lack of the identification of
more acquired ARGs could be attributed to the difficulties in
assigning plasmid sequences to genomic bins. These bacteria
are not considered priority pathogens on WHO’s published
list of antibiotic–resistant “priority pathogens” (Lawe-Davis
and Bennett, 2017). Despite this, it should be emphasized
that A. Iwoffii, which is ubiquitous in the environment is an
emerging multidrug resistant pathogen in neonatal sepsis
(Mittal et al., 2015). Furthermore, ARGs encoding for resistance

against cephalosporins, macrolides, polymyxins, quinolones,
and aminoglycosides, that are categorized as critically important
antimicrobials for human medicine by WHO (2016), persisted
throughout the wastewater treatment process. Monitoring the
fate of these genes, beyond the WWTP and into receiving waters,
such as the blaOXA genes that confer resistance to cephalosporins,
could be used to track the extent of dissemination and the
evaluate potential risks.

Shifts in community composition were observed at each
treatment stage, with the SLUDGE samples having the highest
diversity enriched in bacteria involved in the removal of nitrogen
(Nitrospira, Nitromonas) and phosphorus (Gemmatimonas),
formation of bioflocs (Chloroflexaceae, Caldilinea), and other
taxa involved in degradation pathways (Porphyromonadaceae,
Haliangium) which are typically present in activated sludge
(Ferrera and Sanchez, 2016; Shchegolkova et al., 2016) and a
good indication of adequate wastewater treatment. Unlike the
other samples where beta lactams were the dominant ARG type,
the SLUDGE displayed a different profile of tetracycline (tetX),
bacitracin (bacA), and multidrug resistance (ompR, acrB) genes.

The reduction in the diversity of ARG subtypes and
concentrations of fecal indicators along the treatment train of
a full-scale municipal wastewater system is a clear indication
that MBR as a treatment strategy is effective at removing
raw-sewage associated bacteria and most ARGs in the influent,
although removal of P. aeruginosa was not as effective. In
another study, Zhu et al. (2018) reported that the development
of dense membrane fouling layers reinforces the membrane
itself creating a dual barrier that prevents leakage of ARGs
from the membrane module. Metagenomic binning results
indicate that remaining ARGs in the MBR effluent (that
were not assigned to any bin) could possibly be extracellular
fragmented DNA, plasmid- or phage-associated. The relevance
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of exogenous ARGs is unknown and it remains a challenge to
understand the fate, transport, and health impact that ARGs
have on reclaimed water (Hong et al., 2018). Apart from ARG
removal, MBR systems have demonstrated higher removal rates
of antibiotics and antimicrobials from wastewater influents in
contrast to conventional treatment options (Wang et al., 2015;
Tran et al., 2016). Although there are currently no benchmarks
for maximum admissible values of ARB and ARGs in treated
wastewater, our results support the view that MBR is a superior
option of treatment for water reuse compared to relying solely
on conventional treatment processes that incorporate activated
mixed liquors, where effluents still contain relatively high levels
of ARGs and indicator organisms. However it should be noted
that the MGE, intI1, did not show significant rates of removal
with MBR treatment.
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